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Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro
functional selection and amplification procedure, we have identified a novel ESE motif recognized by the
human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they
promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can
also function in a different exonic context from the one used for the selection procedure. The selected sequences
share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score
matrix was generated from the selected sequences according to the nucleotide frequency at each position of
their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF
score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the
mouse immunoglobulin M (IgM) and human immunodeficiency virus fat genes. Multiple SC35 high-score
motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in
S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were
found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented
by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon

sequences.

Accurate removal of introns from pre-mRNA requires mul-
tiple cis elements, including the splice sites, polypyrimidine
tract, branch site, and other intronic and exonic sequences that
have positive or negative effects on splicing (10, 31, 44; re-
viewed in references 1 and 2). Positive-acting sequences,
termed exonic splicing enhancers (ESEs) (37, 39, 42), have
been identified primarily in exons associated with regulated
splicing. These exons are typically adjacent to introns with
weak intronic splicing signals and require ESEs for their in-
clusion. Deletion of an ESE often causes exon skipping or, in
the case of terminal exons, suppresses removal of the last
intron. One of the first characterized ESEs is located in the M2
3’-terminal exon of the mouse immunoglobulin M (IgM) gene
(39). This 73-nucleotide (nt) ESE, which is highly purine rich,
is required for inclusion of the alternatively spliced M2 exon.
However, deletion of just the purine-rich sequences within this
ESE does not abolish splicing completely. The M2 ESE also
functions in a heterologous context to enhance splicing of a
Drosophila melanogaster doublesex intron (39).

A SELEX procedure has been used to identify sequences
that can function as ESEs (36). A 20-nt sequence of the inter-
nal duplicated exon of a model pre-mRNA was replaced by 20
nt of random sequence. The randomized pre-mRNAs were
incubated under splicing conditions in nuclear extract, and
functional enhancer elements that promoted splicing were se-
lected. A large number of sequences, both purine rich and
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non-purine rich were obtained, and the two types of sequences
stimulated exon inclusion to similar extents. A similar ap-
proach was used in an in vivo system involving transfection of
a troponin minigene with random sequences in place of a
natural ESE (9). Purine-rich sequences and a novel class of
AC-rich ESE sequences were identified. The AC-rich se-
quences are efficient splicing enhancers and can also function
in a heterologous gene context.

Considerable evidence suggests that ESEs interact specifi-
cally with a family of RNA-binding proteins called SR proteins,
which are characterized by one or two RNA recognition motifs
(RRMs) and a C-terminal Arg-Ser-rich domain (12, 18, 27, 34,
37, 38). SR proteins are essential splicing factors required for
both constitutive and alternative splicing (11, 17, 43). SR pro-
teins can determine alternative splice site selection by antag-
onizing the activity of hnRNP A/B proteins. High concentra-
tions of SR proteins usually favor the use of proximal splice
sites and exon inclusion, whereas high concentrations of
hnRNP A/B proteins tend to favor distal splice sites and exon
skipping (5, 22, 25). SR proteins also specifically recognize
ESEs, and the resulting complex may then stimulate U2AF
binding to the weak polypyrimidine tract of the upstream 3’
splice site. The ESE-SR protein—-U2AF interaction is thought
to be important during the early stages of spliceosome assem-
bly (8, 16, 41, 45), although recent evidence suggests that, in at
least some cases, including the IgM M2 exon, ESEs act in part
by neutralizing exonic silencer elements (7, 15). SF2/ASF and
SC35 are two of the best characterized among the nine human
SR proteins identified to date. Both proteins have been impli-
cated in many aspects of constitutive and regulated splicing.
Both are found in the prespliceosomal E complex and can
interact with U1-70K and U2AF by RS domain-mediated pro-
tein-protein interactions. The RRMs of these two proteins are
responsible for their unique substrate specificities (6, 26).

A better understanding of the functional interactions be-
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tween ESEs and SR proteins depends on knowledge of the
sequence specificity of all SR proteins. To this end, we recently
performed an iterative selection under splicing conditions to
identify exon sequences that can enhance splicing in the pres-
ence of each of three SR proteins. We identified three novel
classes of functional ESE motifs recognized specifically by SF2/
ASF, SRp40, and SRp55. The consensus motifs indicated that
individual SR proteins recognize distinct and highly degener-
ate sequences (20). The three SR proteins we studied previ-
ously are closely related, i.e., they all have two tandem RRMs.
To extend this analysis, we have now determined the sequence
specificity of an additional, extensively studied SR protein,
SC35, which has a single N-terminal RRM.

MATERIALS AND METHODS

Preparation of HeLa cell extract and recombinant SR proteins. HeLa nuclear
and S100 extracts were prepared as described (23). Recombinant SC35 expressed
in baculovirus was generously provided by K. Lynch and T. Maniatis and by
R.-M. Xu.

Selection and amplification procedure. The amplification and selection pro-
cedure was carried out as described (20). Briefly, the natural ESE of the IgM
pre-mRNA was replaced by 20 nt of random sequence by overlap-extension PCR
with plasmid .MA DNA (39) as a template. The resulting PCR product was used
for in vitro transcription to generate a 3’P-labeled random pre-mRNA pool.
Twenty femtomoles of the pre-mRNA pool was incubated under in vitro splicing
conditions in S100 extract plus recombinant SC35 in a 25-pl reaction mixture.
The RNA was separated by denaturing polyacrylamide gel electrophoresis, and
the spliced mRNAs were excised and eluted from the gel in 0.5 M ammonium
acetate plus 0.1% sodium dodecyl sulfate and reamplified by reverse transcrip-
tion-PCR (RT-PCR). Reverse transcription was carried out by using Superscript
1T as described by the manufacturer (Life Technologies). PCR was performed by
using high-fidelity Pfu polymerase as specified by the manufacturer (Stratagene).
The PCR product was subcloned into the vector PCR-Blunt (Stratagene) and
sequenced by using a Dye Terminator Cycle Sequencing kit (Perkin-Elmer) and
an automated ABI 377 sequencer. Selected winner sequences were rebuilt into
DNA templates for transcription of pre-mRNAs by overlap-extension PCR, as
done initially for the random sequences (20).

Sequence analysis and construction of score matrices. The selected sequences
of each SR protein winner pool plus a portion of the flanking nucleotides were
aligned by using Gibbs sampler (19). The identified consensus motif was then
used to generate a score matrix. The compositional bias of the initial RNA pool
was taken into account. For details of the sequence analysis, see reference (20).

In vitro splicing. PCR products carrying an SP6 or T7 promoter were used for
in vitro transcription. 5'-capped transcripts were incubated in 25-pl splicing
reaction mixtures as previously described (24). Each reaction mixture had 4 .l of
nuclear extract or 7 ul of S100 extract. For S100 complementation assays, 20
pmol of specific SR protein was used. Splicing reactions were carried out at 30°C
for 4 h. The RNA was then extracted, loaded on 6 or 12% polyacrylamide gels,
and visualized by autoradiography (20). DNA templates for IgM M1-M2 pre-
mRNAs with a D2 variant containing an SC35 consensus match or with the 6-24
winner sequence (29) were made by overlap-extension PCR with primers M2-
D2HXL (GTGAAATGACTCTCAGCATggggacatactcggeccctgCTAGTAAAC
TTATTCTTACGT) and M2-SCH24 (GTGAAATGACTCTCAGCATtttgcggte
tceggectccCTAGTAAACTTATTCTTACGT), respectively (shared flanking
sequences are in uppercase letters). DNA templates for pre-mRNAs in an IgM
C3-C4 context were made by PCR on ppC3-C4 plasmid DNA (40) with an SP6
promoter primer and the following antisense primers: Ca (TGGCAGCAGGT
ACACAGC), CaCb (gtggctgactecctcagg), D2 (ctgeggecgagtatgtccccTGGCAGC
AGGTACACAGC) D2C (caggggecegagtatgtccccTGGCAGCAGGTACACA
GC) and 6-24 (ggaggccggagaccgcaaalGGCAGCAGGTACACAGC). RNAs
were made as described above.

RESULTS

Identification of ESE motifs recognized by SC35 under
splicing conditions. To study the sequence specificity of ESE
recognition by SC35 under splicing conditions, a functional
SELEX procedure (20) was used (Fig. 1). Functional ESEs
were selected in the context of a well-characterized mouse
immunoglobulin p heavy chain minigene transcript, compris-
ing the last intron flanked by the M1 and M2 exons (39). The
natural ESE in the M2 exon was replaced by 20 nt of random
sequence by overlap-extension PCR. The random RNA pool, a
library of pre-mRNAs representing 1.2 X 10'° different mole-
cules, was spliced in nuclear extract or in S100 extract comple-
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FIG. 1. Experimental procedure for functional SELEX. The structure of the
IgM M1-M2 minigene pre-mRNA is shown. The characterized natural ESE (73
nt) was replaced by 20 nt of randomized sequence by overlap-extension PCR
(20). A T7 promoter (black box) was built into the PCR product. In vitro-
transcribed RNA was then incubated under splicing conditions. Any spliced
mRNA molecules must contain a functional ESE or winner sequence, designated
by the white W in a black box. The spliced mRNA molecules were purified from
a denaturing polyacrylamide gel, reamplified by RT-PCR, and cloned. Individual
clones were sequenced and analyzed by a sampling algorithm to define a com-
mon motif, and a subset was rebuilt into minigene templates, transcribed, and
assayed for splicing in vitro.

mented by SC35. As previously reported, the wild-type IgM
pre-mRNA spliced very efficiently in nuclear extract, with the
mature mRNA representing greater than 90% of the RNA
after a 4-h incubation (Fig. 2, lane 1). In contrast, the mutant
with a deletion of ESE (ED) did not splice at all under the
same conditions (Fig. 2, lane 2), confirming that the natural
ESE of the IgM pre-mRNA is essential for splicing (39). The
initial RNA pool was spliced in nuclear extract with an appar-
ent efficiency of about 20% (Fig. 2, lane 3), whereas no splicing
was detected in the S100 extract alone (lane 4). When the S100
extract was complemented by SC35, splicing of the initial RNA
pool remained undetectable by autoradiography (lane 5).
However, we assumed that a very small fraction of the RNA
pool was correctly spliced, and we excised a gel slice corre-
sponding to the position of spliced mRNA, using the product
in lane 3 as a marker. RNA was eluted from the gel slice and
amplified by RT-PCR. The amplified products were cloned,
and 30 clones were sequenced. The resulting sequences were
analyzed by using the program GIBBS sampler to determine a
consensus sequence (19, 20). A score matrix was generated
according to the frequency of each nucleotide at each position
of the consensus motif, adjusted for the compositional bias of
the initial random pool. This score matrix was used to identify
high-score motifs within each winner sequence, taking into
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FIG. 2. Splicing of the initial RNA pool. Twenty femtomoles of wild-type
IgM minigene pre-mRNA (W; lane 1), pre-mRNA with a deletion of the ESE
(ED; lane 2), or a pre-mRNA pool representing 1.2 X 10'? different molecules
with a randomized 20-nt segment within exon M2 were spliced in 25-pl reaction
mixtures in nuclear extract (lane 3), S100 extract alone (lane 4), or S100 extract
complemented by 20 pmol of recombinant SC35 (lane 5). The structures of the
precursor, intermediates, and products are indicated next to the autoradiogram.
The expected size of the spliced mRNA product of the ESE deletion mutant is
indicated by an arrow.

account the randomized sequence region and a small portion
of the flanking sequences.

The SC35 winner sequences after a single round of selection
yielded the short degenerate octamer consensus motif
GRYYcSYR (Fig. 3). The C-residue content within the ran-
domized 20-nt segment increased from 19% in the initial pool
to 23% after a single round of selection. This change in C
composition occurred at the expense of slight reductions in the
content of G, A, and U residues. As reported previously for
our similar analysis of other SR proteins, the SC35 consensus
sequence is highly degenerate. Several of the winner sequences
have more than one high-score motif (Fig. 3A). The scores of
the 30 SC35 winner sequences range from 1.19 to 3.55, with a
mean score of 2.56 = 0.56. Thirty individual sequences cloned
and randomly selected from the initial pool (20) gave a range
of scores from 0.64 to 3.23, with a mean score of 1.62 * (.72,
when searched by the same score matrix. Only 3 sequences in
the control pool had scores higher than the mean of the winner
pool, whereas 16 sequences in the winner pool had scores
higher than this mean, and 28 had scores higher than the mean
of the control pool. The difference in the means of the scores
between the two sequence pools is highly significant (P < 1077,
t test with df = 58).

The highest possible score for a single octamer is 3.95, cor-
responding to the sequence GGCCCCUG (Fig. 3B). This pre-
cise sequence does not occur in any of the 30 winner sequences
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A

Clone Sequence Score
SC35-1 GGAGACUCAACYIMNTNEG 3.12
SC352 (D) GACEINIYC CAUCCUGG 3.55
SC35-3  (D2) GGGGACAUACUCHNNCINAIE 3.10
SC35-4 GGCGCGGEMGHMEGUAUUCUa 3.08
SC35-5 CAUGGHIAMEAIINAAGAGCGCGG 257
SC35-6 (D3) GE™dC CAUAUGGUG 2.67
SC35-7 GGAMUMYUMESUUAUGAUAG 2.84
SC35-8 GUCCUCAGAU[gURHdaIe 343
SC35-9 UNNUEIIAC LU LUGGGGC 224
SC35-10 GAGUGIAANIAMEEAGGAAGC 2.40
SC35-11 CCUGGAGACUGGEAMGMITEC ua 3.12
SC35-12 GUAAUAGGGAG C{EE AN 279
SC35-13 (D4) BURUAAMEGUGCCGGACC 1.88
SC35-14 CAUGCUUGGGGA 1.99
SC35-15 ACAGCCGCGCOEEANGEARU 2.23
SC35-16 e AMUEIAUUGUUAGGAUGG 2.51
SC35-17 GGAGGUUGGCC ClEelc Ullle 241
SC35-18 CGEGEAMIEUGUUCCEGA 1.56
SC35-19 (D5) AGUUAMIINC AGCUAUCGC 1.19
$C35-20 GCGGCARHAIMEAINAGAUGU 3.12
SC35-21 GGAGGUGAUAGEEARENGEU 1.96
SC35-22 UGCAAGUGUUCEXRSUEIG G 2.70
SC35-23 CCUGGCAUGAACHUNTEEA 2.31
5C35-24 CANGAAEGGUUAAUGCG 3.06
§C35-25 2.90
SC35-26 2.81
SC35-27 GUGGGAAGICHAMNUMEUACA 2.19
SC35-28 GUANEIHIIRNWAA CGAAGCGG 2.12
SC35-29 2.94
$C35-30 CAAGUACGIEXH 2.00
CONSENSUS MEAN 2.56
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FIG. 3. Analysis of the SC35-selected sequences. (A) Sequence alignment
and identification of a consensus motif. The consensus motif and score matrix
were derived as described previously (20). The sequences were aligned on the
basis of the highest score motif for each sequence. Nucleotides matching the
consensus are shown as white on a black background; mismatched nucleotides
are not shaded. The scores of the aligned motifs are indicated on the right.
Additional motifs present in some of the sequences with a score greater than 1.62
(the mean score of the random pool) are underlined. In two cases these include
a trinucleotide contributed by the 3’-flanking sequence, which is indicated with
lowercase letters (cua). The consensus shown is only an approximation that
indicates the most frequent nucleotide(s) at each position. The lowercase ¢ at
position 5 denotes a slight preference for this nucleotide over the other three
nucleotides, which occur at similar frequencies. Y, pyrimidine; S, G or C; R,
purine. The nucleotide composition of the selected pool is shown at the bottom.
The nucleotide composition of the initial RNA pool was as follows: A, 21%; G,
39%; C, 19%, and U, 21%. (B) Representation of the SC35 ESE score matrix
and consensus motif. The diagram shows the frequency of each nucleotide at
each position of the octamer consensus, adjusted for the compositional bias of
the initial pool (20). The height of each letter is proportional to its frequency,
and the nucleotides are shown from top to bottom in decreasing order of
frequency. This method of displaying nucleotide frequencies is based on refer-
ences (3) and (13).

analyzed. The absence of a perfect motif in the selected se-
quences may reflect the small sample size or the fact that a
linear consensus sequence or nucleotide frequency matrix as-
sumes an independent contribution at each position, an as-
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FIG. 4. Activity of the selected ESE motifs. SC35 SELEX winners were
rebuilt into the IgM M1-M2 minigene by overlap-extension PCR (as described in
the legend for Fig. 1), and transcripts corresponding to individual winners were
spliced in HeLa nuclear extract (lanes 1, 4, 7, 10, and 13), in S100 extract alone
(lanes 2, 5, 8, 11, and 14), or in S100 extract complemented by recombinant SC35
(lanes 3, 6, 9, 12, and 15).

sumption that may or may not fit the actual recognition mech-
anism (33).

The SC35-selected sequences are functional and specific
ESEs. We next tested whether the individual sequences se-
lected in the presence of SC35 could function as true splicing
enhancers. Five sequences with a range of scores were arbi-
trarily chosen from the 30 analyzed sequences and individually
rebuilt into IgM M1-M2 pre-mRNAs with the same structure
as those in Fig. 1 and 2, using overlap-extension PCR and in
vitro transcription (20). Each pre-mRNA was then incubated
under splicing conditions in nuclear extract or in S100 extract
complemented by SC35 (Fig. 4). Four of the five SC35 winner
sequences activated IgM pre-mRNA splicing very efficiently in
nuclear extract (Fig. 4, lanes 1, 4, 7, and 10). They also pro-
moted IgM pre-mRNA splicing in S100 extract complemented
by SC35, albeit less efficiently (Fig. 4, lanes 3, 6, 9, and 12), but
not in S100 extract alone (Fig. 4, lanes 2, 5, 8, and 11). One
winner sequence from the SC35 winner pool, D5, enhanced
splicing less efficiently in nuclear extract (Fig. 4, lane 13) and
gave only trace activity in the complementation assay (Fig. 4,
lane 15). In general, the splicing efficiency correlated with the
motif scores shown in Fig. 3. D1 and D2 have the highest
scores; D3 and D4 have intermediate scores; and D5 has the
lowest score among the 30 sequences analyzed (Fig. 3). How-
ever, the correlation between splicing efficiency and motif
scores is not linear, presumably reflecting sequence context
effects. Also, D3 has a higher score than D4, and although they
spliced with similar efficiency in nuclear extract, D4 spliced
more efficiently in the complementation assay. Sixteen se-
quences from the random RNA pool were also analyzed for
enhancer activity (20). All of them spliced in nuclear extract
poorly or not at all. In most cases the pre-mRNAs showed
partial degradation, suggesting that spliceosomal complexes
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FIG. 5. Specificity of the selected ESE motifs. (A) Splicing of SC35-selected
ESEs was analyzed in nuclear extract (lanes 1, 5, 9, 13, and 17), S100 extract
alone (lanes 2, 6, 10, 14, and 17), or S100 extract plus recombinant SC35 (lanes
3,7, 11, 15, and 19) or recombinant SF2/ASF (lanes 4, 8, 12, 16, and 20). (B)
Splicing of SF2/ASF-selected ESEs was examined in nuclear extract (lanes 1, 5,
9, 13, and 17), S100 extract alone (lanes 2, 6, 10, 14, and 18), or in S100 extract
plus SC35 (lanes 3, 7, 11, 15, and 19) or SF2/ASF (lanes 4, 8, 12, 16, and 20).

did not assemble on these RNAs (H.-X. Liu and A. R. Krainer,
unpublished data).

Next, we determined the SR protein specificity of the SC35-
selected ESEs. Pre-mRNAs with the different winner se-
quences were separately incubated under splicing conditions in
S100 extract complemented by SC35, SF2/ASF, SRp40, or
SRp55. All of the tested SC35 winners promoted splicing with
higher efficiency in S100 extract when the extract was comple-
mented by SC35 (Fig. 5A, lanes 3, 7, 11, 15, and 19), SRp40, or
SRpS5 (Liu and Krainer, unpublished). When the extract was
complemented by SF2/ASF, the splicing efficiencies were much
lower (Fig. SA, lanes 4, 8, 12, 16, and 20). In contrast, five
SF2/ASF-selected winners promoted splicing in S100 extract
complemented by either SF2/ASF (Fig. 5B, lanes 4, 8, 12, 16,
and 20) (20) or SC35 (Fig. 5B, lanes 3, 7, 11, 15, and 19) with
comparable efficiencies. These SF2/ASF winners promoted
splicing very poorly or not at all in the presence of SRp40 or
SRp55 (20).
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D2C: ...UCUCAGCAUggggacauacucggccccugCUAGUAAAC. . .

6-24:

. . .UCUCAGCAUuuugcggucuccggccuccCUAGUAAAC. . .

FIG. 6. Comparison of SC35 winner sequences and SC35 ESE motif in two different exonic contexts. (A) The 20-nt D2 winner sequence (see Fig. 3), a variant of
D2 with two nucleotide changes to introduce a maximum-score consensus (D2C), and a 19-nt SC35 SELEX winner sequence (6-24) described in a previous study (29)
were inserted into the IgM M1-M2 minigene in place of the natural ESE in exon M2, and the corresponding transcripts were spliced in nuclear extract (lanes 2 to 4).
The control pre-mRNA lacking an ESE (ED) is shown in lane 1. (B) The same D2, D2C, and 6-24 sequences were tested in the context of an IgM C3-C4 minigene
(26). The Ca pre-mRNA includes the first 38 nt of the C4 exon (lane 1). In the remaining pre-mRNAs, this segment of the C4 exon is followed by the next 38 nt of
the C4 exon, which comprise a natural SC35-dependent ESE (CaCb; lane 2) or it is followed by the D2, D2C, or 6-24 sequence (lanes 3 to 5). The sequences of the
relevant portions of the 3’ exons are shown below each panel. The two nucleotide changes in D2C, compared to D2, are underlined. The mobilities of the pre-mRNAs,

mRNAs, and 5’ exon intermediates are indicated next to each autoradiogram.

Comparison of SC35 ESE motifs and activity in different
exonic contexts. To test whether an octamer with the highest
possible SC35 ESE score has enhancer activity and to compare
this consensus with a previously identified one, we analyzed the
D2 winner containing the motif GGCCGCAG, a variant of D2
with two transversions that create the maximum score consen-
sus GGCCCCUG, and one of the 19mer winners (6-24) se-
lected by Schaal and Maniatis (29). These three sequences
were first tested in the context of the IgM M2 exon (Fig. 6A).
All three sequences strongly promoted splicing of exons M1
and M2 in nuclear extract (Fig. 6A, lanes 3 to 5), in contrast to
the lack of detectable splicing with the parent pre-mRNA in
which the natural ESE was deleted (Fig. 6A, lane 1).

Next we tested the same three ESEs in a different exonic
context, namely the C4 exon derived from a different region of
the IgM pre-mRNA. When this exon is divided into three
segments, Ca, Cb, and Cc, the Cc segment is dispensable,
whereas the Cb segment behaves as an SC35-specific ESE (26).
Indeed, a shortened 3’ exon consisting of the Ca and Cb
segments of C4 spliced to exon C3 much more efficiently in
nuclear extract than one consisting of Ca alone (Fig. 6B, lanes
1 and 2). When the Cb segment was replaced by each of the
above three ESEs, all of them promoted splicing above the
background of Ca alone (Fig. 6B, lanes 4 to 6). However, the
D2 winner ESE was as strong as the natural Cb ESE, the 6-24
ESE was slightly less efficient, and the perfect consensus was
the least active. These results show that both our SC35 motif
and a winner sequence identified in a previous study (29) can
function in different exonic contexts, although the precise con-
text can influence the extent of enhancement.

Distribution of SC35 ESE motifs in natural genes. To de-
termine whether the selected ESE motifs are relevant to splic-
ing of natural pre-mRNA substrates, we conducted a search of
SC35 high-score motifs in natural genes. Only scores higher
than the lowest score of the SC35 winner pool are shown (Fig.
7, green vertical bars). For comparison, we also show the high-
score SF2/ASF motifs in the same genes (Fig. 7, blue vertical
bars) (20). The first natural sequence we examined was the M2
exon of the IgM gene. The search result indicated that there
are many SC35 ESE motifs within the segment comprising the
previously characterized natural ESE (Fig. 7A, magenta hori-
zontal bar). The distribution of high-score SC35 motifs differs
from that of SF2/ASF motifs. SF2/ASF-specific motifs are
present at a higher density within the natural ESE than in the
flanking regions. In contrast, high-score SC35 motifs have a
relatively even distribution across the M2 exon. Both SR pro-
teins can promote splicing of this pre-mRNA in S100 extract
(Liu and Krainer, unpublished). The presence of ESE motifs in
regions lacking enhancer activity shows that although the mo-
tifs may be necessary, they are not sufficient for ESE function
(see Discussion).

To address the issue of whether the identified ESE motifs
are specific to SC35, we searched two additional pre-mRNA
substrates that are known to have different SR protein speci-
ficities. Splicing of the IgM C3-C4 pre-mRNA is activated in
S100 extract when complemented by SC35 but not by SF2/ASF
(26). In contrast, splicing of the human immunodeficiency virus
Tat T2-T3 pre-mRNA is activated by SF2/ASF but not by SC35
in S100 extract (6, 26). When an SC35-specific splicing silencer
in the 3’ region of the T3 exon is deleted, both SF2/ASF and
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FIG. 7. Correlation between predicted ESE motifs in natural genes and SR protein specificity of the pre-mRNAs. Score matrices derived for SC35 and SF2/ASF
were used to search the sequences of natural genes. The resulting scores (y axis) were plotted against the nucleotide position along each exon (x axis). The vertical bars
indicate the first nucleotide of each motif. SC35 high-score motifs are shown in green, and SF2/ASF ones are shown in blue. Since different score matrices were used
for each protein, the numerical scores of the two different proteins cannot be compared. (A) High-score motifs in the IgM gene M2 exon. The characterized ESE is
indicated by the horizontal magenta bar, and the yellow bar indicates the region comprising a recently described silencer (15, 39). (B) High-score motifs in the IgM
gene C4 exon. (C) High-score motifs in the fat gene T3 exon. The horizontal yellow bar indicates the position of the SC35-specific silencer.

SC35 can activate T2-T3 splicing in S100 extract. Detailed
analysis of the splicing of these two pre-mRNAs indicated that
the C4 and T3 exons determine the SR protein specificity (26).
Our search result matches the experimental data (Fig. 7B and
C). Many high-score motifs matching the consensus of SC35
were found in the C4 exon, but only two well-separated SF2/
ASF motifs were found in this exon (Fig. 7B). Interestingly, in
a deletion mutant missing the first 38 nt of the C4 exon,
splicing of C3-C4 was activated by both SF2/ASF and SC35
(26). Consistent with this result, the SF2/ASF motif near po-

sition 61 is closer to the 3’ splice site in the deletion mutant.
High-score motifs for both SF2/ASF and SC35 were found in
the T3 exon of the fat gene (Fig. 7C). Curiously, a single SC35
high-score motif is present within the SC35-specific silencer
region.

Finally, we studied the distribution of SC35 high-score mo-
tifs in human exons versus introns. A total of 570 genes, rep-
resenting 2,626 exons (426 kb) and 2,079 introns (1,295 kb),
were extracted from the ALLSEQ database (4) and analyzed.
Scores equal to or higher than the mean score of the winner
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pool were taken into account. High-score motifs appeared
more frequently in exons than in introns. An average of nine
SC35 high-score motifs were found per kilobase of exon com-
pared to only 5.9 per kilobase of intron. This comparison was
statilsotically significant because of the large database size (P <
107°9).

DISCUSSION

We have identified a novel ESE motif recognized by the
human SR protein SC35. Several lines of evidence point to the
biological relevance of the selected ESE motifs. First, they are
functional ESEs. All of the SELEX winners we have tested
promote splicing in nuclear extract and in S100 extract plus the
cognate SR protein. In nuclear extract, the SELEX winners
function as potent ESEs. Second, the SC35 motifs are present
within exon segments containing natural ESEs and are more
frequently found in exons than in introns, suggesting that they
may contribute to exon definition by the spliceosome. Third,
the SC35 motifs are specific, i.e., they are not recognized by all
SR proteins. The SC35-selected ESEs were recognized by
SC35, SRp40, or SRp55, but not by SF2/ASF under splicing
conditions. In addition, the distribution of high-score motifs of
SF2/ASF and SC35 in the IgM C4 and Tat T3 exons correlated
with the observed SR protein specificity of the corresponding
substrates (26). This result also suggests that the score matrices
we have generated have some predictive value. We have pre-
viously analyzed the predictive value of the SR-specific score
matrices derived for other SR proteins (20). Statistically, high-
score motifs of SR proteins are present at a higher density in
natural ESEs than in the flanking regions. Experimentally, SR
proteins specifically recognize their cognate ESE motifs when
these are placed in the context of the IgM M2 exon, replacing
the natural ESE. The present study confirms and extends our
previous work to two natural ESEs in IgM and human immu-
nodeficiency virus Tat exons. In addition, we have now shown
that SC35 winner sequences and a maximum-score SC35 motif
can promote splicing in different exonic contexts.

The specific interaction between SR proteins and ESEs has
also been described in other systems. During assembly of en-
hancer complexes in vitro (Enh complex, which resembles the
E complex), the enhancer sequences determine the specific
pattern of SR proteins that can be UV cross-linked to the RNA
(32). Female-specific alternative splicing of the Drosophila
doublesex pre-mRNA requires six 13-nt repeat elements and a
purine-rich element. UV cross-linking analysis showed that SR
proteins, along with Tra and Tra-2, assemble on the ESEs in a
stepwise and sequence-specific manner (21). The fact that SR
proteins are expressed in a tissue-specific manner (14, 43),
together with the specific recognition of ESEs by individual SR
proteins may contribute quantitatively to the regulation of
gene expression.

The SC35 SELEX winners have the consensus GRYYcSYR,
which is a highly degenerate sequence. Even though SC35 has
a single RRM, a SELEX protocol based on RNA binding
yielded two different nonamer consensus sequences, AGSAG
AGTA and GTTCGAGTA, which share the last five nucleo-
tides (35). These two motifs differ significantly from the more
degenerate consensus identified by functional SELEX. Al-
though the second motif has a partial fit to the above consen-
sus, neither motif has a good score, consistent with the obser-
vation that the high-affinity binding sequences fail to enhance
splicing of RNA substrates in nuclear extract or in S100 extract
plus SC35, even when present in several copies (35). There-
fore, it appears that high-affinity SC35-binding sites are not
optimal for function. Perhaps RNA-binding selection does not
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achieve an interaction geometry compatible with SC35 en-
hancement function, or it is essential to coselect sequences that
in addition to binding SC35 can also accommodate putative
coactivators or fail to bind silencing factors.

Nevertheless, our data argue that SC35 has limited but de-
fined sequence specificity in recognizing functional sequences.
Despite the fact that this protein has a single RRM, the func-
tional recognition motif is degenerate, as was the case for the
two-RRM SR proteins SF2/ASF, SRp40, and SRp55 (20).
Therefore, the degeneracy of the ESE motifs recognized by
those proteins is probably not attributable to the recognition of
distinct motifs by each of their RRMs. The sequence degen-
eracy of the ESEs is consistent with the fact that they must
coexist with a very wide variety of unrelated open reading
frames and must be recognized by a discrete set of SR proteins
(20, 28, 29).

Schaal and Maniatis recently used a similar functional
SELEX approach to select ESEs that could function in the
context of the Drosophila doublesex pre-mRNA in HeLa nu-
clear extract (29). The selected 18-nt winner sequences were
then individually analyzed by S100 complementation assays to
define their SR protein specificity. Two round 6 winner se-
quences were the most active in the presence of SC35. By
comparing these two sequences to each other and to an SC35-
dependent ESE present in human -globin exon 2, the authors
proposed the SC35 heptamer consensus UGCNGY'Y, which is
also a highly degenerate sequence. Although this heptamer
motif is substantially different from our consensus octamer
motif, some versions of the degenerate heptamer consensus
have high scores, as defined in the present study. We therefore
searched the two published winner sequences (29) by using our
SC35 score matrix. Both sequences had multiple high-score
motifs, some of which were nonoverlapping, consistent with
the fact that they had undergone six rounds of selection for
splicing. In the case of the 6-24 sequence, the highest score
(3.13) corresponded to the octamer GGUCUCCG, which has
a 4-nt overlap with the UGCGGUC sequence that fits the
heptamer consensus. In the case of the 6-38 sequence, the
second highest score (1.56) corresponds to the octamer UGC
CGCC, of which the first 7 nt fit the heptamer consensus; the
highest score (2.44) was for the nonoverlapping octamer GGA
CCGGA. Similarly, within the 18-nt B-globin fragment in
which Schaal and Maniatis characterized an SC35-dependent
ESE that comprises the heptamer UGCUGUU (28), the high-
est score (1.36) corresponds to the octamer UGAUGCUG,
which includes the first 5 nt of the heptamer.

We conclude that despite the very different pre-mRNA con-
texts, types of extract used for the selection, and number of
selection rounds, the SC35 ESEs identified by the two ap-
proaches are remarkably consistent. We believe, however, that
our octamer motif has greater predictive value because it was
derived from a much larger number of winner sequences. Also,
the use of a nucleotide frequency matrix derived from 30 se-
quences allows identification of putative SC35 ESEs that do
not precisely match the consensus at every position. Thus, our
SC35 score matrix finds high-score motifs in both of the winner
sequences and the B-globin segment characterized by Schaal
and Maniatis (28, 29), whereas of our 30 SC35 winner se-
quences (Fig. 3), only no. 14 has a precise match to the hep-
tamer consensus they defined.

The IgM M2 exon has a higher density of SF2/ASF and
SRp40 high-score motifs within the natural ESE segment than
in the flanking sequences. In contrast, the SRp55 high-score
motifs do not correlate with the location of the ESE (20). In
the case of SC35, the high-score motifs also have a relatively
even distribution across the exon. The different motif distribu-
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tions may reflect different mechanisms of SR protein-ESE
recognition. Although for some pre-mRNAs any SR protein
can complement splicing in the S100 extract (30, 43), each SR
protein may function by slightly different mechanisms. Some
SR proteins may require multiple binding sites to function, and
the optimal distance from the 3’ splice site to the SR protein-
binding site may also be protein specific. The fact that ESE
motifs are not found exclusively in natural exonic segments
required for ESE activity indicates that the motifs are not
sufficient for ESE function. It appears that sequence context,
structure, or position effects are also very important.

Examples of sequence context effects that can influence ESE
activity are provided by exonic splicing silencers. These inhib-
itory elements probably coexist with splicing enhancers in
many exons, and they may also be SR protein dependent and
function in a cell-type specific manner. For example, an SC35-
dependent silencer sequence has been mapped in the fat gene
T3 exon (26). This silencer element includes within it an SC35-
specific ESE motif (Fig. 7C). We speculate that binding of
SC35 to this region prevents the function of other splicing
factors, although it is presently unclear how this element acts at
a distance and suppresses the effect of SC35-dependent ESEs
but not of SF2/ASF-dependent ESEs. Recently, the 3" portion
of the IgM M2 exon was also shown to comprise a silencer
element that binds U2 snRNP and antagonizes the upstream
ESE (15). The silencer element, so far mapped to a fragment
between nt 94 and 167 (Fig. 7A) in the M2 exon, overlaps with
several SC35 high-score motifs and with one SF2/ASF high-
score motif.

The similar arrangement of adjacent ESE and exonic splic-
ing silencer elements seen in the IgM M2 and Tat T3 exons
may turn out to be a common feature of many vertebrate
cellular and viral exons. To improve the predictive value of the
SR protein-specific ESE motifs, it will be necessary to gain a
better understanding of the influence of sequence context and
position, as well as of the mechanistic basis for the function of
splicing enhancers and silencers.
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