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Ogden	  Syndrome	  –	  in	  2011	  	  

We	  found	  the	  SAME	  mutaNon	  in	  two	  unrelated	  families,	  with	  a	  very	  similar	  
phenotype	  in	  both	  families,	  helping	  prove	  that	  this	  genotype	  contributes	  to	  the	  
phenotype	  observed.	  



These	  are	  the	  Major	  Features	  of	  the	  Syndrome.	  



 
The mutation is a missense resulting in 

Serine to Proline change in Naa10p 
 

 - Ser 37 is conserved from yeast to human 
 - Ser37Pro is predicted to affect functionality 
  (SIFT and other prediction programs) 

    - Structural modelling of hNaa10p wt (cyan) and 
  S37P (pink)  

 
 
 
 
 
 
 



Results	  from	  Exome	  and	  WGS	  requires	  
both	  AnalyNc	  and	  Clinical	  Validity	  

•  AnalyNcal	  Validity:	  the	  test	  is	  accurate	  with	  
high	  sensiNvity	  and	  specificity.	  

•  Clinical	  Validity:	  Given	  an	  accurate	  test	  result,	  
what	  impact	  and/or	  outcome	  does	  this	  have	  
on	  the	  individual	  person?	  

Illusions	  of	  Certainty.	  Everything	  is	  ProbabilisNc.	  





hVp://en.wikipedia.org/wiki/Accuracy_and_precision	  
	  

High	  accuracy,	  but	  low	  precision	   High	  precision,	  but	  low	  accuracy	  

In	  the	  fields	  of	  science,	  engineering,	  industry,	  and	  staNsNcs,	  the	  accuracy	  of	  a	  measurement	  
system	  is	  the	  degree	  of	  closeness	  of	  measurements	  of	  a	  quanNty	  to	  that	  quanNty's	  actual	  
(true)	  value.	  The	  precision	  of	  a	  measurement	  system,	  also	  called	  reproducibility	  or	  
repeatability,	  is	  the	  degree	  to	  which	  repeated	  measurements	  under	  unchanged	  condiNons	  
show	  the	  same	  results.	  





Accuracy	  

An	  accuracy	  of	  100%	  means	  that	  the	  measured	  values	  are	  exactly	  the	  same	  as	  the	  
given	  values.	  
	  
	  



“ground	  truth”	  Genome	  from	  blood	  of	  one	  person	  
	  (of	  course,	  that	  is	  from	  millions	  of	  cells	  and	  only	  blood,	  	  

not	  other	  Nssues)	  
	  

~3	  billion	  nucleoNdes	  

True	  negaNve	  

True	  posiNve	  	  



“exon	  capture	  and	  sequencing”	  
	  
Exon	  =	  set	  of	  conNguous	  nucleoNdes	  
predicted	  to	  contribute	  toward	  a	  protein	  



“Exome”	  



Chose	  to	  sequence	  15	  “exomes”	  



2-‐3	  rounds	  of	  sequencing	  at	  BGI	  to	  aHain	  
goal	  of	  >80%	  of	  target	  region	  at	  >20	  reads	  

per	  base	  pair	  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	  of	  Coverage	  in	  15	  exomes	  >	  20	  
reads	  per	  bp	  in	  target	  region	  

>=1 >=10 >=20

Coverage depth
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Experimental	  Design	  

  Evaluate	  robustness	  of	  variant	  calling	  implemented	  by	  
different	  bioinformaNcs	  analysts.	  

	  
  Looking	  at	  False	  PosiNves	  and	  False	  NegaNves.	  

  How	  reliable	  are	  variants	  that	  are	  uniquely	  called	  by	  
individual	  pipelines?	  

  Are	  some	  pipelines	  beVer	  at	  detecNng	  rare,	  or	  novel	  
variants	  than	  others?	  



PromoNon	  Details	  (valid	  for	  Americas	  and	  Europe	  customers	  NOW	  through	  MAY	  31)	  
	  

A.	  The	  899	  USD/sample	  package	  –	  50X	  human	  exome	  sequencing	  	  
	  

	  	  	  	  Agilent	  SureSelect	  50/51M	  Capture	  kit	  	  
	  	  	  	  100	  bp	  paired-‐end	  sequencing	  on	  HiSeq	  2000	  
	  	  	  	  5	  Gb	  high	  quality*	  sequencing	  data	  
	  	  	  	  50X	  average	  coverage	  for	  target	  regions	  guaranteed	  	  
	  	  	  	  SNP	  &	  Indel	  calling	  and	  annotaNon	  included	  
	  
B.	  The	  1299	  USD/sample	  package	  –	  100X	  human	  exome	  sequencing	  
	  

	  	  	  	  Agilent	  SureSelect	  50/51M	  Capture	  kit	  
	  	  	  	  100	  bp	  paired-‐end	  sequencing	  on	  HiSeq	  2000	  
	  	  	  	  10	  Gb	  high	  quality*	  sequencing	  data	  
	  	  	  	  100X	  average	  coverage	  for	  target	  regions	  guaranteed	  	  
	  	  	  	  SNP	  &	  Indel	  calling	  and	  annotaNon	  included	  
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Table 1. A descriptive summary of the variant calling pipelines included in the comparative analyses. 

Pipeline name Alignment method  Variant-calling module  Description of variant-calling algorithm 

    
SOAP SOAPaligner 

version 2.21/ 

BWA version 

0.5.9 

SOAPsnp version 

1.03/ SOAPindel 

version 2.01 

SOAP uses a method based on Bayes’ theorem to call 

consensus genotype by carefully considering the data 

quality, alignment, and recurring experimental errors [22]. 

GATK version 1.5 BWA version 

0.5.9 

UnifiedGenotyper 

version 1.5 

GATK employs a general Bayesian framework to 

distinguish and call variants. Error correction models are 

guided by expected characteristics of human variation to 

further refine variant calls [19].  

SNVer version 

0.2.1 

BWA version 

0.5.9 

SNVer version 0.2.1  SNVer uses a more general frequentist framework, and 

formulates variant calling as a hypothesis-testing problem 

[25]. 
GNUMAP version 

3.1.0 

GNUMAP version 

3.1.0 

GNUMAP version 

3.1.0 

GNUMAP incorporates the base uncertainty of the reads 

into mapping analysis using a probabilistic Needleman-

Wunsch algorithm [24]. 

SAMtools version 

0.1.18 
BWA version 

0.5.9 

mpileup version 0.1.18 SAMtools [20] calls variants by generating a consensus 

sequence using the MAQ model framework, which uses 

a general Bayesian framework for picking the base that 

maximizes the posterior probability with the highest 

Phred quality score. 





Known	   Novel	  

All	  



B)	  Mean	  #	  of	  known	  SNVs	  (present	  in	  dbSNP135)	  found	  by	  5	  pipelines	  across	  
15	  exomes.	  The	  percentage	  in	  the	  center	  of	  the	  the	  Venn	  diagram	  is	  the	  
percent	  of	  known	  SNVs	  called	  by	  all	  five	  pipelines.	  	  

Known	  SNVs	  



C)	  Mean	  #	  of	  novel	  SNVs	  (not	  present	  in	  dbSNP135)	  found	  by	  5	  pipelines	  across	  15	  
exomes.	  The	  percentage	  in	  the	  center	  of	  the	  Venn	  diagram	  is	  the	  percent	  of	  novel	  
SNVs	  called	  by	  all	  five	  pipelines.	  

Novel	  SNVs	  



Indels	  called	  by	  GATK,	  SOAP	  and	  SAMtools	  

.	   .	   .	   .	  
.	  .	  
.	   .	  .	  
.	  



“ground	  truth”	  exons	  from	  blood	  of	  one	  person	  

True	  negaNve	  

True	  posiNve	  	  



False	  posiNves	  
False	  NegaNves	  



Cross	  validaNon	  using	  orthogonal	  
sequencing	  technology	  
	  (Complete	  Genomics)	  



Complete	  Genomics	  chemistry	  -‐	  combinatorial	  
probe	  anchor	  ligaNon	  (cPAL)	  



homozygous reference criteria are considered not called. 
Genome-Genome-Genome comparisons are performed 
using CGATM Tools v1.512 calldiff, snpdiff, and testvariants 
methods, which take into account complex variants (for 
example, loci with a SNP on one allele and a substitution 
on another) and called versus no-called sites.

Call rate and coverage: Call rate and coverage data 
are averaged over all shipments from Q3 2011 to Q1 
2012. Call rate and coverage are both measured relative 
to the 2.85GB Build 37 reference genome (excluding 
random contigs). Exome call rates are from Q1 2012 and 
are relative to RefSeq 37.2 gene models. They are up 
from the 2011 exome call rates, which averaged 95%-
96%.

There are many ways to measure coverage. Complete 
Genomics uses the gross mapped coverage (single 
and paired, unique and non-unique) from the 
coverageRefScore and summary !les11. Attributes 
of recent Complete Genomics data in the literature 
(speci!cally papers where call rate and/or coverage were 
reported) are described in Table 1. Improvements to 
call rate over time are clear from these results and have 
continued since this analysis was performed.

Trio Analysis: Called VQHIGH and homozygous 
reference sites from the YRI family trio were processed 
with the CGA Tools 1.5 listvariants and testvariants 
commands, and additional analysis was performed 
to extract MIEs. All sites fully called in the trio were 
considered, including sites called either variant or 
reference in the child. Repetitive sequences were de!ned 
using the union of the RepeatMasker, SegDup, and 
Simple Repeats tracks from the UCSC genome browser 

(genome.ucsc.edu), which collectively cover about 
53.7% of the reference genome.

Clustered MIE Analysis: The genome was segmented 
into non-overlapping windows containing 50kb of fully 
called genomic bases each, which were then sorted by 
the number of MIEs contained within each block. This 
list was then traversed until 30% of the total MIEs were 
encountered.

Technical Replicates: Two libraries independently 
constructed from NA19240 DNA were sequenced and 
analyzed. Sites called variant at VQHIGH in replicate 1 
and reference (RefScore>10) in replicate 2 were counted 
as discordant. A Bayesian statistical model was used to 
partition all discordances into putative FPs in replicate 
1 versus FNs in replicate 2 (see Reference 11, Score 
Calibration Documentation) (Table 2).

Calculation of the FP:FN tradeoff in direct 
comparisons of technical replicates: The CGA Tools 
1.5 calldiff command was used to compute the somatic 
score for each discordance between technical replicates. 
Sites called heterozygous or homozygous at a variant in 
replicate 1, and reference (for both alleles) in replicate 2, 
were counted as discordant. 

False Positive Rate: 2009 data were published in 
Reference 2. 2010 data were published in Reference 5, 
see Table 3.

Ti/Tv analysis: See References 7 and 8. Ti/Tv is 
reported for all genomes delivered from Q3 2011 to 
Q1 2012. The Ti/TV ratios in the 69 publicly available 
Complete Genomics genomes are in the same range. 

FALSE POSITIVES EST FPs FALSE NEGATIVES TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23 x 10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

COMPLETE GENOMICS CALL
OTHER PLATFORM PLATFORM-

SPECIFIC SNVs
VALIDATION RATE EST FPs FPR

Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 5,577 0.16%

No-call or Hom-Ref SNV Reported 345K 2/15 = 13.3% 299,115 8.2%

Table 3. False Positive Rate.

5

Accuracy of Complete Genomics Whole 
Human Genome Sequencing Data
Analysis Pipeline v2.0

High accuracy is critical to the effective use of whole genome sequencing (WGS) data 
by researchers and clinicians alike. Given the size of the human genome, even a small 
error rate can lead to a large total number of errors. Complete Genomics understands 
the importance of accuracy in WGS and we strive to deliver the most accurate data 
to our customers. We describe here some of the key factors to consider in measuring 
accuracy and provide an accuracy analysis for our Analysis Pipeline v2.0.

The accuracy of WGS data can be measured by a wide variety of methods, none of 
which is perfect, but many of which are informative for practical use. At the same time, 
accuracy estimates can be slanted to appear better or worse than they are; thus it is 
important that the detailed methods of their calculation be considered along with the 
results.

Techniques to improve variant detection accuracy include read and SNP !ltering 
or increasing call stringency1, but their use leads to a signi!cant and often poorly 
measured cost to sensitivity. Reports in the scienti!c literature show that Complete 
Genomics WGS, which avoids such coarse !ltering approaches, not only produces the 
lowest error rates but also does so at the highest call rates.

Complete Genomics’ approach to WGS is described below along with some 
suggestions on what to look for in measuring and comparing the accuracy of different 
sequencing approaches.

Results
Coverage and Call Rate: A key to Complete Genomics’ approach to WGS is deep 
sequencing. Complete Genomics has delivered more than 55x average gross coverage 
for all customer genomes shipped since the launch of its service. Complete Genomics 
applies an advanced bioinformatics pipeline using local de novo assembly to generate 
all small variant calls2,3, and using these methods currently achieves mean genome-
wide call rates of more than 97%, while call rates in coding regions currently average 
greater than 98%. These results are corroborated by recent reports of Complete 
Genomics’ data in the scienti!c literature (see Table 1 below).

WHITE PAPER
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Whole-genome sequencing is becoming commonplace, but 
the accuracy and completeness of variant calling by the most 
widely used platforms from Illumina and Complete Genomics 
have not been reported. Here we sequenced the genome  
of an individual with both technologies to a high average 
coverage of ~76×, and compared their performance with 
respect to sequence coverage and calling of single-nucleotide 
variants (SNVs), insertions and deletions (indels). Although 
88.1% of the ~3.7 million unique SNVs were concordant 
between platforms, there were tens of thousands of platform-
specific calls located in genes and other genomic regions.  
In contrast, 26.5% of indels were concordant between 
platforms. Target enrichment validated 92.7% of the 
concordant SNVs, whereas validation by genotyping array 
revealed a sensitivity of 99.3%. The validation experiments 
also suggested that >60% of the platform-specific variants 
were indeed present in the genome. Our results have important 
implications for understanding the accuracy and completeness 
of the genome sequencing platforms.

The ability to sequence entire human genomes has the potential to 
provide enormous insights into human diversity and genetic disease, 
and is likely to transform medicine1,2. Several platforms for whole-
genome sequencing have emerged3–7. Each uses relatively short reads 
(up to 450 bp) and through high-coverage DNA sequencing, vari-
ants are called relative to a reference genome. The platforms of two 
companies, Illumina and Complete Genomics (CG), have become 
particularly commonplace, and >90% of the complete human 
genome sequences reported thus far have been sequenced using these  
platforms5,8–11. Each of these platforms uses different technologies, 
and despite their increasingly common use, a detailed compari-
son of their performance has not been reported previously. Such a 

 comparison is crucial for understanding accuracy and completeness 
of variant calling by each platform so that robust conclusions can be 
drawn from their genome sequencing data.

RESULTS
Sequence data generation
To examine the performance of Illumina and CG whole-genome 
sequencing technologies, we used each platform to sequence two 
sources of DNA, peripheral blood mononuclear cells (PBMCs) and 
saliva, from a single individual to high coverage. An Illumina HiSeq 
2000 was used to generate 101-bp paired-end reads, and CG gener-
ated 35-bp paired-end reads. The average sequence coverage for each  
sample was ~76× (Table 1), which resulted in a total coverage equiva-
lent to 300 haploid human genomes.

We aligned reads from both platforms to the human reference  
genome (NCBI build 37/HG19)12 and called SNVs. For Illumina, a 
total of 4,539,328,340 sequence reads, comprising 1,499,021,500 reads  
(151.4 Gb) from PBMCs and 3,040,306,840 reads (307.1 Gb) from 
saliva, were mapped to the reference genome using the Burrows-
Wheeler Aligner13. About 88% mapped successfully. Duplicate reads 
were removed using the Picard software tool, resulting in 3,588,531,824 
(79%, 362 Gb) mapped, nonduplicate reads (Table 1). Targeted realign-
ment and base recalibration was performed using the Genome Analysis 
ToolKit (GATK)14. We used GATK to detect a total of 3,640,123 SNVs 
(3,570,658 from PBMCs and 3,528,194 from saliva) with a quality  
filter as defined by the 1000 Genomes Project11. CG generated a gross 
mapping yield of 233.2 Gb for the PBMC sample and 218.6 Gb for the 
saliva sample for a total of 451.8 Gb of sequence (Table 1). We analyzed 
these data using the CG Analysis pipeline to identify 3,394,601 SNVs 
(3,277,339 from PBMCs and 3,286,645 from saliva). A detailed com-
parison of PBMCs versus saliva differences has revealed that few of the 
tissue-specific calls could be validated by independent methods, and 
these results will be published elsewhere.

To examine the completeness of sequencing, we analyzed the 
depth and breadth of genomic coverage by each platform with the 
PBMC genome sequences. Both platforms covered the majority of  
the genome, and >95% of the genome was covered by 17 or more reads 
(Fig. 1a). The Illumina curve drops to zero coverage at much lower 
read depth than the CG curve because there are substantially fewer 
reads in the Illumina data set. We also noticed that CG generally is less 
uniform in coverage (Fig. 1b). This suggests that to achieve a certain 
level of coverage for most of the genome, CG requires more overall 
sequencing than Illumina.

Performance comparison of whole-genome sequencing 
platforms
Hugo Y K Lam1,8, Michael J Clark1, Rui Chen1, Rong Chen2,8, Georges Natsoulis3, Maeve O’Huallachain1,  
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ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project

∗to whom correspondence should be addressed

Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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•  Genome	  Mappability	  Score	  (GMS)	  -‐-‐	  measure	  of	  the	  complexity	  of	  resequencing	  a	  
genome	  =	  a	  weighted	  probability	  that	  any	  read	  could	  be	  unambiguously	  mapped	  to	  a	  
given	  posiNon,	  and	  thus	  measures	  the	  overall	  composiNon	  of	  the	  genome	  itself.	  
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Higher	  ValidaNon	  by	  CG	  of	  SNVs	  with	  
the	  BWA-‐GATK(v1.5)	  pipeline	  

•  Reveals	  higher	  validaNon	  rate	  of	  unique-‐to-‐
pipeline	  variants,	  as	  well	  as	  uniquely	  
discovered	  novel	  variants,	  for	  the	  variants	  
called	  by	  BWA-‐GATK(v1.5),	  in	  comparison	  to	  
the	  other	  4	  pipelines	  (including	  SOAP).	  



ValidaNng	  Indels	  with	  Complete	  
Genomics	  Data	  for	  the	  3	  pipelines	  



Comparing	  to	  New	  Versions	  of	  GATK	  



ValidaNon	  of	  SNVs	  and	  Indels	  called	  by	  GATK,	  
SOAP	  and	  both,	  with	  another	  plavorm	  

Indels	  



ValidaSon	  with	  PCR	  amplicons	  and	  MiSeq	  150	  bp	  
reads	  at	  ~5000x	  coverage	  

1,140	  SNVs,	  with	  random	  sampling	  of	  380	  from	  the	  set	  of	  unique-‐to-‐GATK	  SNVs,	  380	  from	  
the	  set	  of	  unique-‐to-‐SOAPsnp	  SNVs,	  and	  380	  from	  the	  set	  that	  were	  overlapping	  between	  
these	  two	  pipelines.	  	  
	  

960	  indels,	  with	  random	  sampling	  of	  386	  from	  the	  unique-‐to-‐GATK	  indel	  set,	  387	  from	  the	  
unique-‐to-‐SOAPindel	  set,	  and	  187	  from	  the	  set	  of	  indels	  overlapping	  between	  the	  two	  
(SOAPindel	  and	  GATK).	  	  



GATK v1.5 indel validation

153 / 369

216 / 369

Validation of overlaping indels
(GATK and SOAPindel)

109 / 183

74 / 183

SOAPindel v2.01 indel validation

145 / 365

220 / 365 Validated
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GATK v1.5 SNV validation

289 / 357

68 / 357

Validation of overlaping SNVs
(GATK and SOAPsnp)

336 / 375
39 / 375

SOAPsnp v1.03 SNV validation

133 / 339

206 / 339

ValidaSon	  of	  ~2000	  PCR	  amplicons	  with	  PacBio	  reads	  from	  
two	  SMRT	  cells	  (~50,000	  useable	  reads	  per	  cell)	  
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•  Mean	  concordance	  across	  five	  samples	  between	  the	  Complete	  Genomics	  v2.0	  and	  
the	   Illumina	   HiSeq	   2000	   BWA/GATK	   whole	   genome	   sequencing	   and	   analysis	  
pipelines	  is	  71%.	  	  	  

•  On	   average,	   the	   CG	   pipeline	   detected	   410,961	   variants	   that	   the	   Illumina	   BWA/
GATK	  pipeline	  did	  not;	   however,	   the	   Illumina	  BWA/GATK	  pipeline	  detected	  more	  
than	  double	  the	  amount	  of	  unique	  to	  pipeline	  variants,	  1,077,660.	  



OpNmizing	  the	  Variant	  Calling	  Pipeline	  
Using	  Family	  RelaNonships	  

We	  looked	  for	  SNVs	  that	  were	  detected	  in	  children	  but	  
not	  in	  parents	  using	  3	  different	  strategies:	  
	  	  
1.	  We	  used	  all	  of	  the	  SNVs	  that	  were	  detected	  by	  all	  5	  
pipelines	  for	  both	  parents	  and	  children	  
2.	  We	  used	  all	  of	  the	  detected	  SNVs	  for	  parents,	  but	  only	  
the	  concordant	  SNVs	  between	  the	  5	  different	  pipelines	  
for	  children.	  
3.	  We	  used	  SNVs	  concordant	  between	  the	  5	  different	  
pipelines	  for	  children	  and	  parents.	  
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Analysis	  based	  on	  various	  pipelines	  

•  “Parents”	  in	  this	  case	  means	  the	  mother,	  father	  
AND	  grandmother.	  

•  Taking	  the	  Union	  of	  SNVs	  from	  all	  5	  pipelines	  
from	  “Parents”,	  and	  subtract	  that	  from	  the	  Union	  
of	  all	  SNVs	  in	  each	  child.	  

•  Or	  Subtract	  the	  Union	  of	  these	  “Parents”	  from	  
the	  SNVs	  in	  the	  child	  concordant	  between	  5	  
pipelines.	  

•  Or,	  subtract	  the	  concordant	  variants	  from	  5	  
pipelines	  in	  “Parents”	  from	  the	  concordant	  
variants	  for	  5	  pipelines	  in	  each	  child.	  

	  



!
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Table 3. De novo single-nucleotide variants (SNVs) were detected in 

two families contained within the 15 study exomes.  

Family 1 

Number of putative de novo coding non-synonymous or nonsense 

SNVs detected  

Without using the grandparents 

as a filter 

Using the grandparents as a filter 

Child A 241 1 

Child B 211 0 

Child C 102 6 

Child D 242 3 

 

Family 2 

 

    

Child A 49 NAa 

Child B 41 NAa 

 aN/A, no grandparent available. 

Family 1 had a grandparent available for filtering purposes, whereas family 2 did not. To minimize false positives in the 

pool of SNVs associated with each child, only highly concordant SNVs were used (SNVs detected by all five pipelines). 

To construct a comprehensive set of SNVs for each parent, and hence increase filtering accuracy, false negatives for 

parent SNVs were reduced by taking the union of all SNV calls from all five pipelines.



hVp://en.wikipedia.org/wiki/Accuracy_and_precision	  
	  

High	  accuracy,	  but	  low	  precision	   High	  precision,	  but	  low	  accuracy	  

In	  the	  fields	  of	  science,	  engineering,	  industry,	  and	  staNsNcs,	  the	  accuracy	  of	  a	  measurement	  
system	  is	  the	  degree	  of	  closeness	  of	  measurements	  of	  a	  quanNty	  to	  that	  quanNty's	  actual	  
(true)	  value.	  The	  precision	  of	  a	  measurement	  system,	  also	  called	  reproducibility	  or	  
repeatability,	  is	  the	  degree	  to	  which	  repeated	  measurements	  under	  unchanged	  condiNons	  
show	  the	  same	  results.	  



VigneHe	  #2:	  One	  person	  with	  very	  severe	  obsessive	  compulsive	  
disorder,	  depression	  and	  intermiHent	  psychoses	  











Table 1.  A summary of three clinically relevant genetic aberrations found in the clinical sequencing results of M.A.  
Mutations in MTHFR, BDNF,  and ChAT were found to be of potential clinical relevance for this person, as they are all implicated in 
contributing to the susceptibility and development of many neuropsychiatric disorders that resemble those present within M.A.  A 
brief summary of the characteristics of each mutation is shown, including the gene name, genomic coordinates, amino acid change, 
zygosity, mutation type, estimated population frequency and putative clinical significance. 
 
Gene name Genomic coordinates Amino acid change Zygosity Mutation type Population Frequency Clinical significance 

MTHFR chr1: 11854476 Glu>Ala heterozygous non-synon T:77% G:23% 

Susceptibility to psychoses, 
schizophrenia, occlusive vascular 
disease, neural tube defects, 
colon cancer, acute leukemia, and 
methylenetetra-hydrofolate 
reductase deficiency  

BDNF chr11: 27679916 Val>Met heterozygous non-synon C:77% T:23% 
Susceptibility to OCD, psychosis, 
and diminished response to 
exposure therapy  

CHAT chr10: 50824117 Asp>Asn heterozygous non-synon G:85% A:15% 
Susceptibility to schizophrenia and 
other psychopathological 
disorders. 

   

One	  person	  with	  very	  severe	  obsessive	  compulsive	  disordere,	  
depression	  and	  intermiHent	  psychoses	  



Conclusions	  
•  Sequencing	  a	  grandparent	  seems	  to	  help	  
eliminate	  errors	  derived	  from	  the	  current	  
depth	  of	  sequencing	  coverage	  in	  the	  mother	  
and	  father.	  	  

•  For	  now,	  we	  advocate	  using	  more	  than	  one	  
pipeline	  on	  one	  set	  of	  sequencing	  data,	  but	  we	  
expect	  the	  field	  to	  move	  toward	  >2	  sequencing	  
plavorms	  per	  sample.	  

•  SNll	  need	  substanNal	  work	  on	  indel-‐calling	  and	  
validaNon.	  

	  



The	  End	  



EXTRA	  SLIDES	  –	  Not	  Shown	  



















Indels	  called	  by	  GATK,	  SOAP	  and	  SAMtools	  

.	   .	   .	   .	  
.	  .	  
.	   .	  .	  
.	  



ValidaNon	  of	  SNVs	  and	  Indels	  with	  an	  
addiNonal	  plavorm	  



Read	  Depth	  
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Additional file 2, Table S1.  Concordance rates with common SNPs genotyped 

on Illumina 610K genotyping chips. All pipelines are very good with identifying 

already known, common SNPs. 

 

Additional file 2, Figure S1.  Of the fifteen exomes that were sequenced, 14 

were sequenced from families chosen for future disease discovery related work.  

Each sequenced individual (numbered) is displayed in the context of his or her 

constituent family pedigree.  

 

Additional file 2, Figure S2.  Fraction of target capture region covered versus 

coverage depth for 15 exomes. All exomes have at least 20 reads or more per 

base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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Additional file 2, Table S1.  Concordance rates with common SNPs genotyped 

on Illumina 610K genotyping chips. All pipelines are very good with identifying 

already known, common SNPs. 

 

Additional file 2, Figure S1.  Of the fifteen exomes that were sequenced, 14 

were sequenced from families chosen for future disease discovery related work.  

Each sequenced individual (numbered) is displayed in the context of his or her 

constituent family pedigree.  

 

Additional file 2, Figure S2.  Fraction of target capture region covered versus 

coverage depth for 15 exomes. All exomes have at least 20 reads or more per 

base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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Additional file 2, Table S1.  Concordance rates with common SNPs genotyped 

on Illumina 610K genotyping chips. All pipelines are very good with identifying 

already known, common SNPs. 

 

Additional file 2, Figure S1.  Of the fifteen exomes that were sequenced, 14 

were sequenced from families chosen for future disease discovery related work.  

Each sequenced individual (numbered) is displayed in the context of his or her 

constituent family pedigree.  

 

Additional file 2, Figure S2.  Fraction of target capture region covered versus 

coverage depth for 15 exomes. All exomes have at least 20 reads or more per 

base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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Additional file 2, Figure S6. Average concordance among 15 exomes between 

three indel detecting pipelines: GATK, SAMTools and SOAPindel.  Concordance 

was measured between raw, pre-standardized, indel calls.  Indels were 

considered in agreement if the genomic coordinates, length and composition of 

indels matched between pipelines. 

 

Additional file 2, Figure S7.  SNV concordance for a single exome, “k8101-

49685”, between two sequencing pipelines: Illumina and Complete Genomics. 

For the Illumina sequencing, exons were captured using the Agilent SureSelect 

v.2 panel of capture probes. Complete Genomics SNVs consist of a subset of all 

SNVs called by CG that fell within the Agilent SureSelect v.2 exons. 

Concordance was determined by matching the genomic coordinates, base pair 

composition, and zygosity status for each detected SNV.  Concordance was 

measured between CG SNVs and A) the union of all SNVs called by 5 variant 

calling pipelines (“Illumina-data calls”) and B) only SNVs that all 5 Illumina 

pipelines collectively called (“concordant Illumina-data calls”). 

 

 

Additional file 2, Figure S8.  SNVs called by each Illumina-data pipeline were 

cross-validated using SNVs called by Complete Genomics, an orthogonal 

sequencing technology, in sample “k8101-49685”.  The percentage of Illumina 

SNVs that were validated by CG sequencing was measured for variants having 

varying degrees of Illumina-data pipeline concordance.  The same analysis was 

performed for variants that were considered novel (absent in dbSNP135). 

 

Additional file 2, Figure S9.  Indels called by each Illumina-data pipeline were 

cross-validated using indels called by Complete Genomics for sample “k8101-

49685”.  The percentage of Illumina indels that were validated by CG 

sequencing was measured across varying degrees of Illumina pipeline 

concordance.  The same analysis was done for novel indels (indels not found in 

dbSNP 135). 
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Additional file 2, Figure S6. Average concordance among 15 exomes between 

three indel detecting pipelines: GATK, SAMTools and SOAPindel.  Concordance 

was measured between raw, pre-standardized, indel calls.  Indels were 

considered in agreement if the genomic coordinates, length and composition of 

indels matched between pipelines. 

 

Additional file 2, Figure S7.  SNV concordance for a single exome, “k8101-

49685”, between two sequencing pipelines: Illumina and Complete Genomics. 

For the Illumina sequencing, exons were captured using the Agilent SureSelect 

v.2 panel of capture probes. Complete Genomics SNVs consist of a subset of all 

SNVs called by CG that fell within the Agilent SureSelect v.2 exons. 

Concordance was determined by matching the genomic coordinates, base pair 

composition, and zygosity status for each detected SNV.  Concordance was 

measured between CG SNVs and A) the union of all SNVs called by 5 variant 

calling pipelines (“Illumina-data calls”) and B) only SNVs that all 5 Illumina 

pipelines collectively called (“concordant Illumina-data calls”). 

 

 

Additional file 2, Figure S8.  SNVs called by each Illumina-data pipeline were 

cross-validated using SNVs called by Complete Genomics, an orthogonal 

sequencing technology, in sample “k8101-49685”.  The percentage of Illumina 

SNVs that were validated by CG sequencing was measured for variants having 

varying degrees of Illumina-data pipeline concordance.  The same analysis was 

performed for variants that were considered novel (absent in dbSNP135). 

 

Additional file 2, Figure S9.  Indels called by each Illumina-data pipeline were 

cross-validated using indels called by Complete Genomics for sample “k8101-

49685”.  The percentage of Illumina indels that were validated by CG 

sequencing was measured across varying degrees of Illumina pipeline 

concordance.  The same analysis was done for novel indels (indels not found in 

dbSNP 135). 

 



Comparing	  the	  concordance	  among	  the	  5	  
pipelines	  used	  to	  analyze	  Illumina	  data,	  also	  
straSfied	  by	  read	  depth	  from	  >0	  to	  >30	  reads.	  
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Table 2. Quality evaluation of variant detection using different variant-calling pipelines.  

  Sensitivity  Specificity 

 
Mean* SD 

Mean* SD 
  

SOAPsnp 94.68 2.26 99.79 0.03 
GATK1.5 95.34 1.16 99.72 0.08 
SNVer 92.33 4.40 99.78 0.04 
GNUMAP 86.60 3.23 99.64 0.06 
SAMtools 94.47 4.22 99.59 0.16 
Any pipeline 97.67 1.20 99.62 0.11 
≥2 pipelines* 96.64 2.28 99.69 0.07 
≥3 pipelines* 95.62 3.13 99.73 0.05 
≥4 pipelines* 92.60 3.40 99.82 0.04 
5 pipelines* 80.58 5.26 99.87 0.01 
*Intersection of variants contained in the number of pipelines specified. 

Sensitivity and specificity was calculated for each pipeline by comparing 

Illumina Human610-Quad version 1 SNP arrays with exome-capture 

sequencing results, based on the four samples whose genotyping data 

was available. 



Table S1.  Concordance rates with common SNPs genotyped on Illumina 610K 
genotyping chips.  
 

Sample Software Compared 
Sites 

Concordance 
Sites 

Concordance 
rate 

Mother-1 SOAPsnp 6088 6074 99.77% 
  GATK 1.5 6249 6224 99.60% 
  SNVer 5723 5708 99.74% 
  GNUMAP 5458 5434 99.56% 
  SAMTools 5885 5848 99.37% 
Son-1 SOAPsnp 6366 6353 99.80% 
  GATK 1.5 6341 6323 99.72% 
  SNVer 6255 6239 99.74% 
  GNUMAP 5850 5828 99.62% 
  SAMTools 6383 6362 99.67% 
Son-2 SOAPsnp 6412 6401 99.83% 
  GATK 1.5 6426 6413 99.80% 
  SNVer 6336 6325 99.83% 
  GNUMAP 5906 5889 99.71% 
  SAMTools 6477 6450 99.58% 
Father-1 SOAPsnp 6247 6238 99.86% 
  GATK 1.5 6304 6288 99.75% 
  SNVer 6205 6192 99.79% 
  GNUMAP 5805 5786 99.67% 
  SAMTools 6344 6327 99.73% 

 
All pipelines are very good with identifying already known, common SNPs. 
 



Taking	  SNVs	  concordant	  in	  5	  Illumina	  pipelines,	  
and	  comparing	  to	  SNVs	  in	  Complete	  Genomics	  

Data	  from	  same	  sample	  	  



Taking	  SNVs	  concordant	  in	  5	  Illumina	  pipelines	  
as	  per	  READ	  DEPTH,	  and	  comparing	  to	  SNVs	  in	  
Complete	  Genomics	  Data	  from	  same	  sample	  



Taking	  SNVs	  found	  by	  ALL	  5	  Illumina	  pipelines	  
(Union),	  and	  comparing	  to	  SNVs	  in	  Complete	  

Genomics	  Data	  from	  same	  sample	  



Taking	  the	  UNION	  of	  all	  SNVs	  called	  by	  Illumina	  
pipelines,	  as	  per	  READ	  DEPTH,	  and	  comparing	  to	  SNVs	  

in	  Complete	  Genomics	  Data	  from	  same	  sample	  



Comparing	  the	  UNION	  versus	  the	  
CONCORDANCE	  of	  5	  pipelines	  to	  the	  Complete	  

Genomics	  Data	  

Union	  of	  Illumina	  variants	   Concordant	  Illumina	  variants	  



Read	  Depth	  of	  Illumina	  Reads	  for	  variants	  
called	  by	  Complete	  Genomics	  but	  NOT	  by	  

GATK	  or	  SOAP	  pipelines	  
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Read	  Depth	  of	  Illumina	  Reads	  for	  variants	  
called	  by	  Complete	  Genomics	  but	  NOT	  by	  
GNUMAP,	  SNVer	  or	  SamTools	  pipelines	  
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Genomic	  Dark	  MaVer,	  cont….	  
•  That	  means	  that	  unlike	  typical	  false	  negaNves,	  increasing	  coverage	  

will	  not	  help	  idenNfy	  mutaNons	  in	  low	  GMS	  regions,	  even	  with	  0%	  
sequencing	  error.	  	  

•  Instead	  this	  is	  because	  the	  SNP-‐calling	  algorithms	  use	  the	  mapping	  
quality	  scores	  to	  filter	  out	  unreliable	  mapping	  assignments,	  and	  low	  
GMS	  regions	  have	  low	  mapping	  quality	  score	  (by	  definiNon).	  Thus	  
even	  though	  many	  reads	  may	  sample	  these	  variaNons,	  the	  mapping	  
algorithms	  cannot	  ever	  reliably	  map	  to	  them.	  	  

•  Since	  about	  14%	  of	  the	  genome	  has	  low	  GMS	  value	  with	  typical	  
sequencing	  parameters,	  it	  is	  expected	  that	  about	  14%	  of	  all	  
variaNons	  of	  all	  resequencing	  studies	  will	  not	  be	  detected.	  	  

•  To	  demonstrate	  this	  effect,	  we	  characterised	  the	  SNP	  variants	  
idenNfied	  by	  the	  1000	  genomes	  pilot	  project,	  and	  found	  that	  
99.99%	  of	  the	  SNPs	  reported	  were	  in	  high	  GMS	  regions	  of	  the	  
genome,	  and	  in	  fact	  99.95%	  had	  GMS	  over	  90.	  	  
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{Figure Legends} 
Figure 1. Mean single-nucleotide variants (SNV) concordance over 15 

exomes between five alignment and variant-calling pipelines. The 

alignment method used, followed by the SNV variant calling algorithm is 

annotated here in shorthand: BWA-GATK, SOAP-Align-SOAPsnp, BWA-SNVer, 

BWA-SAMtools, and GNUMAP-GNUMAP. (A) Mean SNV concordance 

between each pipeline was determined by matching the genomic coordinate as 

well as the base-pair change and zygosity for each detected SNV. (B) The same 

analysis as in (A) but filtered to include only SNVs already found in dbSNP135. 

(C) The same analysis as in (A), but filtered to include novel SNVs (that is, 

SNVs not found in dbSNP135).  

 

Figure 2. Single-nucleotide variant (SNV) concordance, between two 

sequencing pipelines (Illumina and Complete Genomics (CG)) for a single 

exome, k8101-49685. For the Illumina sequencing, exons were captured using 

the Agilent SureSelect version 2 panel of capture probes. CG SNVs consisted of 

a subset of all SNVs called by CG that fell within the Agilent SureSelect version 

2 exons. Concordance was determined by matching the genomic coordinates, 

base-pair composition, and zygosity status for each detected SNVs. Illumina 

SNVs consisted of all SNVs (the union) called by the five variant-calling 

pipelines GATK, SAMtools, SOAPsnp, SNVer, and GNUMAP, which increased 

the false positives but decreased the false negatives. Concordance was 

measured between Illumina SNVs and (A) all CG SNVs, (C) only high-quality 

(VQHIGH) CG SNVs, and (D) only low quality (VQLOW) CG SNVs. (B) Genome 

mappability analyses were performed on 2,085 discordant SNVs, which were 

found by the CG pipeline and not found by any of the five Illumina data pipelines. 

 

Figure 3. Mean indel concordance over 15 exomes between 3 indel-calling 

pipelines: GATK, SOAPindel, and SAMtools. Mean concordance was 

measured between (A) all indels, (B) known indels (indels found in dbSNP135), 

and (C) unknown indels (indels not found in dbSNP135). Indels were left 

normalized and intervalized to a range of 20 genomic coordinates (10 

coordinates on each side of the normalized position) to allow for a reasonably 



Pipelines	  Used	  on	  Same	  Set	  of	  Seq	  Data	  by	  Different	  
Analysts,	  using	  Hg19	  Reference	  Genome	  

1)  BWA	  -‐	  Sam	  format	  to	  Bam	  format	  -‐	  Picard	  to	  remove	  duplicates	  -‐	  GATK	  (version	  
1.5)	  with	  recommended	  parameters	  	  (GATK	  IndelRealigner,	  base	  quality	  scores	  
were	  re-‐calibrated	  by	  GATK	  Table	  RecalibraNon	  tool.	  Genotypes	  called	  by	  GATK	  
UnifiedGenotyper.	  	  

	  
2)  BWA	  -‐	  Sam	  format	  to	  Bam	  format-‐Picard	  to	  remove	  duplicates	  -‐	  SamTools	  version	  

0.1.18	  to	  generate	  genotype	  calls	  	  -‐-‐	  The	  “mpileup”	  command	  in	  SamTools	  were	  
used	  for	  idenNfy	  SNPs	  and	  indels.	  

	  
3)  SOAP-‐Align	  –	  SOAPsnp	  –	  then	  BWA-‐SOAPindel	  (adopts	  local	  assembly	  based	  on	  an	  

extended	  de	  Bruijn	  graph	  )	  
	  
4)  GNUMAP-‐SNP	  (probabilisNc	  Pair-‐Hidden	  Markov	  which	  effecNvely	  accounts	  for	  

uncertainty	  in	  the	  read	  calls	  as	  well	  as	  read	  mapping	  in	  an	  unbiased	  fashion)	  
	  
5)  BWA	  -‐	  Sam	  format	  to	  Bam	  format	  -‐	  Picard	  to	  remove	  duplicates	  -‐	  SNVer	  	  

6)  BWA	  -‐	  Sam	  format	  to	  Bam	  format	  -‐	  Picard	  to	  remove	  duplicates	  -‐	  SCALPEL	  





Pipelines	  Used	  on	  Same	  Set	  of	  Seq	  Data	  by	  Different	  
Analysts,	  using	  Hg19	  Reference	  Genome	  

1)  BWA	  -‐	  GATK	  (version	  1.5)	  with	  recommended	  parameters	  	  (GATK	  IndelRealigner,	  
base	  quality	  scores	  were	  re-‐calibrated	  by	  GATK	  Table	  RecalibraNon	  tool.	  
Genotypes	  called	  by	  GATK	  UnifiedGenotyper.	  For	  SNVs	  and	  indels.	  

	  
2)  BWA	  -‐	  SamTools	  version	  0.1.18	  to	  generate	  genotype	  calls	  	  -‐-‐	  The	  “mpileup”	  

command	  in	  SamTools	  was	  used	  for	  idenNfy	  SNVs	  and	  indels.	  
	  
3)  SOAP-‐Align	  –	  SOAPsnp	  for	  SNVs–	  and	  BWA-‐SOAPindel	  (adopts	  local	  assembly	  

based	  on	  an	  extended	  de	  Bruijn	  graph)	  for	  indels.	  
	  
4)  GNUMAP-‐SNP	  (probabilisNc	  Pair-‐Hidden	  Markov	  which	  effecNvely	  accounts	  for	  

uncertainty	  in	  the	  read	  calls	  as	  well	  as	  read	  mapping	  in	  an	  unbiased	  fashion),	  for	  
SNVs	  only.	  

	  
5)  BWA	  -‐	  Sam	  format	  to	  Bam	  format	  -‐	  Picard	  to	  remove	  duplicates	  –	  SNVer	  ,	  for	  SNVs	  

only	  



All#SNVs,#both#for#
parents#and#children,#
were#considered

All#parental#SNVs#that#were#detected#
were#considered.##Only#SNVs#concordant#
between#the#5#pipelines#were#considered#

for#children#

SNVs#concordant#between#5#
pipelines#for#children#and#

parents

Number#of##SNVs#found#in#child#A#
but#not#in#parents

1057 2 637

Number#of##SNVs#found#in#child#B#
but#not#in#parents

1084 1 672

Number#of##SNVs#found#in#child#C#
but#not#in#parents

2363 20 1703

Number#of##SNVs#found#in#child#D#
but#not#in#parents

1518 5 876

Number#of#nonsyn#SNVs#in#child#A#
but#not#in#parents

411 1 150

Number#of#nonsyn#SNVs#in#child#B#
but#not#in#parents

396 0 135

Number#of#nonsyn#SNVs#in#child#C#
but#not#in#parents

911 6 459

Number#of#nonsyn#SNVs#in#child#D#
but#not#in#parents

619 3 225

Number#of#shared#nonsyn#SNVs#in#
the#children,#but#not#in#parents

8 0 9



OpNmizing	  pipeline	  based	  on	  literature	  value	  of	  ~1	  
true	  de	  novo	  protein-‐altering	  mutaNon	  per	  exome	  

The	  result	  is	  that	  using	  all	  of	  the	  detected	  SNVs	  for	  both	  parents	  and	  children	  should	  
minimize	  the	  false	  negaNve	  rate	  but	  similarly	  show	  a	  relaNvely	  high	  false	  posiNve	  rate.	  	  
Using	  all	  of	  the	  SNVs	  detected	  for	  parents	  but	  only	  the	  SNVs	  concordant	  among	  the	  five	  
pipelines	  shows	  mutaNon	  rates	  similar	  to	  those	  reported	  by	  the	  literature	  and	  is	  expected	  
to	  have	  moderate	  false	  posiNve	  rates	  and	  moderate	  false	  negaNve	  rates.	  	  Using	  only	  the	  
SNVs	  concordant	  among	  the	  5	  different	  pipelines	  for	  both	  parents	  and	  children	  should	  
minimize	  the	  false	  posiNve	  rate	  but	  similarly	  show	  a	  relaNvely	  high	  false	  negaNve	  rate.	  	  	  
	  



Much	  Higher	  ValidaNon	  of	  the	  Concordantly	  
Called	  SNVs	  (by	  the	  CG	  data)	  




