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Abstract
Background: SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an
architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data
and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome
limitations found in both pure web service technologies and pure semantic web technologies.

Results: There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-
written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The
remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP
establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and
ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying,
discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and
semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is
based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a
discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to
integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/
protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://
sswapmeet.sswap.info (a "swap meet").

Conclusion: SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a
common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common
in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static
subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by
establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to
describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to
discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP
allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.
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Background
Biology is rapidly becoming an information science. This
is driving the need for machines to become increasingly
sophisticated in finding, assimilating, and integrating
information. Sharing information is at the core of infor-
matics. For bioinformatics, this has been recognized in its
various forms since its inception [1-5]. But what was ini-
tially seen as an issue of the setting of standards for shar-
ing data, has grown into a mature assessment that
distributed, decentralized, possibly ephemeral, resources
are now the fabric of the informatic landscape. Navigating
this landscape requires technologies that far exceed sim-
ply establishing connectivity and sharing data via a com-
mon format. The fact that interconnectivity and
interoperability protocols and middleware such as FTP
(1971), Telnet (1973), Ethernet (1973), TCP/IP (1974-
83), SMTP (1982), Gopher (1990), HTTP (1990), and
CORBA (1991), have been with us for nearly 40 years, yet
the level of integration we want in informatics remains
elusive, shows that broad, interoperability standards per se
may be necessary but are not sufficient for integration.

The requirements for (inter)connectivity, interoperability,
and integration, form a dependency stack, whereby transi-
tively the former satisfy necessary but not sufficient condi-
tions for the latter. Interconnectivity addresses those
technologies necessary for two or more computers to cre-
ate a network, such that they can be said to be "connected"
and able to send and receive bits without loss of informa-
tion. Interoperability implies a two-way exchange based
on common protocols, and uses interconnectivity in an
application-specific manner to build productivity. Inte-
gration builds upon this with a synthetic attribute,
whereby distributed information is aggregated and assim-
ilated either physically or virtually so as to create a whole
greater than the sum of the parts.

As we move from interconnectivity to integration, the
informatic problem matures from one of predominately
specifying a suitable protocol and syntax to one of devel-
oping and deploying an expressive semantic (from the
Greek semaino "to mean"; semantikos "significant"). Alter-
natively, we can see this as moving from a framework with
an explicit syntax and implicit semantics, to one where
both the syntax and semantics are now explicit. The
requirement for an explicit semantics is driven as much by
the increasing sophistication of science as by the need to
address current technology limitations. For example, in
the area of bioinformatics, scientists want the synthetic
whole generated from an integration of genomic and
functional data, but they will generate the underlying data
only from within the fractured sociological infrastructure
of separate disciplines of scientific thought, research
establishments, and funding programs. Because data is
generated in different semantic spaces, integrating it

requires knowledge of the data's context and suitability-
for-purpose. In a low-throughput environment, where we
connect resources and integrate data on a case-by-case
basis with human intervention, the semantics may be
implicit; i.e., evident to humans by reading documenta-
tion and applying appropriate judgments on use. But in a
high-throughput environment, where we want machines
to find distributed information, to assimilate, and inte-
grate it automatically, we are forced to raise semantics to
the level of explicit statements available for computation.

There are notable efforts to address these and related
issues. EMBL-EBI provides web services for over two
dozen operations including sequence similarity, multiple
sequence alignment, data retrieval, and others [6-9]. Many
EMBL-EBI web services use the industry-standard technol-
ogies of WSDL (Web Service Definition Language) docu-
ments to describe services and SOAP (Simple Object
Access Protocol) as the protocol for interoperability.
EMBL-EBI also support REST (REpresentational State
Transfer) interfaces for some services. In a similar manner,
NCBI offers web services using standard WSDL and SOAP
descriptions and protocols. These web services can be
engaged via the REST-like, URL-based eUtils services that
are essentially HTTP wrappers to the Entrez query system
[10]. Indeed, EMBL EBI and NCBI are just two of many
bioinformatic web services available (e.g., [11]). To dis-
cover and engage such services, one needs to either peruse
the unstructured information on web pages and within
the published literature, or use a discovery service specific
for web services. For example, BioCatalogue [12] provides
a Google-like search service for web services, while Bio-
Moby [13] provides an XML-based namespace and object
ontology that both enables discovery and invocation for
BioMoby-compliant services. A limitation of WSDL and
SOAP is that their syntactical rules of engagement do not
allow for machines to readily determine the semantics of
the underlying data and services. Efforts have been made
to address this. One approach, as taken by the myExperi-
ment project is to encapsulate the underlying service
details in a higher-order integrative layer. myExperiment
combines social networking with scientific workflows
[14], thereby emphasizing not the web services per se, but
the end product of their thoughtful integration. Moving to
a state where machines can better contribute to higher
level integration has been slow coming, in part because
steady progress in implementing an infrastructure that
allows machines to discover services and assess their suit-
ability-for-purpose in a fully automated manner presup-
poses a formal logic over web resources (e.g., [15]). It has
only been relatively recently that the tripartite of syntax,
semantics, and logic is available in a web standard, such
as the W3C standard of OWL (Web Ontology Language
[16-19]).
Page 2 of 21
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:309 http://www.biomedcentral.com/1471-2105/10/309
In this paper, we examine high-throughput integration
(the "integration equation") by first highlighting three
technology limitations that are hindering current solu-
tions; we then describe the SSWAP architecture as an
approach to addressing these limitations by delivering on
the syntax/semantics/logic stack; lastly we point to its
deployment as a platform in the Virtual Plant Information
Network (VPIN).

Three current technology constraints limiting integration 
over the web
We identify three current technology limitations that are
hindering solutions to the "integration equation." They
are the:

1. fatal mutability of traditional interfaces - the problem
where if data and service providers change their inter-
face signatures, client code depending on that signa-
ture fails en masse. This has the undesirable property
that the more clients engage an interface (i.e., the more
widely it is adopted), the less flexibility providers have
in evolving it. For example, consider a provider's inter-
face that is simply a URI (Uniform Resource Identifier)
expected to be dereferenced by a HTTP GET: http://
www.myProvider.org/myRe-
source?geneName="CDC40". If the provider now
changes the query substring to http://www.myPro-
vider.org/myResource?locusName="CDC40", then
scripts and programs expecting the former syntax fail.
HTTP as a protocol per se and REST as an architectural
style offer no protection from this en masse failure; it
would be up to the provider to address backwards
compatibility by, for example, supporting both URIs
concurrently. This fuels rigidity (the inability of soft-
ware to change to meet new demands) and fragility
(the propensity of software to fail, often in multiple
and seemingly unrelated places, under changes). The
problem occurs because the binding, i.e., the synchro-
nization of client code to the host's signature, is tradi-
tionally established both syntactically and
semantically when the client code is written, rather
than when it is invoked. What we would like is an
architecture that supports late binding, whereby signa-
ture validation is delayed until transaction time, pref-
erably within a logical framework whereby clients and
hosts could negotiate and assess suitability-for-pur-
pose.

2. rigidity and fragility of static subsumption hierarchies -
the problem where changing the properties of a class
near the root of an inheritance hierarchy (an ontol-
ogy) redefines subsumption criteria for the entire sub-
tree. This has the undesirable property that nodes near
the root, which were built when the system was least
evolved, are the least able to change without generat-

ing cascading repercussions. The core issue for seman-
tic web services is that static asserted subsumption
hierarchies--in contrast to dynamic subsumption hier-
archies calculated closer to transaction time--do not
lend themselves well to changes in application, while
often leading to a confounding of concepts with their
data model: the extreme (yet common) case being
when concepts have no explicit properties, meaning
that attributes are implied solely from the class' posi-
tion in the subsumption hierarchy. For example, the
statements 'M subClassOf V; V subClassOf E' implies
that any individual of type M (e.g., Magnoliophyta
[flowering plants]) has all the necessary and sufficient
properties of type V (e.g., Viridiplantae [green plants])
and may be more; and similarly V to E (e.g., Eukaryota
[eukaryotes]). Yet without explicitly delineating those
properties (i.e., codifying them to make them availa-
ble to reasoners), machine reasoners are limited in
what they can infer from the ontology. This is imme-
diately apparent in many of the Open Biomedical
Ontologies, for example, in the 20,000+ node Gene
Ontology [20]. The Gene Ontology has separate ontol-
ogies for Biological Process, Molecular Function, and
Cellular Component exactly because subsumption
claims on one topic--e.g., Biological Process--are of lit-
tle value when organizing knowledge on another
topic, e.g., Molecular Function. The Gene Ontology's
well-deserved success rests largely on its authoritative
subsumption hierarchy and community acceptance of
the implied underlying logic [21]. For high-through-
put integration--particularly cross-ontology integra-
tion--the problem of asserted vs. derived subsumption
becomes acute when the properties underlying the jus-
tification of the subsumption statements are not
themselves defined within the ontology (as is often
the case). In that situation, the subsumption hierarchy
stands as essentially a static statement of axiomatic
relationships. One possible solution to this problem is
to deploy ontologies with a greater emphasis on prop-
erties [22-24] and push subsumption determination
closer to transaction time.

3. confounding content, structure, and presentation - the
problem where the information payload--the data
itself--is entangled with its data structure and/or the
presentation layer and implicit behaviors of the pres-
entation software. HTML and many applications
exploiting the hierarchical nature of XML suffer from
this type of entanglement. This has the undesirable
property that the data of value to the client may be dif-
ficult or essentially impossible to generically parse
from the data delivered by an arbitrary provider,
thereby crippling machine-automated disentangle-
ment. When data is buried deep in XML hierarchical
structures, or available only as "hidden" side-effects of
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semantically opaque SOAP signatures, or encoded as a
combination of images and tables in HTML, the client
is restricted in the utility it can extract from the data,
even if such restrictions are not the intent of the pro-
vider. What we would like is an architecture that sup-
ports a clean separation of content, structure, and
presentation, whereby a provider's dissemination of
the data imposes minimal side-effects on the client's
suitability-for-purpose.

No protocol completely address all these limitations in all
scenarios. But in the protocol we describe here we make
progress on them specifically by grounding a new proto-
col in a formal logic. Thus the fatal mutability of interfaces
is addressed by designing a protocol that allows for
cached or transaction time reasoning for assessment of
what the service is offering and what it returns. Similarly,
by allowing services to describe their offerings using
classes and properties, it is backwards-compatible with
deep subsumption hierarchies while also enabling just-in-
time subsumption determination based on common
properties instead of explicit subclass assertions. Lastly,
the protocol encapsulates the semantic description of
services and data from the presentation layer using non-
hierarchical RDF (Resource Description Framework
[25,26]), thereby helping to separate content, structure,
and presentation.

Syntactical, Semantic, and Discovery Requirements
An architecture that addresses the above challenges would
go a long way to achieving the robustness, evolvability,
and scalability that are required for high-throughput inte-
gration [13-15]. In light of these challenges, we were
impressed with the overwhelming success of the web; its
stateless, method-sparse, document-based architecture
demonstrating many desirable properties of robustness,
evolvability, and scalability. Our solution was to design
an architecture that mimicked much of what worked for
the web; in particular, a document-based architecture with
explicit delineations of data and its contextual relation-
ships. This leaves the manipulation of the data's "raw
value" to any particular technology of the day, allowing
the system to evolve as new technologies are developed. A
technology assessment phase in an earlier related project
called Semantic MOBY (an independent arm of Bio-
MOBY) led to the choice of RDF and OWL DL as the
underlying enabling technologies.

These considerations essentially recast any solution to the
"integration equation" from being one of specifying a syn-
tax and messaging layer used to connect clients and pro-
viders, to being one of providing clients and providers a
way to describe their queries and data, find each other on
the web, and engage semantic negotiation to determine
suitability-for-purpose at transaction time. This requires a

solution to satisfy a set of three basal requirements; viz.,
to:

• deploy a common syntax - that is, allow clients and pro-
viders to engage each other under shared syntactical
rules. Currently, the GET query strings to major web-
based biological information resources such as Entrez
http://www.ncbi.nlm.nih.gov/Entrez, Gramene http:/
/www.gramene.org, and LIS http://www.comparative-
legumes.org all have differing and idiosyncratic syn-
taxes, thereby making interoperability consist of one-
off scripts that are inherently non-scalable;

• develop a shared semantic - that is, allow machine-dis-
cernable meaning so clients can request the same con-
ceptual object or service from different providers. For
example, many providers offer equivalent DNA
sequences or sequence comparison algorithms, yet
scripts cannot compare and contrast the offerings
without low-throughput, case-by-case customization.
An infrastructure for semantic negotiation is needed;
especially one that is cognizant of the sociological
influences of achieving a shared semantic;

• implement a discovery server - that is, allow clients to
find providers based on the semantics of their data
and services. Specifically we introduce the capability
of semantic searching as defined below. As built upon
a common syntax and semantic amenable to a formal
logic, this is the necessary condition for scalable inte-
gration.

Our design goals are to address the three technology lim-
itations listed earlier while satisfying the three require-
ments listed above. We found both current-day pure-play
semantic web and pure-play web service solutions lacking
in this regard--the former because of its lack of web service
protocols and the latter because of its lack of a formal
semantics amenable to reasoning. Cognizant of this, our
design approach is to deeply embed the semantic web
"philosophy" to the application of web services. We
describe here a new protocol to do this. What follows is a
document-based design that uses a W3C-compliant mid-
dle-layer for a semantically rich encoding of data and serv-
ice descriptions.

Implementation
SSWAP: A Simple Semantic Web Architecture and Protocol
Architecturally, SSWAP posits the existence of four actors
on the web: i) providers: web sites offering resources--
essentially web services for data retrieval or remote algo-
rithm execution; ii) clients: users of web resources. Provid-
ers may also be clients, just as traditional web servers may
both request and supply web pages; iii) a discovery server:
a non-exclusive, web broker that helps clients find provid-
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ers based on the semantic qualifications of desired data or
services (collectively referred to as resources). The archi-
tecture does not require that there be any exclusive or spe-
cially authorized discovery server; iv) ontologies: terms
used by all actors to communicate in a semantically con-
sistent manner. As will become evident, ontological defi-
nitions may be hosted term-by-term by anyone on the
web, so any web server may act as an ontology server. In
many cases providers may act as ontology servers for con-
cepts that are specific to their offerings. This basic model
of providers, clients, and discovery servers (search
engines) is purposely analogous to our common under-
standing of the World Wide Web as it operates today.

SSWAP is deeply based on RDF (Resource Description
Framework [25,26]), both in its use of RDF as a technol-
ogy and also in RDF's conceptual model of presenting
information in the form of entities and relationships. RDF
allows semantics to be expressed via a series of subject-
predicate-object assertions (an 'RDF-triple'). Assertions
simply state that some "thing" (the subject) has some rela-
tionship (the predicate, also called a 'property') to some-
thing else (the object). A series of subject-predicate-object
triples creates a network of assertions that can be repre-
sented as a graph. RDF may be serialized in a number of
different formats; the W3C specifies RDF/XML as the rec-
ommended messaging layer. In this manner RDF and
RDF/XML set the basic underlying syntax for anyone to
say anything about anything [27]. OWL (Web Ontology
Language [16-19]), and specifically OWL DL and the
newer OWL 2.0 variants, is the W3C recommendation of
how to express a first-order description logic for the web.
OWL is based on RDF. OWL introduces reserved classes
and predicates with a formal semantic so that machines
can reason over statements and come to conclusions.
OWL DL is mappable to an underlying first-order Descrip-
tion Logic (DL) with guarantees of completeness and
decidability. This provides a precise and explicit semantics
which enables DL reasoning. Theoretically, the ability to
reason should alleviate the need for static "is a" relation-
ships, because subsumption (i.e., subclass) relationships
can be computed dynamically from examining an aggre-
gation of properties. In practice, just-in-time or even
offline reasoning presents computational challenges even
for some non-worst case scenarios, though experience
shows these challenges are manageable in a wide variety
of cases. Indeed, simple subsumption can be determined
without DL reasoning, but adding DL support allows
restrictions on cardinality and complex classes built upon
union and intersection operations that are useful in real-
world applications. An important advantage to this
approach is that instead of needing to declare all "is a"
relationships directly at design time one can state proper-
ties about subjects (i.e., subject-predicate-object asser-
tions) as the evidence so supports, and thereby allow

others to use property aggregation dynamically at transac-
tion time. This has a natural extension to ontology align-
ment.

SSWAP establishes a small set of reserved classes and pred-
icates to allow OWL to be used for semantic web services.
This is the protocol itself; essentially a light-weight SSWAP
ontology designated in this paper with the prefix 'sswap:'
and available at http://sswapmeet.sswap.info/sswap. In
SSWAP, all actors operate on a SSWAP-compliant, OWL
DL graph. The graph uses the SSWAP protocol http://
sswap.info/protocol.jsp to express the relationship
between a semantic web service and its data. This architec-
ture (Figure 1) is different from traditional provider/cli-
ent/search-engine models. In traditional systems,
different technologies are used to describe services, to dis-
cover services, to engage them, and to handle the result. In
SSWAP, all actors work from the same, mutable graph; a
graph that always adheres to the same canonical structure.
This establishes both a common syntax and skeleton
structure across all actors and activities and yields benefits
in terms of shared parsing constructs and re-usable code.
This is worth emphasizing: the same canonical structure
that allows providers to describe their offerings, is the
same canonical structure for expressing queries on those
offerings, which is in turn the same canonical structure for
phrasing service invocation, which is the same canonical
structure for representing results. Exposition on this point
follows.

The SSWAP protocol
SSWAP deploys semantic web technologies in a more
restricted manner than the broad scope of the semantic
web proper. By doing so, it is compatible with the web
and web server practices, but does not lay claim to the
broader visions of the semantic web. Specifically, provid-
ers describe their resources to the world by putting an
OWL DL RDF/XML document on the web available to
anyone via a simple HTTP GET. This means that anyone
can read a resource's description by simply dereferencing
its URI. The document, called a Resource Description
Graph (RDG), makes specific statements about the
resource by using a subset of the SSWAP protocol (see the
Annotated SSWAP Protocol page at http://sswap.info/pro
tocol.jsp). The protocol defines a small set of reserved
OWL classes and predicates that allow any provider to
describe itself (Figure 2a) and its resources (Figure 2b)
within a canonical, recognizable structure. In practice,
service providers host one RDF/XML file defining them-
selves as a sswap:Provider, and any number of other RDF/
XML files, each with its own sswap:Resource. Of course
there is no implementation requirement that these be
physical files: e.g., web masters may deploy servlets to
parse URIs. The explicit use of reserved classes and prop-
erties allows us to establish an explicit semantics under
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the larger umbrella of OWL DL. This means machines
have clear, unambiguous rules within which to parse any
SSWAP graph, and can ignore assertions that are not rele-
vant to SSWAP. Out of a universe of ways one could use
OWL DL to describe a resource, the canonical graph struc-
tures all resource definitions in terms of a transformation
of some (possibly null) input to some (possibly null) out-
put. The protocol delivers a minimal set of constructs to
allow providers to describe their resources, and for
resources to assert their data/service transformations.
Implementers may use OWL DL to add and extend prop-
erties and classes and further idiosyncratically describe
their offerings. We are currently examining the feasibility
of front-ending RDGs with RDFa [28], such that providers
could simply host marked-up web pages that could be
transformed into RDGs upon the action of an agent. This
would tighten SSWAP's position with linked data [29].

In Figure 2A, the canonical graph states that there is some
provider (i.e., :resourceProvider), and out of the universe of
relationships it has to things in the world (i.e., additional

RDF subject-predicate-object assertions not shown on the
graph and immaterial to SSWAP), it has a particular
sswap:providesResource relationship to another individual
of type sswap:Resource. Here, individuals are web
resources. SSWAP guarantees that dereferencing any node
with a sswap: prefix via a HTTP GET will return a SSWAP-
compliant, OWL DL definition of the node which defines
appropriate restrictions, cardinality constraints on proper-
ties, and so forth. Indeed, SSWAP best-operating practices
state that any URI referencing an ontological term in a
SSWAP-compliant graph should always be dereferencea-
ble, returning an OWL DL definition of the resource. If a
URI is not dereferenceable, the system does not fail, but
actors will simply not be privy to on-demand resolution
of a term's definition. This works well with OWL's guaran-
tee of monotonicity. In this manner, the architecture
brings the flavor and power of hyperlinks and linked data
to web service interface declarations. In Figure 2B, the URI
:canonicalResource reciprocates the association assertion
back to the provider with a sswap:providedBy predicate.
This reciprocation, along with a default behavior, is used

Traditional vs. SSWAP Information FlowFigure 1
Traditional vs. SSWAP Information Flow. A) In a traditional model, different formats and technologies are used for reg-
istering/publishing (1,2), discovering (3), discriminating (4), invoking (5), and returning results from (6) services. B) In SSWAP, 
all actors operate on mutable, SSWAP-compliant, OWL DL graphs serialized in RDF/XML. Actors exchange graphs for 
description, discovery, querying, invocation, and response. All graphs are variations on the structured canonical protocol. An 
HTTP GET on a SSWAP semantic web service returns the SSWAP-compliant, OWL DL description of the service; an HTTP 
POST to the same URI with the query data in the body of the message (or HTTP GET with the graph serialized in the URI 
query string) invokes execution; the response is a similar OWL DL graph, but with explicit mappings of the query data to the 
return data. In all cases URIs to the data can be used instead of embedding the data itself.
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The Canonical GraphFigure 2
The Canonical Graph. OWL DL definitions (not shown) of the fundamental SSWAP classes require all SSWAP compliant 
resources to express themselves within the framework of the five classes and six predicates as shown here. General practice is 
to create one file for the provider's description (2A), and one file for each semantic web service (2B). Ovals represent classes; 
blue ovals are SSWAP reserved classes, orange ovals are third-party classes; rounded-cornered rectangles represent instances 
(individuals); arrows represent predicates (properties). SSWAP uses the W3C sanctioned encoding of RDF/XML, but code 
snippets shown here and in the following figures is in the more compact N3 solely for readability. A note on N3: the word 'a' 
is shorthand for rdf:type and denotes instantiation. Multiple classes are specified serially in a statement with a comma (,) delim-
iter. A semicolon (;) means that the RDF subject of the assertion is the same as the subject of the preceding line, so the line 
lists only the predicate and object; blank nodes are represented by square brackets ([]) which allow a nesting of relationships. 
In some cases blank nodes are labeled explicitly using the prefix underscore-colon (_:) followed by the label.
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by the platform to enforce bilateral assertions so that, for
example, a resource's claim to be provided by a third-party
provider can be verified by querying the provider. The
resource also has a sswap:operatesOn relationship to a
sswap:Graph. The sswap:Graph class allows one to build
data structures so providers and clients can unambigu-
ously distinguish between such structures as a list of pairs
and a pair of lists. The blank node (an anonymous
resource) that is a sswap:Graph may also have many rela-
tionships to other things in the world, but again, we are
interested only in its sswap:hasMappping relationship to a
sswap:Subject which in turn is related by sswap:mapsTo to a
sswap:Object.

The sswap:Subject and sswap:Object classes are used to iden-
tify input to output mappings, and as such are equivalent
to the input parameters and output return values of tradi-
tional interface declarations. For example, Soybase,
Gramene, and LIS (Legume Information System) SSWAP
services all use the value associated with their various
sswap:Subjects as lookup keys into databases from which
they return a value associated with the sswap:Object. But
the semantics of the sswap:mapsTo predicate does not force
a delineation of input and output data: RDF's support for
multiple relationships means that it offers a natural way
for providers to specify one-to-many and inverse map-
pings (e.g., given a sswap:Object, return a sswap:Subject by
reversing the subject and object of the sswap:mapsTo rela-
tion). Because SSWAP does not use traditional, ordered
input and output parameters, invocation requirements
can be changed, deleted, or appended within the con-
straints of a first-order logic amenable to machine-reason-
ing, thereby alleviating one of the major disadvantages of
traditional, static interfaces. SSWAP builds a semantic web
service interface based upon logical assertions, thus deliv-
ering an enabling environment whereby machines can
better reason at transaction time to assess suitability-for-
purpose.

The Web of Ontologies
Figure 3 shows how a resource customizes the canonical
graph to describe the specific web resource (service) it is
offering to the world. The resource does this by qualifying
the nodes that are instances of sswap:Resource,
sswap:Graph, sswap:Subject, and sswap:Object. In Figure 3,
the taxonomyLookupService states that it maps the string
value of the predicate ncbiTaxa:commonName to an object
of type ncbiTaxa:TaxonomyRecord. This service is a working
example http://sswap.info/examples/resources/taxono
myLookupService/inputForm.jsp addressing a minor but
recurring problem in bioinformatics: the problem of
unambiguously and universally associating data with the
species or taxon from which they were derived. For
human readable web pages and idiosyncratic data files,
this is traditionally done by inserting ad hoc strings nam-

ing the taxon or hyperlinks to database entries. Yet the
non-standardized nature of these common sense conven-
tions makes it almost impossible to write broadly re-usa-
ble code to reliably extract this metadata across generic
web sites. "What data is currently available on legumes?"
is a laborious and difficult question to answer. Even seem-
ingly trivial complications such as spellings and alterna-
tive names for taxa offer substantial challenges to writing
generic, high throughput parsers. These types of tower-of-
Babel problems occur regularly in bioinformatics and
they conspire to thwart integration. RDF offers a natural
mechanism to address a proximal solution: simply refer-
ence an unique URI for each taxon and then associate the
URI whenever we wish to reference the taxon. For exam-
ple, the persistent and unique URI for the legume Medi-
cago truncatula at NCBI's Taxonomy database is http://
www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=3880&lvl=0. When we associate data with
this URI under a well defined semantic, we are making a
machine-parseable, unambiguous assertion that can be
used to universally tag the data with the taxon. The taxon-
omyLookupService accepts a string of common words as a
key (e.g., the common name "barrel medic") and queries
NCBI for the associated taxonomy record (Medicago trun-
catula). If it finds a record, it returns the taxon's URI as
well as supporting properties as defined at ncbiTaxa:Taxon-
omyRecord.

Ontologies are systems of terms and their relationships. In
this example the taxonomyLookupService service is using
terms from the third-party ontology ncbiTaxa for both the
sswap:Subject and sswap:Object. Yet generically SSWAP
allows a mix-and-match of terms from across ontologies
on the web. This support for mixing independent third-
party ontologies while under a formal semantic is central
to SSWAP's sociological model of achieving a shared
semantic (see http://sswapmeet.sswap.info). This offers
an important distinction from traditional XML/DTD-
based models. In those cases, the lack of a formal seman-
tic and logic underlying the data model and tagging
scheme means that extensions tend to break the standard.
In SSWAP, OWL's formal first-order description logic
(DL) means that extensions are amenable to machine rea-
soning. In practice, implementations of first-order DL rea-
soning lags behind our ability to make assertions, so
SSWAP relies heavily on basic subsumption and realiza-
tion (including inferences from rdfs:domain and
rdfs:range). Interestingly, it is not necessary that there
exist a formal ontological mapping between any two
ontological concepts--a problem that in its generic form of
ontology alignment is difficult and unsolved. The sole
existence of a resource description graph (RDG) is a de
facto claim of at least a partial ontology alignment: it is a
statement to the world that this resource, offered by this
provider, offers a service that maps instances of one onto-
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Resource Description Graph (RDG)Figure 3
Resource Description Graph (RDG). An example of how the semantic web service taxonomyLookupService describes itself 
using SSWAP classes and predicates. In this case, the resource maps any sswap:Subject with a ncbiTaxa:commonName to a 
sswap:Object of type ncbiTaxa:TaxonomyRecord. This is an example of using a database key (a string) to retrieve data. The full 
Resource Definition Graph (RDG) is at http://sswap.info/examples/resources/taxonomyLookupService/taxonomyLookupServ-
ice and is available to anyone via a HTTP GET.

http://sswap.info/examples/resources/taxonomyLookupService/taxonomyLookupService
http://sswap.info/examples/resources/taxonomyLookupService/taxonomyLookupService
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logical concept to another. The appropriateness of the
mapping may be further described within OWL DL, or
may lie implicit in the resource's implementation.

Because all providers and clients have public access via
URIs to the same set of ontological terms on the web, the
semantics of data and services is open to a shared evolu-
tion and marketplace competition. Well-defined, useful
terms maintained by trusted public resources encourage
re-use. This forms the basis of a shared semantic and con-
sequent integration. Integration is further enhanced by
SSWAP's reliance on OWL semantics, so, for example, one
may exploit subsumption relations to deduce suitability-
for-purpose rather than relying on lexical matching to
enforce naïve equivalency via re-use of the same term. The
architecture creates what we call a "Web of Ontologies"
that is specifically aimed at refocusing the labor of ontol-
ogy construction from monolithic enterprises to distrib-
uted, dynamic "atoms of knowledge."

In summary, SSWAP encourages third-parties to build
ontologies as they see the world. It then supplies a frame-
work whereby anyone can pick and choose which con-
cepts best fit what they are looking for or what they are
offering while allowing providers to associate these con-
cepts with data types. It additionally supplies a mecha-
nism to "learn more"--that is, enable semantic
negotiation--about unrecognized terms by performing an
HTTP GET on any term to get a graph of OWL DL state-
ments about the term, be the resource either a service or
an ontology term.

Resource publication with a Discovery Server
A provider defines its resource by putting the SSWAP-
compliant, OWL DL resource description graph (an RDG)
on the web, accessible to anybody by a simple HTTP GET.
In this manner, providers describe themselves in the web,
as part of the web, and use the web not just as a data deliv-
ery pipeline, but with all its associated infrastructure.
Architecturally, this means their "publishing of service"
consists of no more than placing an SSWAP OWL DL
RDF/XML document on a web site and supporting a HTTP
POST (or HTTP GET w/a query substring) for service invo-
cation. The page can be deployed using their organiza-
tion's standard web practice work flow; it can be changed
without coordination with a central site, and so forth.

In practice, we do not run spiders crawling the web to find
SSWAP resources, so to garner publishable resources, we
run a semantic discovery server at http://sswap.info that
hosts a URL http://sswap.info/publish-resource that
accepts HTTP POSTs from resources to inform the discov-
ery server of their presence. (Alternatively, humans may
interactively publish resources at http://sswap.info/pub
lish.jsp.) Because resource description graphs sit on the

web like any other document, there is no active registra-
tion process with the discovery server, just like there is no
active registration process with Google. This alleviates
many of the security issues associated with de-registration
or changing service definitions associated with active reg-
istration models, though it also means that the discovery
server's knowledge of resources may be out of date with
what is currently live on the web. When the discovery
server is informed of a resource, it will at its discretion per-
form a HTTP GET on the resource to retrieve its descrip-
tion graph. Upon retrieving the RDG, the discovery server
dereferences terms up to three levels of indirection in an
attempt to broaden its knowledge of concepts (ontology
terms) used by the resource description graph (RDG). We
refer to the resulting set of RDF statements as a three
degree closure. We then validate the graph for SSWAP con-
sistency using the OWL reasoner Pellet [30]. We use Pellet
to make explicit any and all implicit statements. The rea-
soner performs the following four operations: i) classifica-
tion: computing all subclass relations between named
classes, ii) realization: assigning individuals to their most
specific subclass, iii) consistency checking: complete
check for logical contradictions, and iv) satisfiability
checking: complete check for classes empty by necessity.

As an example, the taxonomyLookupService accepts as input
an object with the predicate ncbiTaxa:commonName (data
type xsd:string). This allows one to query the service with a
common taxon name as a lookup key to the official NCBI
taxon web page and scientific name. When building a
knowledge base (KB) of resources, our reasoner executes a
HTTP GET on ncbiTaxa:commonName and examines its
definition. It discovers that the domain of the predicate
ncbiTaxa:commonName is ncbiTaxa:TaxonomyRecord--an
ontological class tagging the object. The reasoner then cor-
rectly classifies the taxonomyLookupService service as
accepting objects of type ncbiTaxa:TaxonomyRecord, even
though the service definition never made the statement
explicitly. This inference step generates explicit sub-class
and sub-property relationships from implicit relations
that broaden the KB's statements for later semantic search-
ing. In Kantian terms this is the generation of synthetic a
priori judgments and constitutes new knowledge [31]. In
practice, a RDG of a dozen or so statements is often ren-
dered into thousands of statements after execution of the
third degree closure and reasoning (try it at http://
sswap.info/resource-validator.jsp). This reasoning step
greatly enhances capabilities for semantic searching.

If a resource is already in the KB and the URI dereferences
to an invalid description graph, then the resource is
flagged for removal from the KB; similarly, if the graph is
new or changed, then the discovery server updates its
internal model appropriately. Currently this is done by
rebuilding the entire KB because algorithms for making
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incremental changes to first-order description logic
knowledge bases are still in their infancy. Once we have
built a KB, we use the open source applications of Jena
[32] for RDF manipulation via SPARQL on top of a Post-
greSQL RDBMS [33] as a triple-store.

Resource Discovery and Semantic searching
Clients engage the discovery service by using either the
web front-end at http://sswap.info or programmatically
engaging the SSWAP query service with a Resource Query
Graph (RQG) (Figure 4). Clients construct their query
graphs using the same publicly available ontological con-
cepts as used by providers to describe their resource. Just
as search engines on the web provide non-exclusive points
of entry for web surfing, the discovery server provides a
non-exclusive point of entry for resource discovery. Archi-
tecturally, clients are not required to use the discovery
server; indeed, if they know of a resource's URI then they
may engage it directly (see below). In Figure 4, the client
is asking the discovery server to return all resources (the
named _:resource blank node) that map "anything" (the
blank sswap:Subject node) to something of the class
taxa:Taxa. A dereference on the taxa:Taxa URL gives neces-
sary and sufficient conditions (properties and classes) of
individuals of that class. The use of a query graph that has
the same canonical structure as description graphs, invo-
cation graphs, and response graphs is a novel approach to
operational integration (Figure 1). For example, the client
could send a graph without the taxa:Taxa qualifier,
thereby asking "Get me anyone who can map anything to
anything." Clearly, numerous combinations are possible.
While the discovery server fulfills the role described vari-
ously as "matchmaking" or "brokering" [34], the underly-
ing OWL ontology extends the usual lexical basis for such
matches by allowing for semantic searching based on sub-
sumption relations.

For semantic searching, we seek a mechanism to find all
resources (services) that are: 1) of a particular (or more
specific) type according to some ontology; 2) operate on
a particular (or more general) type of data; and/or 3)
return a particular (or more specific) type of data. For
example, we may want to search for all services that per-
form sequence comparison, or operate on DNA
sequences, or return gene annotations. Consider class E
defined such that all individuals of class E have properties
p and q. We now consider class V subClassOf E; necessarily
all individuals of class V have properties p and q, and pos-
sibly additional properties. This is guaranteed by the for-
mal semantics of rdfs:subClassOf. Thus if we have
data belonging to class V and we ask the question: "What
services can operate on my data?", we should get all serv-
ices that accept a sswap:Subject of type V as well as type E.
Indeed, a service operating on data of class E will necessar-
ily work on our data, even if it was constructed independ-

ently and in ignorance of class V, and even if our data was
classified ignorant of class E (i.e., classifying our data as of
class V implies that we satisfy its definition, but it does not
require that we have knowledge of the complete sub-
sumption hierarchy).

Figures 4 and 5 give a demonstrative example of how
these operational guarantees deliver semantic search
results in a decentralized model. In Figure 4., the client
asks for all resources that return data of type taxa:Taxa. In
Figure 5, the discovery server returns a graph with the
resource http://...taxonomyLookupService. Dereferencing
:taxonomyLookupService (retrieving its SSWAP RDG with a
HTTP GET) shows that the service returns data of type
ncbiTaxa:TaxonomyRecord (not shown in figure). Derefer-
encing that class shows that it is a subclass of taxa:Taxa,
thereby satisfying the search request based on the seman-
tic relations of the data, not on any lexical equivalencies.

The model of semantic searching with query graphs is to
return all resources that are a "sub-concept" of the query
graph. Given a query graph with a sswap:Resource node of
arbitrary named classes R1, ... Rn, with a sswap:Subject node
of arbitrary named classes S1, ... Sm and a sswap:Object
node of arbitrary named classes O1, ... Oo, the discovery
server returns all known resources that satisfy member-
ship in the class{∩: R1, ... Rn} (and by implication any of
its subclasses) with subjects that satisfy membership in
any superclass of {∩:S1, ... Sm} and objects that satisfy
membership in the class {∩:O1, ... Oo} (and by implica-
tion any of its subclasses). As is standard, a class is always
a trivial subclass of itself. Thus the returned resources
would be (possible) specializations of what one
requested; that operate on the typed input data (or gener-
alizations of it), and returned the typed output data (or
specializations of it). In this manner, semantic searching
seeks to reduce false positives in service discovery by
returning those, and only those, services that are guaran-
teed to operate on the requested data and return transfor-
mations that are at least as specialized as requested. In
Figure 5, the discovery server response graph sent back to
the querying client returns the taxonomyLookupService as
satisfying the request. The service returns data of type
ncbiTaxa:TaxonomyRecord (Figure 3) which is a subclass (a
specialization) of the requested taxa:Taxa in Figure 4. In
practice, transaction-time reasoning on graphs to com-
pute subconcepts is expensive and algorithms are still in
their infancy. Thus SSWAP satisfies mostly subsumption
support on named, explicit classes already established in
the KB.

Service invocation
By SSWAP convention, POSTing a graph to a resource is
interpreted as a request to invoke the service. Once a client
has a service's URI (for example, from a discovery server
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query response graph or its own listings), the client can
POST the service's RDG back to the service with input data
typed as the sswap:Subject (Figure 6). The client always
knows the service's interface because the RDG is a logical
description of the service's transformation available to
anyone with a simple HTTP GET on the same URI used for
invocation. In Figure 6, the client replaces the null string
value of the predicate taxa:commonName with the look up
key "barrel medic" and POSTs the graph to the taxonomy-

LookupService. In all cases, the client will either instantiate
the sswap:Subject with a resource (a URI) that is used as the
"input data", or will fill in predicate value(s) directly in
the graph (Figure 6).

Service completion
The resource provider receives the graph from the client,
parses it according to the canonical structure, and looks
for ways to enhance it. In Figure 7 the service completes

Resource Query Graph (RQG)Figure 4
Resource Query Graph (RQG). Clients query a discovery server for data and service providers using the same canonical 
graph structure and sharing the same publicly available ontologies used by providers when the providers described their 
resources. The query in the figure is asking "Get me all resources that map anything to a taxa:Taxa". Anyone can do a HTTP 
GET on taxa:Taxa to see its definition. Architecturally, more complicated queries can be built by using additional OWL DL 
assertions, replacing blank nodes with individuals, or using concepts from other publicly available ontologies. Currently, the dis-
covery server running at http://sswap.info does not support all OWL DL embellishments but implements semantic searching by 
returning all services that are subclasses of the sswap:Resource with super classes of the sswap:Subject and subclasses of the 
sswap:Object. For programmatic access see http://sswap.info/sswap/resources/queryForResources/inputForm.jsp.
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Discovery Server Response GraphFigure 5
Discovery Server Response Graph. The discovery server returns all graphs that satisfy the query. "Satisfaction" means that 
any resource returned in a response graph could be substituted as an individual of type sswap:Resource in the query graph while 
maintaining the truth of the assertions. Properties of semantic searching (Figure 4) mean that when querying for resources, dis-
covered services are exactly those that are semantically guaranteed to operate on the input data (including those that accept 
more general classes) while returning the stipulated output data classes (including more specific classes). In the example here 
the client asked for all services that return data of type taxa:Taxa (Figure 4). The discovery server returned a service that 
returns data of type ncbiTaxa:TaxonomyRecord, which is a subclass (a specialization) of taxa:Taxa, thereby satisfying the request. 
Notice how this allows clients to find data and services based on the semantic and ontological relationships of services and 
data, even if neither the client nor any provider anticipated this usage. Full information is not returned in the response graph, 
but it available to clients by dereferencing resources to obtain their RDGs.
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the mapping of the string "barrel medic" to the resource
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=3880&lvl=0. In this case, the URL is itself
a reference to lexical (non-semantic) "output data": i.e., a
web page. The class ncbiTaxa:TaxonomyRecord is defined
via various properties that allow for semantically tagging
key data such as the scientific name, taxonomy id, etc The
service extracts this unstructured information and places it
in a structured, semantic context of OWL predicates (e.g.,
nbciTaxa:commonName, ncbiTaxa:scientificName, etc.).

Upon receiving the response graph from the provider, the
client can parse the graph according to its unambiguous
structure. Because RDF triples can be parsed order-inde-
pendent, the client is not required to traverse the graph in
a particular hierarchical order. Both content and metadata
are "first class" elements, which can be sorted or otherwise
searched and organized by clients without losing the pro-
vider's statements about the data's relational structure.
This helps address the limitations of confounding data
content with data structure. To disambiguate content and
presentation, SSWAP provides two predicates (sswap:inpu-
tURI and sswap:outputURI) for sswap:Resources which allow
resources to identify URIs that should handle the
resources' human readable input and output interfaces
(see example at http://sswap.info/sswap/resources/query
ForResources/inputForm.jsp). The combination of RDF
order-independence and resource binding to presentation
managers, means that SSWAP exists as a true semantic
middle layer, appropriate and capable for machine-
machine semantic integration.

The canonical graph structures a process for semantic
negotiation between client and provider, which is essen-
tially brokered by using shared, third-party ontological
terms, the meaning of which are available at transaction
time. The document-centric, serialization of a logic (OWL
DL) means that the graph can sit in persistent storage
without loss of its description/query/answer information.
This preserves the integrity of the "data as a statement"
and decouples it from the particulars of the current
manipulating technology. If in the future a new serializa-
tion or a more powerful logic is implemented, then for-
ward compatibility is achieved by translating the OWL DL
serialization into the new representation. A relevant
example is the relatively new introduction of OWL 2.0.

Results and Discussion
SSWAP is a semantic web services architecture and proto-
col. We designed it because SOAP-based web services do
not provide a sufficiently rich semantic framework, while
the W3C OWL does not provide a sufficiently rich web
services framework. SSWAP uses the W3C standard
semantic web technologies of RDF (Resource Description

Framework; http://www.w3.org/RDF), RDFS (RDF
Schema; http://www.w3.org/TR/rdf-schema), XML
Schema; http://www.w3.org/xml/Schema) and OWL
(Web Ontology Language; http://www.w3.org/2004/
OWL) over HTTP; it does not use SOAP (Simple Object
Access Protocol [acronym now deprecated]; http://
www.w3.org/TR/soap) and its oft accompanying WSDL
(Web Services Description Language; http://www.w3.org/
TR/wsdl) formalism, nor does it use UDDI (Universal
Description, Discovery and Integration; http://
uddi.xml.org) for discovery. We rejected SOAP, WSDL,
and UDDI because their heavy web service model did not
offer strong support for open semantics and description
logic reasoning. Adding an explicit and open semantic on
top of SOAP, WSDL, and UDDI added a complexity that
offered little advantage over using OWL RDF/XML sup-
ported by a DL (Description Logic) reasoner over straight
HTTP.

SSWAP employs a loose-coupling, late-binding model
using OWL DL semantics to achieve dynamic semantic
negotiation between suppliers and users of data and serv-
ices. In SSWAP we introduce a design whereby a single,
canonical structure (a template OWL DL graph) embeds
the information for how a provider's resource is described
and published to the world, how a client's request is made
to the discovery service to find a resource, how that
request is satisfied by the discovery service, how the cli-
ent's query is made to the resource, how the resource's
answer is returned to the client, and how the client parses
that response. This canonical structure means that the
description frames the query frames the answer (Figure 1).
This model is in stark contrast to most existing models
where technologies used for resource description, discov-
ery, querying, invocation, and response may share little in
common (e.g., compare WSDL for description, to SOAP
for invocation, etc.). At first it may seem impossible for
the provider's resource description to know anything
about the client's anticipated query; or the client's discov-
ery request to share anything with the format of the pro-
vider's return data. Yet it is in addressing this in a single,
mutable graph that allows us to make progress on the
problems of the fatal mutability of interfaces, rigidity and
fragility of static subsumption hierarchies, and the con-
founding of content, structure, and presentation. Surpris-
ingly, these graphs are not long lists of idiosyncratic
specifications, but are concise representations of the data
and its relationships to the resource using publicly availa-
ble shared ontologies. We conceptually break apart the
ontological use of concepts and the data type of objects,
and provide an architecture for a dynamic web of ontolo-
gies, in a manner strongly analogous to how HTML docu-
ments are hyperlinked to each other and one of the major
goals of the W3C OWL effort.
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Resource Invocation Graph (RIG)Figure 6
Resource Invocation Graph (RIG). The client creates an invocation graph by either using the response graph returned 
from the discovery server or executing a HTTP GET on a resource returned by the discovery server to get the resource's lat-
est definition. In either case, the client then annotates the graph with its specific input data. Here, the client enters the key 
value ncbiTaxa:commonName = "barrel medic" and HTTP POSTs the graph to the resource. SSWAP best practices encourage 
providers to attempt to satisfy invocation graphs sent to them by altering those graphs (for example, by completing sswap:Sub-
ject to sswap:Object mappings) instead of returning their own de novo representations of the mappings. This allows clients to 
assimilate contributions from various resources on a single graph of their choosing by passing it from resource to resource.
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Resource Response Graph (RRG)Figure 7
Resource Response Graph (RRG). The graph returned from the resource to the client with the completed ncbiTaxa:com-
monName to ncbiTaxa:TaxonomyRecord mapping. In this example the returned sswap:Object is an annotated URI: it is both the 
URI of the Medicago truncatula web page at NCBI and has semantically well defined predicates with relevant metadata. Elegant 
models can be built by returning individuals with URIs pointing to data instead of encoding data directly in the graph. Note how 
the provider's response (RRG) is a variation on the client's invocation (RIG), which is itself a variation on the provider's 
description (RDG); all graphs are simple variations on the canonical (Figure 2), including the discovery of new resources 
(RQG).
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The nature of the graph model means that providers may
optionally only partially satisfy a graph. This is in distinc-
tion from more traditional web service models where
services tend to either work completely or not at all. In the
SSWAP model, a single resource may not be able to fully
satisfy a graph, but a series of resources may each be able
to read the graph, append data, and contribute to an inte-
grated, synthetic "answer." SSWAP best practices encour-
age resources to: i) "Do no harm," ii) "Ignore what you
don't understand," and iii) preserve the logical integrity of
the graph. The first point means that resources should
attempt to accept input (sswap:Subject) as broadly as pos-
sible (few properties; high level super classes), and return
output (sswap:Object) as specific as possible (many prop-
erties; low level subclasses). This will give clients the great-
est flexibility in constructing pipelines of services. In
practice it means that between invocation and response,
services should modify a graph in any of three ways: a)
adding new information and instances of sswap:Object,
thereby fulfilling the mapping, with allowance for inverse
mappings; b) adding multiple sswap:operatesOn, sswap:has-
Mapping and sswap:mapsTo predicates to build 1:many,
many:1, and many:many mappings as appropriate; c)
adding explicit statements that are logically implied but
not explicitly present. A resource should not remove state-
ments, even if they are logically redundant, since other
actors' parsers that do not perform reasoning may rely on
their explicit existence. The second point, "Ignore what
you don't understand," means that parsers should pass
through assertions that cannot be semantically resolved,
rather than dropping them or generating an error. This
assures that SSWAP statements augment, but do not pre-
clude, other RDF statements in the graph. Both points
imply that resources should strive to complete the graph
passed to them and return an amended graph back to the
client, rather than generating de novo "answer graphs" as a
response. The third point, to preserve the logical integrity
of the graph, means that no resource is required to proc-
ess, nor should it return, an ill-formed or inconsistent
graph. The extent that a partial match is satisfied is up to
the provider: open-ended requests leave much discrep-
ancy to providers, while overly-restrictive requests will
yield many providers unable to add any information.
Either way, both clients and providers treat a graph as a
contract, where passage through a provider's service
retains the logical consistency and implication of the
invoking graph.

Thus SSWAP allows one to combine two powerful fea-
tures of graph-based semantic web services. The first is
partial graph completion, which means that the same
graph can be sent to multiple services, and each can anno-
tate or augment it according it own view of the world. This
is conceptually distinct from how most traditional web
services are implemented, where complete success or

complete failure is often a fundamental design feature.
The second feature is how SSWAP's persistent canonical
graph structure means that pipelining semantic web serv-
ices is syntactically trivial: the sswap:Object of one pro-
vider's response graph becomes the sswap:Subject of
downstream provider's invocation graph. In this manner
a query can traverse the web, both in terms of embellish-
ing a single sswap:Subject to sswap:Object mapping among
numerous providers implementing different aspects of
the same mapping, and also pipelining a sswap:Object to
sswap:Subject transitively across providers.

SSWAP's enablement of easily mix-and-matching terms
across ontologies is closely aligned with the vision of the
semantic web and the design of RDF. But from the per-
spective of well-formed ontological reasoning, one may
be hesitant to re-use ontological terms outside of a closed,
well-defined ontology. Inevitably, mixing terms from dif-
ferent ontologies can sacrifice desirable global guarantees
and can lead to logical inconsistencies if done haphaz-
ardly. This is partially addressed by SSWAP's encourage-
ment of using property-rich, subsumption-poor (i.e.,
shallow) hierarchies, since in such systems dynamic sub-
sumption determination is less prone to the rigidity and
fragility of deep, static subsumption classifications. Yet
SSWAP also addresses this under an embracement of
requiring only local consistency. In practice, fragmentary
knowledge of ontologies is often sufficient for determin-
ing suitability-for-purpose in a transaction between two
actors. SSWAP enforces local consistency on resources
during their publication to the discovery server, but it
does not require global consistency across all uses of a
term. (Resources not read into the knowledge base [KB]
can function independently as semantic web services, but
they will not be discoverable at http://sswap.info. This is
analogous to how traditional web search engines exercise
discretion in deciding which URI's they index.) While
SSWAP's discovery server does not require global consist-
ency, at regular intervals we do reason over the entire KB
to see if global consistency is achievable. To date, we have
always achieved this. The ramifications of failing to
achieve global consistency mean that some logically
equivalent searches could return contradictory responses.
From the perspective of expert systems or ontological sci-
ence this is undesirable, but from the perspective of a
world-wide semantic web it is likely that global consist-
ency as a criterion should be abandoned. For example, as
users we never know the true false positive or false nega-
tive rate of non-semantic search engines such as Google,
and we are unsurprised if independent searches on "gene"
and "hereditary unit" return non-equivalent search results
even if these are considered as equivalent keys under some
system of definition. Thus SSWAP aims for a middle
ground, whereby it brings a level of formalism and seman-
tics to web resources allowing them to describe their offer-
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ings, yet still delivers operational value to users navigating
within a world of possible logical inconsistencies. OWL's
property of monotonicity and its rejection of the unique
name assumption ensures that no mix-and-match strategy
breaks the properties of completeness and decidability for
consistent models, though computational tractability
with finite resources is not guaranteed.

For use in semantic web services, ideally ontologies would
be constructed with an emphasis on properties (predi-
cates) instead of deep subsumption relations (class hierar-
chies). Thus the emphasis should be on shallow
subsumption ontologies rich in properties, versus deep
subsumption hierarchies built axiomatically on
rdfs:subClassOf assertions. This approach provides
an opportunity to shift subsumption determination from
creation time to closer to transaction time, and thereby
enhances ontologies' flexibility for addressing suitability-
for-purpose. This is expected to increase the likelihood of
term reuse by third-parties outside of the original context,
and makes it more likely that independently produced
ontologies will retain global consistency after aggregation.
We have investigated the use Formal Concept Analysis
(FCA) to build just-in-time ontologies [22-24].

Virtual Plant Information Network (VPIN)
We are deploying SSWAP as the underlying semantic tech-
nology for the Virtual Plant Information Network (VPIN).
The VPIN consists of semantic web services offered by
Gramene http://www.gramene.org, SoyBase (soy-
base.org), The Legume Information System (LIS; http://
www.comparative-legumes.org), and over 2400 database
and web server entry points from Nucleic Acids Research
(NAR). Services are discoverable at http://sswap.info. The
NAR entries wrap web sites under the NAR service ontol-
ogies, but do not map the input or output data types to
data-specific ontological terms. A description of the
VPIN's Gramene, SoyBase, and LIS services will appear
elsewhere. Here, we introduce just a brief introduction to
these services to substantiate SSWAP's real-world imple-
mentation. Discovery and invocation of these services is
available at http://sswap.info.

Gramene's cereal QTL resources are available to the com-
munity as semantic web services using SSWAP. The use of
semantic web services allows Gramene QTLs to be inte-
grated with comparative mapping data, genomic data,
germplasm data, and other information that has been
made available via the VPIN. The Gramene QTL database
includes QTLs identified for numerous agronomic traits
in the grasses (e.g., rice, maize and barley). The emphasis
is on presenting QTLs with information on both associ-
ated traits and a mapped locus on a genetic map. Gramene
acts as a provider within the VPIN semantic web services
platform to describe QTL data and services, to enable dis-

covery of those resources, to allow partners to share and
integrate data and terms, and to invoke those web proc-
esses to operate on those data. By using these semantic
technologies we go beyond token matching (e.g., search-
ing for the string 'QTL' on the web) and open a combina-
tion of lexical and semantic searching instead. In this
manner, users may find services that operate on formal
QTL objects. Gramene offers distinct SSWAP semantic
web services for accessing QTLs by accession ID, pheno-
typic trait symbol, trait name, trait synonym, trait cate-
gory, species scientific name, species common name, QTL
symbol, linkage group, and Trait Ontology ID. Future
plans are to improve the current ontology, integrate
resources with other existing ontologies to enable integra-
tion with other services and add further capabilities as the
QTL database is expanded.

SoyBase http://soybase.org, is the USDA-ARS public
repository for community contributed and professionally
curated genetic and genomic data for the soybean Glycine
max (L.) Merr As part of the comparative genomics activity
in the Legume Information System (LIS) we have devel-
oped and deployed a number of SSWAP services that pro-
vide tools for automatic retrieval of data from SoyBase.
Two types of services have currently been designed for
SoyBase Locus and QTL classes. The first service type
returns a full report of data contained in the Soybean
Breeders Toolbox (the current database for SoyBase) for
an input soybean genetic map QTL or Locus symbol, Soy-
baseQtlReportService and SoybaseLocusReportService respec-
tively. The second type of services return a selection of
data type properties (database fields) making them more
atomic and easily parseable. The services deliver data
combinations which would most likely to be needed by
other databases or soybean researchers, such as the ability
to get a list of all soybean germplasms in which a marker
has been analyzed (SoybaseLocusGermplasmService) or the
ability to get a list of all soybean genetic maps to which a
SoyBase Locus is associated. Other databases can interro-
gate the Soybean Breeders Toolbox and retrieve a list of
the types of soybean loci available (SoybaseLocusTypeServ-
ice). This list can then be used to systematically retrieve all
loci from the database by their "type" using the SoybaseL-
ocusByTypeService and so on. Future improvements to the
SoyBase SSWAP services will include the ability to retrieve
sequence data associated with soybean loci as well as the
expansion of services to include other data types con-
tained in the Soybean Breeders Toolbox. As the soybean
genomic sequence data becomes publicly available and
incorporated into the Toolbox, information on those data
will also be made available through SoyBase SSWAP serv-
ices.

The Legume Information System (LIS) has developed
SSWAP semantic web services in collaboration with
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Gramene and SoyBase. First generation services provide
an entry point to the Legume Information Network (LIN),
while second generation services return LIS genomic and
transcriptome sequences given accession ids and marker
symbols, as well as a service entry point to BLAST. The LIS
service getSequenceForIdentifier demonstrates the ease in
which RDF allows one to return pointers to data instead
of embedding large amounts of data in XML files. The
service maps a GenBank accession number, a TIGR tran-
script assembly number, or a TIGR consensus sequence
number to its associated LIS sequence. Because sequence
data may be voluminous, instead of embedding the data
in the response graph, the service makes the sswap:Object a
URL to where the data is located. It annotates the URL
with a class (ontological term) designating it of type
FASTA, and appends a property with the FASTA header
information. Users of the service simply dereference the
URL with an HTTP GET to retrieve the FASTA sequence.

If Gramene, SoyBase, and LIS had used traditional web
service technologies, their offerings would have prolifer-
ated the current silo effect now seen with hundreds of web
services each requiring low-throughput, non-semantic
discovery and engagement. Their use of SSWAP mitigated
this by establishing an early ground in providing semanti-
cally enabled services and data amenable to semantic dis-
covery and invocation.

Conclusion
Implementing SSWAP for the VPIN showed both the
strengths and limitations of the semantic web services
approach. Re strengths, the ontological flexibility of the
model (the "Web of Ontologies") means that new data
types and service categories can be introduced in a manner
that makes them approachable and available to all actors.
In contrast to the flexibility of data and service descrip-
tions, SSWAP protocol standardization means that pars-
ing and low-level code can be easily shared across
implementations. Standardization over a formal semantic
means that we can apply a reasoner to discover implicit
truths, and then build a semantic search capability to use
those assertions to return services based on both their
service categorization and their data's semantic tagging, as
well implied subsumption relations. In future implemen-
tations, the deployment of reasoners not only for KB
building supporting semantic searching but also at trans-
action time by individual actors offers a promising
approach for addressing the fatal mutability of traditional
interfaces. When combined with property-rich classes and
shallow subsumption relations, the approach alleviates
many of the limitations of static subsumption hierarchies.
Finally, OWL's reliance on RDF and our use of SSWAP
predicates such as sswap:inputURI and sswap:outputURI
provides a natural mechanism to segregate data and con-
tent from presentation layers.

Yet our research also found limitations: 1) OWL DL's
property of monotonicity means that some simple prop-
erties of web services, such as specifying and enforcing the
number and/or codependency of required and optional
parameters for a service can be obtuse (e.g., specifying
BLAST parameters). Work-arounds address this with a
best practices convention on the use of necessary and suf-
ficient owl:Restrictions (e.g., see http://sswap
meet.sswap.info/sswap/Resource) but the fit is not natu-
ral from a web services perspective; 2) a service's logical
description can be implemented in any number of differ-
ent syntactical ways. Thus for validation, it is not sufficient
to parse graphs solely based on syntactical structure. Yet
just-in-time reasoners deployed at transaction time are
not well developed, so currently service providers rely
heavily on parsing explicit statements which may lead
them to incorrectly accept or reject some invocation
graphs; 3) OWL DL may be too powerful. Complex restric-
tions on classes, predicates, and individuals can be ver-
bose and difficult for humans to master when serialized in
RDF/XML. The recommended approach is to work at a
higher level employing reasoners and parsers to operate
on the underlying graphs. But reasoners are still maturing
and have some undesirable properties. For example, it is
difficult or even impossible to estimate how long a rea-
soner will take to complete based on a given input graph;
4) knowledge bases--the result of running a reasoner on a
set of statements and inferring new truths--are fragile to
incremental additions, deletions, and changes in the
underlying input statements. In general, once information
changes, the reasoner has to be re-run on the entire input
corpus, which can take a substantial amount of time.
Incremental reasoning is an area of active research; 5)
developer tools are still in their infancy. For widespread
deployment, bioinformaticians will need helper tools,
much in the same way that many web developers use high
level languages and integrated development environ-
ments to generate HTML and server-side web code.

We view these limitations as "growing pains" on a path
towards web integration that offers to transcend many of
the limitations that currently limit integration. Some lim-
itations, such as a relative unfamiliarity with OWL in the
bioinformatic community or the lack of suitable devel-
oper tools are addressable. Other limitations, such as
advances in just-in-time or incremental reasoning will
require new advances in computer science.

Availability and requirements
Project name: SSWAP

Project home page: http://sswap.info; source code depos-
ited at http://sourceforge.net/projects/sswap

Operating system: Platform independent; implemented
on unix
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Programming languages: Java, OWL, HTML, JSP

Requirements for Provider Development Kit: Java 1.5 or
higher, ant 1.7 or higher, Tomcat 5.0 or higher, Jena 2.5 or
higher. Hosting an independent discovery server also
requires Pellet 1.5 or higher and a database backend such
as PostgreSQL 8.2. Protégé 3.3 or higher is useful for
developing ontologies.

License: minor variant on MIT license; see lib/license.txt
on main SVN trunk at http://sourceforge.net/projects/
sswap.

Any restrictions to use by non-academics: none beyond
general licensing terms; see license for details.
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DL: Description Logic; KB: Knowledge Base; LIS: Legume
Information System; OWL: Web Ontology Language;
QTL: Quantitative Trait Locus; RDF: Resource Description
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tion Graph; RIG: Resource Invocation Graph; RQG:
Resource Query Graph; RRG: Resource Response Graph;
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Integration; VPIN: Virtual Plant Information Network;
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Uniform Resource Identifier; URL: Uniform Resource
Locator.
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