Advancing Precision Medicine through clinical grade whole genome sequencing, return of results and deep brain stimulation

Gholson Lyon, M.D. Ph.D.

Conflicts of Interest

 I do not receive salary compensation, donations or "gifts" from anyone other than my current employer, CSHL.

Jason O'Rawe

Yiyang Wu

Han Fang

Uncovering genetic components of a previously un-described syndrome

Jason O'Rawe¹, Yiyang Wu¹, David Mittelman², Han Fang¹, Gholson J. Lyon^{1,3}

¹Cold Spring Harbor Laboratory, Human Genetics, Cold Spring Harbor, NY, 11724, ²Virginia Tech, Department of Biological Sciences, Blacksburg, VA, 24061, ³Utah Foundation for Biomedical Research, UFBR, Salt Lake City, UT, 84106

Whole genome sequencing analysis of a family with familial dysautonomia and neuropsychiatric symptoms

Han Fang^{1,2}, Yiyang Wu^{1,2}, Jason A. O'Rawe^{1,2}, David Mittelman^{4,5}, Gholson J. Lyon^{1,2,3*}

Acknowledgments

Martin Reese Edward Kiruluta

David Mittelman Gareth Highnam

Barry Moore Alan Rope Jeffrey J Swensen Lynn Jorde **Mark Yandell**

Jason O'Rawe Yiyang Wu Han Fang Michael Schatz Giuseppe Narzisi

our study families

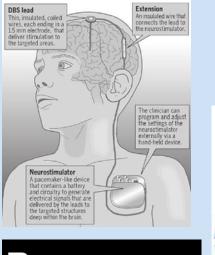
Kai Wang

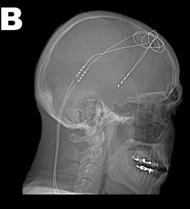
Tina Hambuch Erica Davis Dawn Barry

Severe Mental Illness (and other severe illness) in current system

Current Standard of Care in America

Hospitalization Therapy- counseling Medication


Disruptive developments in Medicine


Prevention efforts, genomics-guided

PatientsLikeMe

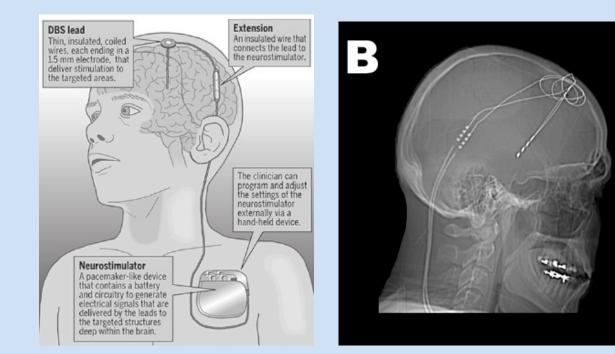
More direct action on the brain itself

PeerJ

Integrating precision medicine in the study and clinical treatment of a severely mentally ill person

Jason A. O'Rawe^{1,2}, Han Fang^{1,2}, Shawn Rynearson³, Reid Robison⁴, Edward S. Kiruluta⁵, Gerald Higgins⁶, Karen Eilbeck³, Martin G. Reese⁵ and Gholson J. Lyon^{1,2,4}

Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, USA


² Stony Brook University, Stony Brook, NY, USA

³ Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA

⁴ Utah Foundation for Biomedical Research, Salt Lake City, UT, USA

⁵ Omicia Inc., Emeryville, CA, USA

⁶ AssureRx Health, Inc., Mason, OH, USA

Submitted 12 June 2013 Accepted 16 September 2013 Published 3 October 2013

Corresponding author Gholson J. Lyon, Gholson JLyon@gmail.com

Academic editor Paul Appelbaum

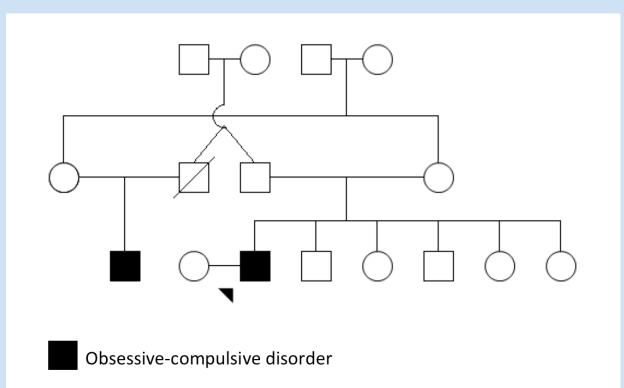
Additional Information and Declarations can be found on page 18

DOI 10.7717/peerj.177

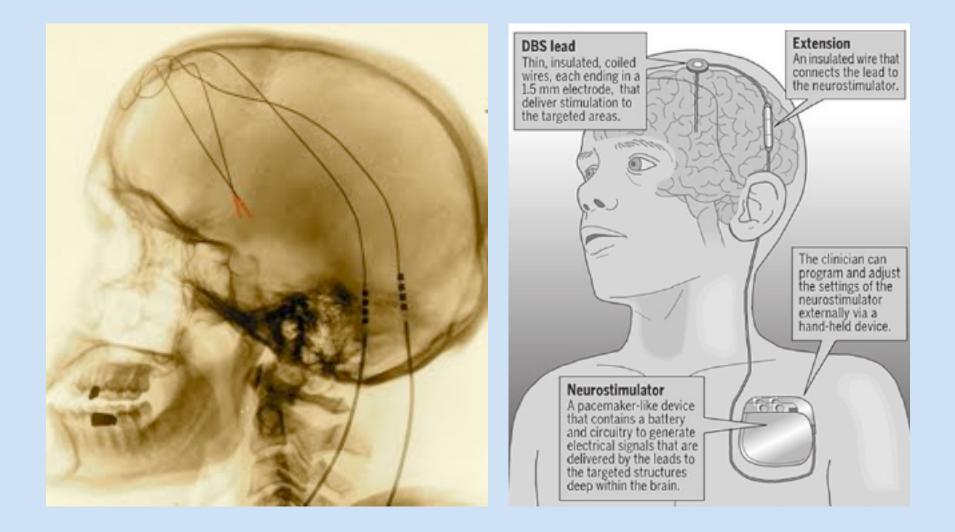
Copyright 2013 O'Rawe et al.

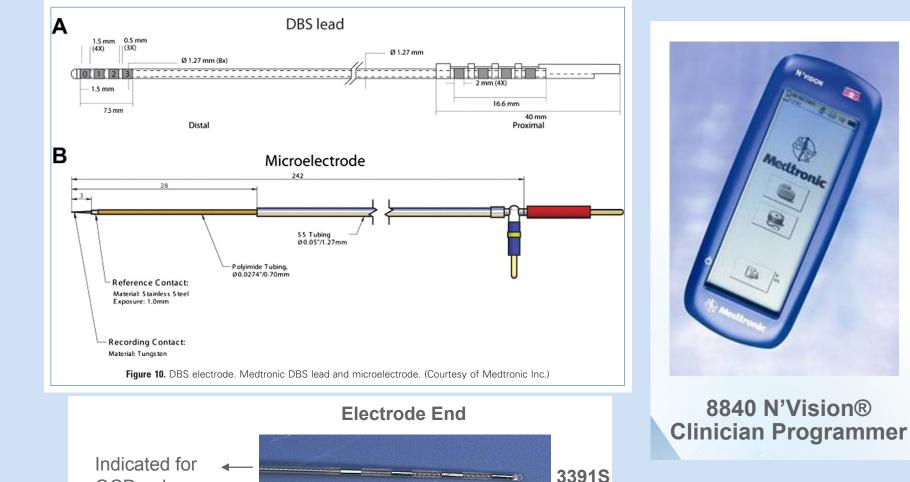
Distributed under Creative Commons CC-BY 3.0

OPEN ACCESS


A family in Utah, with a 40 year old Caucasian man with

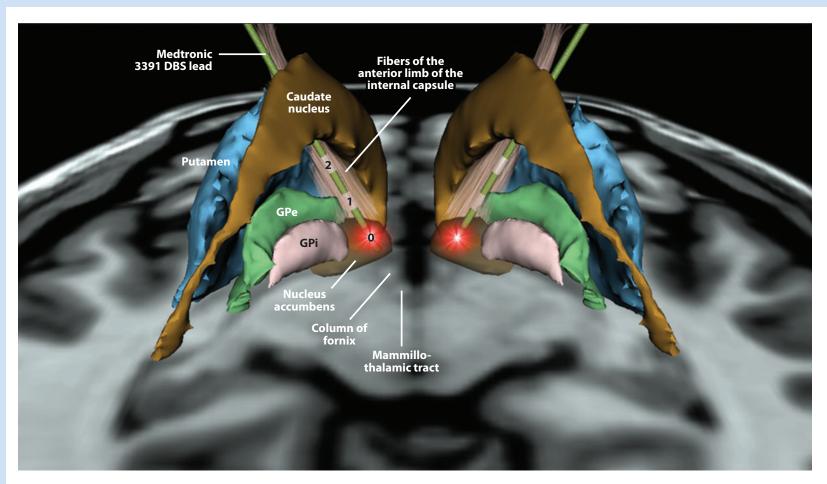
very severe obsessive compulsive disorder, severe depression and intermittent paranoia, with symptoms that started around age 5.


Some people had diagnosed him with bipolar and/or schizophrenia due to his mood states and possible paranoia.

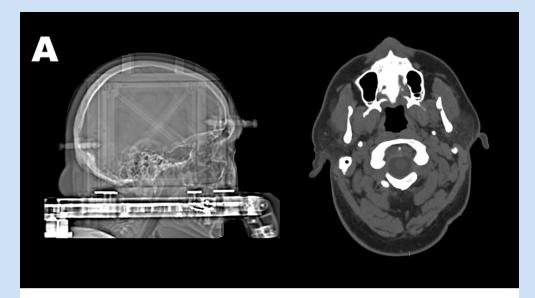

Multiple medication trials failed over many years. Considered treatment refractory.

Pedigree structure

Humanitarian Device Exemption (HDE) for OCD granted by FDA in 2009



OCD only


Medtronic Kinetra[®] Neurostimulator Model 7428

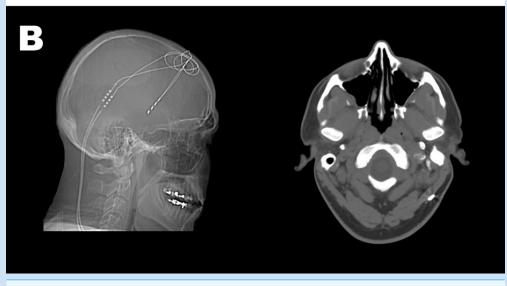

- Dual channel
- Accommodates two extensions/leads
- Kinetra takes the place of two Soletras
- For OCD, two Kinetras may be used for bilateral leads

Figure 1

Three-dimensional (3D) illustration of bilaterally implanted deep brain stimulation (DBS) electrodes in the ventral capsule/ventral striatum. The 3D objects (leads and brain structures) are sitting on the axial plane 5 mm below the AC–PC plane as viewed posterior to anterior. The trajectory of the leads is down the barrel of the anterior limb of the internal capsule. Each lead has four contacts, but only three are shown (contacts #0, #1, and #2); contact #3 is hidden by the caudate nucleus. The most ventral #0 contact is active, as represented by red radiating stimulation fields. Abbreviations: AC–PC, anterior commissure–posterior commissure; GPe, globus pallidus externus; GPi, globus pallidus internus. Image courtesy of Kirk Finnis, PhD (Medtronic Inc., USA).

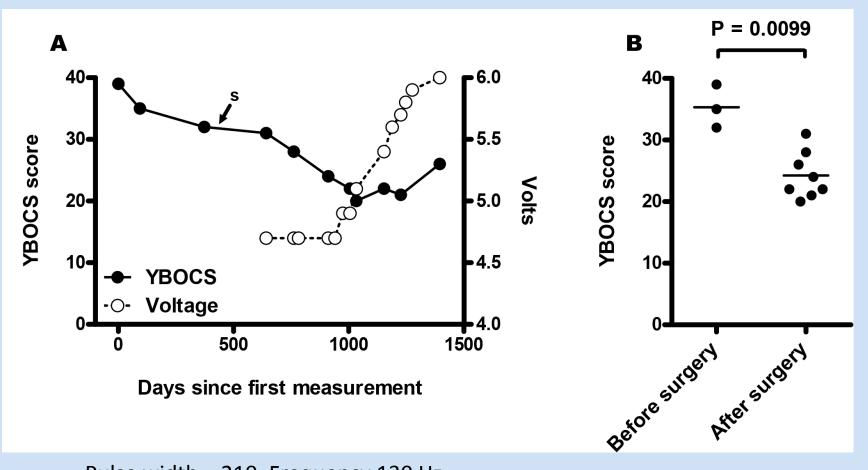


Figure 1 Sagittal and transverse computed tomography (CT) images of the brain and skull of MA. We show here sagittal and transverse sections taken from CT scans. Imaging was performed before (A) and after (B) MA received deep brain stimulation surgery for his treatment refractory OCD. Two deep brain stimulator probes can be seen to be in place from a bifrontal approach (B), with tips of the probes located in the region of the hypothalamus. Leads traverse through the left scalp soft tissues. Streak artifact from the leads somewhat obscures visualization of the adjacent bifrontal and left parietal parenchyma. We did not observe any intracranial hemorrhage, mass effect or midline shift or extra-axial fluid collection. Brain parenchyma was normal in volume and contour.

2.5 year follow-up

Global Assessment of Functioning (GAF) 0 to 100 scale

From 5-15 in 2008-2009 to 45-55 in 2013

Pulse width = 210, Frequency 130 Hz

Depleteable nature of battery

• Battery replaced with a rechargeable battery in January 2012.

• Numerous episodes of forgetting to recharge battery, with relapse to baseline condition.

Contents lists available at SciVerse ScienceDirect

Applied & Translational Genomics

journal homepage: www.elsevier.com/locate/atg

Practical, ethical and regulatory considerations for the evolving medical and research genomics landscape

Gholson J. Lyon ^{a,b,*}, Jeremy P. Segal ^{c,**}

^a Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, United States

^b Utah Foundation for Biomedical Research, Salt Lake City, UT, United States

^c New York Genome Center, New York City, NY, United States

Table 1

Processes involved in a CLIA-certified genetic test.

Preanalytic system

- 1) Test request and specimen collection criteria
- 2) Specimen submission, handling and referral procedures
- 3) Preanalytic systems assessment

Analytic system

- 1) A detailed step-by-step procedure manual
- 2) Test systems, equipment, instruments, reagents, materials and supplies
- 3) Establishment and verification of performance specifications

4) Maintenance and function checks

- 5) Calibration and calibration verification procedures
- 6) Control procedures, test records, and corrective actions
- 7) Analytic systems assessment

Post-analytic system

1) Test report, including (among other things):

a) interpretation

- b) reference ranges and normal values
- 2) Post-analytic systems assessment

- 1. Sample Collection and handling
- 2. Sequencing/Analytics

3. Interpretation

Individual Genome Sequencing Service

Available from Illumina's CLIA-certified laboratory.

"This laboratory test was developed, and its performance characteristics were determined by the Illumina Clinical Services Laboratory (CLIA-certified, CAP-accredited). Consistent with laboratory-developed tests, it has not been cleared or approved by the U.S. Food and Drug Administration. If you have any questions or concerns about what you might learn through your genome sequence information, you should contact your doctor or a genetic counselor. Please note that Illumina does not accept orders for Individual Genome Sequencing services from Florida and New York."

Understand Your Genome Symposium

During this two-day educational event, industry experts will discuss the clinical implementation of whole-genome next-generation sequencing (NGS) technology.

Ordering Physician: Gholson Lyon, MD Steinmann Institute 10 West Broadway, Suite #820 Salt Lake City, UT 84101

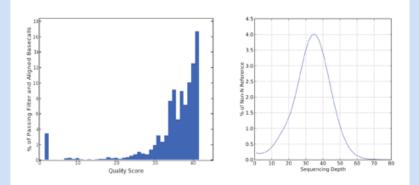
Individual Genome Sequence Results

Clinical Report

www.everygenome.com CLIA#: 05D1092911

Sample Collection and Handling

The Sample Collection kit includes barcoded collection tubes, a <u>Test Requisition form</u>, an <u>Informed Patient Consent form</u>, and a pre-paid shipping envelope. All paperwork must be completed and returned for sample processing. Requests for Sample Collection kits must be submitted by a physician.

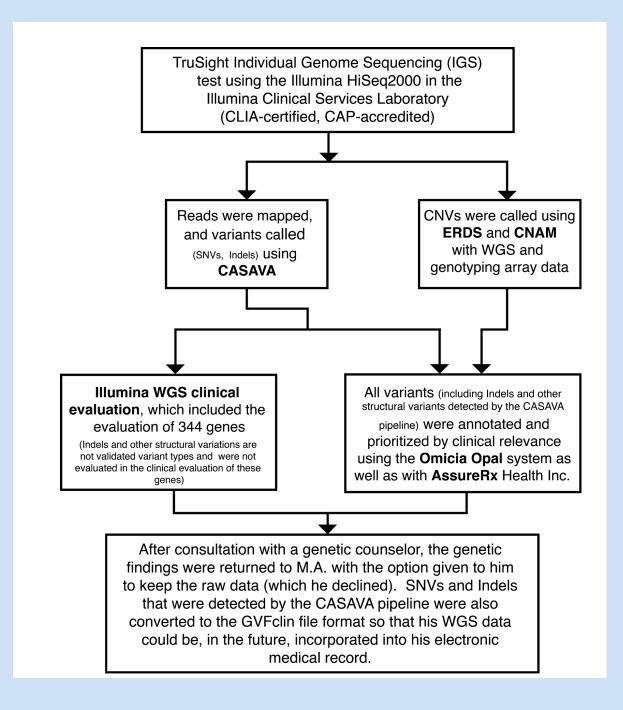

http://www.illumina.com/clinical/illumina_clinical_laboratory/igs_for_doctors/ how_to_order.ilmn

Sequencing and Analytics

Data Volume and Quality

	Yield (Gigabases)	% Bases ≥ Q30	% Bases Aligned
Passing Filter	113.10	87.10%	87.80%

	% Callable	% ≥ 5x depth	% ≥ 10x depth	% ≥ 20x depth	Mean depth(x)
Non-N Reference	93.28%	97.57%	96.22%	88.54%	33.35


SNP Assessment

Total	Het/Hom	% in dbSNP	% in Genes	% in Coding
3,308,246	1.61	98.13%	45.47%	0.63%

Variant Statistics

	SNVs
Total Number	3,308,246
Number in Genes	1,504,121
Number in Coding Regions	20,879
Number in UTRs	24,946
Splice Site Region	2,917
Stop Gained	72
Stop Lost	16
Non-synonymous	9,884
Synonymous	10,907
Mature miRNA	36

From the Illumina Understand Your Genome Symposium October 2012

Evaluation of 344 genes by Illumina

A total of **1247** variants were detected in the subset of genes for this patient. Each variant was evaluated for clinical significance and placed into one of five possible categories for classification, based on the American College of Medical Genetics and Genomics interpretation guidelines as outlined below and described at the end of this report.

Category		Number of Verients	Condition
Clinically Significant in Potient	Pathogenic	0	
Clinically Significant in Patient	Likely Pathogenic	· 0	
Continue Otation for Dational	Pathogenic	0	
Carrier Status for Patient	Likely Pathogenic	1	Refsum Disease
Variants of Unknown Significance		284	
Likely Benign Variants		349	
Benign Variants		613	

Cono	હિલા।	Amtro Acto	mappiaethen	Associated Condition	Mode of Inheritance
РНҮН	c.734G>A	p.Arg245Gln	Likely Pathogenic	Refsum Disease	Autosomal Recessive

Refsum Disease

Refsum disease is an inherited condition that causes vision loss, anosmia, and a variety of other signs and symptoms. The vision loss is caused by retinitis pigmentosa. The first sign of retinitis pigmentosa is usually a loss of night vision, which often becomes apparent in childhood. Over a period of years, the disease disrupts peripheral vision and may eventually lead to blindness. Vision loss and anosmia are seen in almost everyone with Refsum disease, but other signs and symptoms vary. About one-third of affected individuals are born with bone abnormalities of the hands and feet. Features that appear later in life can include progressive myopathy; ataxia; hearing loss; and ichthyosis. Additionally, some people with Refsum disease develop arrhythmia and cardiomyopathies that can be life-threatening.

Refsum Disease?

- Referred to optometry for further evaluation of this.
- Found to have bilateral cataracts, large pupils, and loss of night vision.
- His mother and grandfather both have large pupils and loss of night vision. No cataracts known.
- Preventive measures implemented

Variant Analysis Pipeline

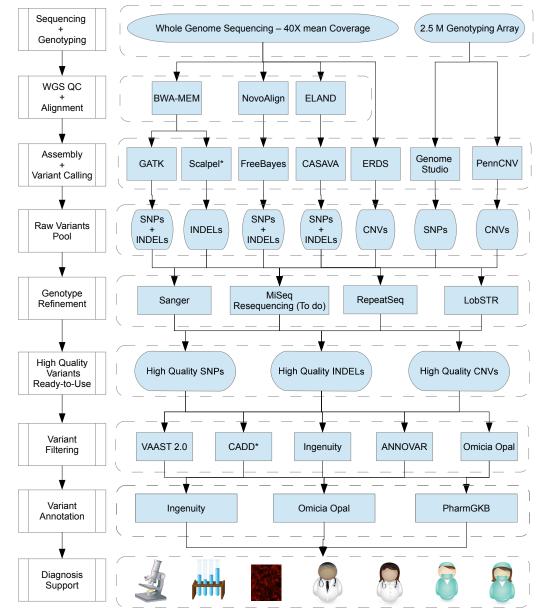
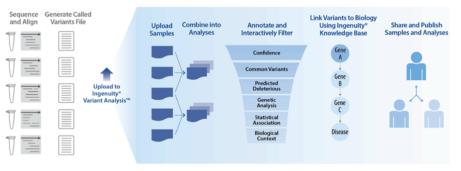
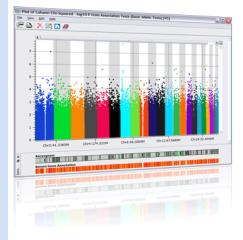



Figure 2. Flow chart of our variant analysis pipeline. * Both Scalpel and CADD are still inpress. For CADD, see http://cadd.gs.washington.edu/


Some genomic analysis online platforms and analysis suites

Identify causal variants from human sequencing data in just hours

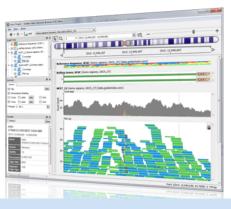
BIOLOGICAL INTERPRETATION OF HUMAN WHOLE GENOME, EXOME, AND TARGETED PANEL SAMPLES

Golden Helix Product Offerings

SNP & VARIATION SUITE

SNP & Variation Suite 7 is an integrated collection of user-friendly, yet powerful analytic tools for managing, analyzing, and visualizing multifaceted genomic and phenotypic data. SVS was created specifically to empower biologists and other researchers to easily perform complex analyses and visualizations, eliminating the need to rely exclusively on bioinformatics experts or cobble together difficult to use, incompatible freeware. With SVS you can focus on your research instead of learning to be a programmer or waiting in line for bioinformaticians.

Opal adds clinical context for genomic data


Omicia is unlocking individualized medicine by translating data derived from whole-genome sequencing into actionable information for researchers and clinicians.

Golden Helix GenomeBrowse[®] visualization tool raises the bar on the experience of exploring and finding key insights into your genomic data. Every component has been designed and optimized to give you a user-experience beyond imagination.

Find out more information about GenomeBrowse »

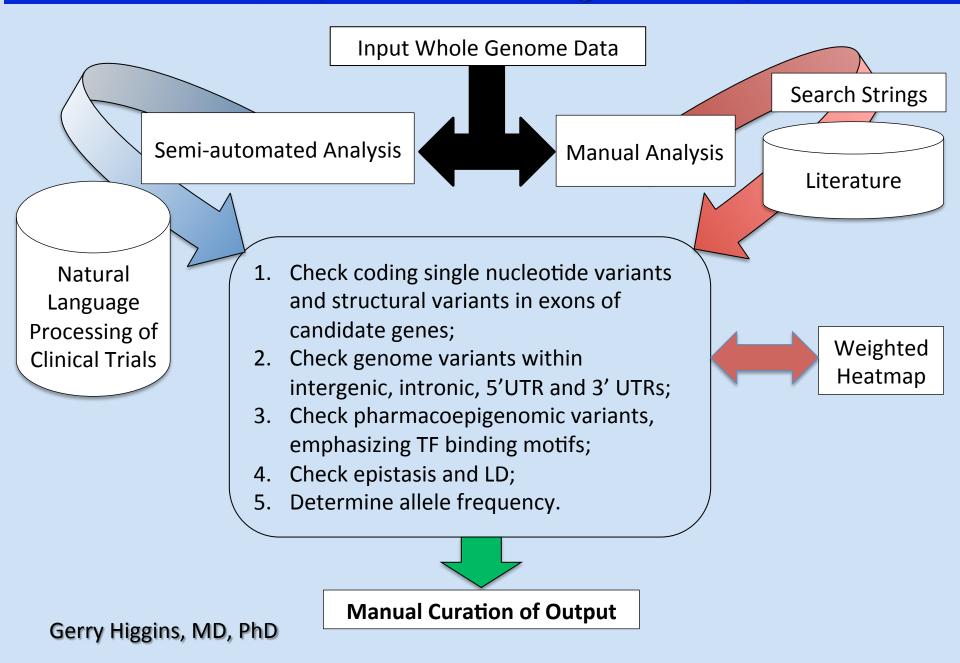
Easily select variants with prior evidence

Variant Class	Gene	Position dbSNP	Change	Zygosity Effect	Quality Coverage	Frequency	Omicia Score	Polyphen Mut-Taster	SIFT PhyloP	Evidence	
VUS (dg)	FCGR3A	chr1 161518333 rs10127939	A→A,C c.197T>G p.Leu66Arg	het non-synon	339.77 63:42:21	A:96% C:4%	0.109	damaging damaging	0.09 0.14		Viral infectior to
VUS (dg)	AGT	chr1 230845794 rs699	A→G,G c.803T>C p.Met268Thr	hom non-synon	829.77 34:0:34	A:34% G:66%	0.086	benign benign	0.68 0.06		Condition: Hy susceptibility
VUS (other)	SLC22A1	chr6 160560881 rs35167514	ATG→-,ATG c.1258_1260del p.Ser420del	het nonframeshift deletion	693.76 30:15:15	-	0.424	-	0.97	РСКВ	Description: F in transfected
VUS (other)	OR52B4	chr11 4389405 rs80193749	G→-,G c.121_121del p.Ser41del	het frameshift deletion	536.76 39:21:18	-	0.133	:	-0.77	HGMD	
VUS (other)	CHRFAM7A	chr15 30665281	CA→-,CA c.227_228del p.Ser76del	het frameshift deletion	422.76 51:39:12	-	0.321	-	0.88	HGMD	
Known Pathogenic	XYLT1	chr16 17564311 rs61758388	C→A,C c.343G>T p.Ala115Ser	het non-synon	135.77 20:11:9	C:99% A:1%	0.187	benign benign	0.41 0.78		Pseudoxanth
VUS (other)	P2RX5	chr17 3594277 rs5818907	G→-,- c.333_333del p.Ser111del	hom frameshift deletion	1114.76 33:0:33	-	0.247	-	-0.54	HGMD	
VUS (dg)	MAPT	chr17 44067382 rs112757188	T→C,C c.1321T>C p.Tyr441His	hom non-synon	531.77 17:0:17	T:68% C:32%	0.266	:	0.26 0.43	LSDB	associated wi and less response
VUS (other)	C17orf57	chr17 45360730 rs5918	T→C,T c.176T>C p.Leu59Pro	het non-synon	588.77 48:23:25	T:91% C:9%	0.089	benign benign	0.43 -3.9		a higher risk o events which pravastatin
VUS (other)	SLC14A2	chr18 43262359 rs3745009	G→A,A c.2638G>A p.Ala880Thr	hom non-synon	642.77 21:0:21	G:60% A:40%	0.546	benign benign	0.38 2.12		associated wit response to n
VUS (dg)	TYK2	chr19 10463118 rs34536443	G→C,G c.3310C>G p.Pro1104Ala	het non-synon	435.77 45:23:22	G:99% C:1%	0.816	damaging damaging	3.89	HGMD	cancer-associ
VUS (dg)	PRNP	chr20 4680251 rs1799990	A→G,G c.385A>G p.Met129Val	hom non-synon	742.77 37:0:37	A:74% G:26%	0.302	damaging benign	0.02 0.66	CV OMIM HGMD PGKB GWAS	Description: P To Alzheimer

ons, recurrent, susceptibility

lypertension, essential, / to

Reduced metformin uptake ed cells


thoma elasticum

vith shorter bleeding time ponse to aspirin. of secondary coronary h was reduced by vith blood pressure nifedipine treatment.

ciated

Prion Disease, Susceptibility r Disease, Early-onset, Susceptibility To, Included,, Aphasia, Primary Progressive, Susceptibility To, Included

Assurex / Mayo Clinic Pharmacogenomics Pipeline

Pharmacogenetics

- MA is homozygous for a p.lle359Leu change in CYP2C9, and this variant has been linked to a reduction in the enzymatic activity of CYP2C9, a member of the cytochrome P450 superfamily of enzymes.
- Fluoxetine is commonly used in the treatment of OCD; it has been shown to be as effective as clomipramine and causes less side effects.
- CYP2C9 acts to convert fluoxetine to R-norfluoxetine, and so MA may not be able to adequately biotransform fluoxetine.
- It is notable that MA had no response to an 80 mg daily dose of fluoxetine.

No rare variants or CNVs with high biological effect as related to mental illness.

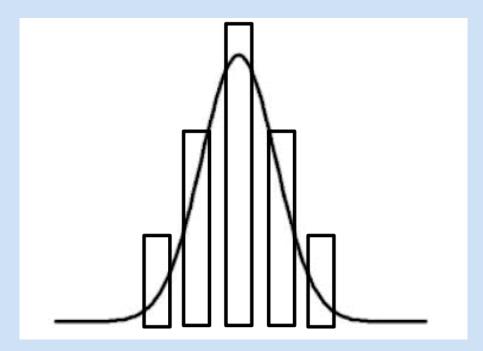

Here are 3 common SNVs in this person that have been implicated in the literature as predisposing to mental illness.

Table 1 A summary of three clinically relevant alleles found in the sequencing results of MA. Variations in MTHFR, BDNF, and ChAT were found to be of potential clinical relevance for this person as they are all implicated in contributing to the susceptibility and development of many neuropsychiatric disorders that resemble those present within MA. A brief summary of the characteristics of each variation is shown, including the gene name, genomic coordinates, amino acid change, zygosity, variation type, estimated population frequency and putative clinical significance.

Gene name	Genomic coordinates	Amino acid change	Zygosity	Variation type	Population frequency	Clinical significance
MTHFR	chr1: 11854476	Glu > Ala	heterozygous	non-synon	T:77% G:23%	Susceptibility to psychoses, schizophrenia occlusive vascular disease, neural tube defects, colon cancer, acute leukemia, and methylenetetra- hydrofolate reductase deficiency
BDNF	chr11: 27679916	Val > Met	heterozygous	non-synon	C:77% T:23%	Susceptibility to OCD, psychosis, and diminished response to exposure therapy
CHAT	chr10: 50824117	Asp > Asn	heterozygous	non-synon	G:85% A:15%	Susceptibility to schizophrenia and other psy- chopathological disorders.

Q: How frequent can we observe people with all three SNPs?

- Empirical genotype frequencies:
- 1000G: 3.20% (35 out of 1092, phenotypes unknown)
- UFBR: 4.58% (7 out of 153, including M.A. and M.A.'s father)

Chromosomal region	P value	Previous association ^a	Candidate gene in relation to index SNP ^b	Other genes in genomic region defined by LD ^c	eQTL ^d	Disease associations ^e
Chr. 6: 31,596,138- 32,813,768	9.14×10^{-14}	SCZ	HLA-DRB9	MHC class II, many other genes, lincRNA	Many	Many
Chr. 10: 104,487,871- 105,245,420	3.68 × 10 ⁻¹³	SCZ	C10orf32-AS3MT	CALHM1, CALHM2, CALHM3, CNNM2, CYP17A1, INA, MIR1307, NT5C2, PCGF6, PDCD11, SFXN2, ST13P13, TAF5, USMG5, WBP1L	ACTR1A, ARL3, AS3MT, C10orf32, C10orf78, NT5C2, TMEM180, TRIM8, WBP1L	GWAS: blood pressure, C/ aneurysm
Chr. 7: 1,827,717– 2,346,115	5.93×10^{-13}	No	MAD1L1	FTSJ2, NUDT1, SNX8	C7orf27, FTSJ2, MAD1L1, NUDT1	
Chr. 1: 98,141,112– 98,664,991	1.72×10^{-12}	SCZ	(<i>MIR137</i> , 37 kb)	DPYD, lincRNA	DPYD	DPYD: mental retardation
Chr. 12: 2,285,731- 2,440,464	5.22 × 10 ⁻¹²	SCZ, BPD	CACNA1C	-	No data	<i>CACNA1C</i> : autism, Timothy syndrome, Brugada syndrome 3
Chr. 10: 18,601,928– 18,934,390	1.27×10^{-10}	5 disorders	CACNB2	NSUN6	No data	CACNB2: Brugada syndro 4; GWAS: blood pressure
Chr. 8: 143,297,312– 143,410,423	2.19×10^{-10}	No	TSNARE1	-	No data	
Chr. 1: 73,275,828– 74,099,273	3.64×10^{-10}	No	(x10NST00000415686.1, 4 kb)	lincRNA	No data	
Chr. 11: 130,706,918– 130,894,976	1.83×10^{-9}	No	(<i>SNX19</i> , 31 kb)	lincRNA	SNX19	
Chr. 5: 151,888,959– 152,835,304	2.65×10^{-9}	No	ENST00000503048.1	lincRNA (<i>GRIA1</i>)	No data	
Chr. 5: 152,505,453– 152,707,306	4.12×10^{-8}	No				
Chr. 19: 19,354,937– 19,744,079	3.44 × 10 ⁻⁹	BPD	(<i>MAU2</i> , 4 kb)	CILP2, GATAD2A, GMIP, HAPLN4, LPAR2, MIR640, NCAN, NDUFA13, PBX4, SUGP1, TM6SF2, TSSK6, YJEFN3	No data	GWAS: lipid levels

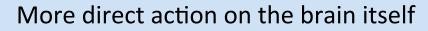
^aRegions reported to meet genome-wide significance thresholds of association for schizophrenia (SCZ) or bipolar disorder (BPD). ^bThe gene within which an index SNP is located is given. For intergenic index SNPs, the nearest gene is given in parentheses. ^cOther named genes in the genomic interval. ^dSNP-transcript associations with *q* < 0.05 in peripheral blood. eQTLs with the SNP with the strongest association are shown in bold. ^eData from the NHGRI GWAS catalog²⁴, OMIM⁴³ and a compilation of genes related to autism⁷³ and mental retardation^{43,74,75}. No data means no Affymetrix U219 probe sets or low expression in peripheral blood. The *CACNB2* association emerged when considering attention deficit/hyperactivity disorder (ADHD), autism, bipolar disorder, major depressive disorder and schizophrenia as affected³⁰. CAD, coronary artery disease; HDL, high-density lipoprotein.

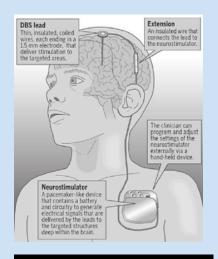
Indicates that M.A. is homozygous for the exact variant of genome significance

Indicates that M.A. is heterozygous for the exact variant of genome significance

	Chr. 2: 37,422,072– 37,592,628	6.78 × 10 ⁻⁹	No	QPCT	<i>C2orf56, CEBPZ, PRKD3, SULT6B1</i> lincRNA	No eQTL	
-	Chr. 5: 101,581,848– 101,870,822	9.03×10^{-9}	No	SLCO6A1	lincRNA	No data	
-	Chr. 3: 52,215,002– 53,175,017	1.16 × 10 ⁻⁸	SCZ, BPD	ІТІНЗ	ALAS1, ALDOAP1, BAP1, C3orf78, DNAH1, GLT8D1, GLYCTK, GNL3, ITIH1, ITIH4, MIR135A1, MIRLET7G, MUSTN1, NEK4, NISCH, NT5DC2, PBRM1, PHF7, PPM1M, RFT1, SEMA3G, SFMBT1, SPCS1, STAB1, TLR9, TMEM110, TNNC1, TWF2, WDR82, lincRNA	No data (<i>ITIH1-ITIH3-ITIH4</i>)	<i>GLYCTK</i> : D-glyceric aciduria, mental retardation; <i>RTF1</i> : mental retardation; GWAS: adiponectin, height, waist-hip ratio
-	Chr. 2: 145,139,727– 145,214,607	1.19×10^{-8}	No	ZEB2	-	No eQTL	ZEB2: Mowat-Wilson syndrome, mental retardation
-	Chr. 2: 200,628,118– 201,293,421	1.21×10^{-8}	No	FONG	C2orf47, C2orf69, SPATS2L, TYW5, lincRNA	No data	GWAS: osteoporosis
Ξ.	Chr. 18: 52,722,378– 52,827,668	1.22×10^{-8}	No	(ENST00000565991.1, 21 kb)	lincRNA (<i>TCF4</i>)	No data	
	Chr. 2: 233,550,961– 233,808,241	1.51×10^{-8}	No	C2orf82	GIGYF2, KCNJ13, NGEF	No data	
Ξ.	Chr. 1: 243,593,066– 244,025,999	1.80×10^{-8}	No	АКТЗ	CEP170	AKT3	
-	Chr. 1: 243,418,063– 243,627,135	2.53×10^{-8}	Yes	SDCCAG8		SDCCAG8	
-	Chr. 12: 123,447,928– 123,913,433	2.28 × 10 ⁻⁸	No	C12orf65	ABCB9, ARL6IP4, CDK2AP1, MIR4304, MPHOSPH9, OGFOD2, PITPNM2, RILPL2, SBNO1, SETD8, lincRNA	ARL6IP4, CDK2AP1, OGFOD2, SBNO1	<i>C12orf65</i> : mental retardation; GWAS: HDL, height, head size
	Chr. 8: 89,188,454– 89,761,163	3.33×10^{-8}	SCZ	Intergenic	MMP16, lincRNA	MMP16	
=	Chr. 5: 60,484,179– 60,843,706	3.78 × 10 ⁻⁸	No	ENST00000506902.1	ZSWIM6, C5orf43, lincRNA	C5orf43, ZSWIM6	

Indicates that M.A. is homozygous for the exact variant of genome significance


Indicates that M.A. is heterozygous for the exact variant of genome significance


Disruptive developments

Prevention efforts, genomics-guided

PatientsLikeMe

Feedback from M.A.'s mother

• "We are visiting Town X on the Island of X. Interestingly, I toured the "mental hospital" here yesterday. It was a sad reminder of how patients in America used to suffer and how they still do in most areas of the world. It made me even more grateful that M.A. had the very best in medical care and is now living a nearly normal life".