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Automated evidence-based gene building is a rapid and cost-effective way to provide reliable gene annotations on newly
sequenced genomes. One of the limitations of evidence-based gene builders, however, is their requirement for tran-
scriptional evidence—known proteins, full-length cDNAs, or expressed sequence tags (ESTs)—in the species of interest.
This limitation is of particular concern for plant genomes, where the rate of genome sequencing is greatly outpacing the
rate of EST- and cDNA-sequencing projects. To overcome this limitation, we have developed an evidence-based gene build
system (the Gramene pipeline) that can use transcriptional evidence across related species. The Gramene pipeline uses the
Ensembl computing infrastructure with a novel data processing scheme. Using the previously annotated plant genomes,
the dicot Arabidopsis thaliana and the monocot Oryza sativa, we show that the cross-species ESTs from within monocot or dicot
class are a valuable source of evidence for gene predictions. We also find that, using only EST and cross-species evidence,
the Gramene pipeline can generate a plant gene set that is comparable in quality to the human genes based on known
proteins and full-length cDNAs. We compare the Gramene pipeline to several widely used ab initio gene prediction
programs in rice; this comparison shows the pipeline performs favorably at both the gene and exon levels with cross-species
gene products only. We discuss the results of testing the pipeline on a 22-Mb region of the newly sequenced maize genome
and discuss potential application of the pipeline to other genomes.

[Supplemental material is available online at http://www.genome.org. The Gramene pipeline software packages, all gene
product data sets, and the full-length complementary DNA (FLcDNA)-based standard genes in A. thaliana and O. sativa are
available at ftp://ftp.gramene.org/pub/gramene/genebuild.]

The prediction of protein-coding genes is one of the most critical

steps in genome annotations. As shown in the EGASP assessment

of gene prediction algorithms in humans, while only a small por-

tion of the human genes are missed by computational predictions,

the best gene prediction systems are able to predict entirely correct

gene structures only 50% of the time (Guigo et al. 2006). Therefore,

increasing the accuracy of predicted protein-coding genes remains

a key goal. Another finding from the EGASP study is that the most

accurate gene prediction systems are those that use transcriptional

evidence—such as sequenced proteins, expressed sequence tags

(ESTs), and full-length complementary DNAs (FLcDNAs)—to iden-

tify genes and deduce their splicing patterns. This technique has

become the mainstay of gene structure annotation predictions for

organisms that have transcriptional data available.

In plants, two sequenced model organisms (Arabidopsis thaliana

and Oryza sativa) have been annotated using a mixture of

evidence-based gene models and ab initio predictions (Ouyang

et al. 2007; Zhu and Buell 2007; Swarbreck et al. 2008). However,

while it is clear that evidence-based gene builds perform better

than ab initio systems on average, there has been no systematic

study of the accuracy of evidence-based gene prediction when

given different balances of FLcDNAs, ESTs, and proteins. It is also

unknown how effective it is to use expression data from one spe-

cies to derive genes in a closely related species. In plant genomics,

this is a particularly important question, because in most species

the existing FLcDNA sets are small due to the high expense of se-

quencing FLcDNAs; most expression data come from smaller EST

sequencing projects or from cross-species expression sets.

The Ensembl gene build pipeline (Curwen et al. 2004) is an

accurate evidence-based gene prediction protocol that has been

validated in multiple animal species. The process uses the Ensembl

computing infrastructure, which contains automated job manage-

ment for efficient data processing in conjunction with a software

application programming interface (API) for easy data manage-

ment and visualization. This pipeline begins by aligning known

proteins to predict gene structures in coding regions and proceeds

to use FLcDNAs and ESTs to add untranslated regions (UTRs) and

FLcDNA-based genes in empty regions. Ensembl also provides an

independent EST-based gene build (Eyras et al. 2004), but they

were mainly used to determine possible alternative splicing of

predicted genes.

Gramene (http://www.gramene.org) is a database that supports

comparative genome mapping among multiple plant species

(Liang et al. 2008). To provide a suitable platform for this endeavor,

we must generate consistent gene sets for each plant genome using

a standardized gene prediction system. (Throughout the remain-

der of this article, we refer to protein-coding genes simply as

‘‘genes’’ for the sake of brevity.) Our gene build pipeline is based on

Ensembl, but we introduce a new data processing scheme to make

it more suitable for plant genomes. In this article, we evaluate the

accuracy of the Gramene gene build pipeline with various com-

binations of plant same-species and cross-species expression sets.

We also provide information on our application of this pipeline to

the new maize genome sequence. The analyses will provide

a practical guideline for gene annotations using incomplete or

cross-species gene products (as low-confidence evidences) in ge-

nomes lacking species-specific FLcDNAs and known proteins.
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Results

Data processing pipeline workflow

The Gramene gene build is based on the Ensembl pipeline, but

with several important modifications. First, while Ensembl uses

GeneWise (Birney et al. 2004) for protein-to-genome alignments

and Exonerate (Slater and Birney 2005) for cDNA/EST alignments,

we use Exonerate for both tasks, due to the flexibility of its multiple

alignment models and its ability to associate each alignment with

a sequence identity score (see below). Although we have observed

that GeneWise is in some cases slightly better than Exonerate for

low-identity cross-species proteins (data not shown), in practice

choosing Exonerate for protein alignment has little effect on plant

genomes because of the small number of independently derived

plant protein data sets.

A second difference between the Gramene and Ensembl

pipelines is that the former makes heavy use of cross-species

cDNAs (including ESTs), which are the major source of gene evi-

dence for less studied organisms, such as sorghum. This is a sig-

nificant departure from the original Ensembl pipeline.

Finally, the Gramene pipeline keeps the Exonerate alignment

score of each raw transcript, thereby allowing us to rank each al-

ternative splice form according to the quality of the evidence

supporting it. The design principle of the Gramene pipeline is

to select high-confidence transcripts first and then use low-

confidence transcripts to improve those of higher confidence if

necessary. The Gramene pipeline retains all high-confidence al-

ternatively spliced transcripts based on the alignment score at the

transcript level. In the original Ensembl pipeline, the number of

predicted alternative splicing forms can become quite large, and it

is difficult to distinguish well-supported from poorly supported

forms. In contrast, the Gramene pipeline can dynamically adjust

the threshold for predicting a splice form and can apply different

thresholds to different classes of genes. When reviewing gene

predictions, users can easily determine the quality of a gene based

on its supporting evidence and aligned sequence identity.

The major steps of the Gramene pipeline data processing are

shown in Figure 1. The pipeline begins with the mapping of gene

products (FLcDNAs, ESTs, protein sequences) to the genome using

Exonerate to create a raw transcript set for each evidence type

(for details, see Methods). Exonerate uses various alignment mod-

els depending on data type. It aligns species-specific FLcDNAs and

ESTs using DNA-to-DNA alignment; it aligns cross-species

FLcDNAs and EST using translated DNA-to-translated DNA align-

ment; and it aligns proteins using protein-to-translated DNA

alignment. All models contain a built-in intron model to account

for the spliced introns in the alignments. We routinely repeat-mask

the genome, but this step is optional. Gene products can be

grouped arbitrarily by the application of different processing fil-

ters. For example, we can separate species-specific proteins from

cross-species proteins to adjust the alignment threshold applied to

the two sets. After mapping, we process each raw transcript set

using the following strategies.

First, we filter each set to remove all transcripts that have poor

alignment scores. We generally use a sequence identity threshold

of 90% for same-species alignment and of 30% (protein sequence

similarity) for cross-species alignments. We use a higher threshold

(e.g., 99%) for single-exon alignments of same-species ESTs to re-

duce genomic DNA contaminants. We also attempt to detect and

correct incorrectly assigned strands, as EST data often contain

a mixture of sense and antisense gene products. In the case of

multi-exon genes, we use the splice site consensus sequences to

detect and correct strand mapping errors. For example, if a pre-

dicted gene has multiple ‘‘CT|AC’’ splice sites, which are the reverse

complement of the canonical ‘‘GT|AG’’ sites, we automatically

change the entire transcript to the opposite strand. This strategy is

not feasible for single-exon transcripts, however. In such cases, we

either keep the strand Exonerate assigns, or we flip the strand if

there is a preponderance of transcript evidence supporting a gene

model on the opposite strand.

For transcripts with <99.5% alignment identity to the un-

derlying EST, FLcDNA, or protein after initial filtering, we perform

intron correction. We use overlapping ‘‘GT|AG’’ introns to correct

the introns with noncanonical splicing sites if their boundaries are

within a short distance (up to 25 nucleotides [nt], based on

alignment score). Very long introns of low-confidence transcripts

are cut if there exists another transcript that has exons in the re-

gion covered by the long intron—this is often due to mapping

errors in tandemly duplicated genes. Short introns with non-

canonical splicing sites are removed if the intron is covered by an

exon in other transcripts and the open reading frame (ORF) can be

maintained. After these steps, transcripts with alignment identity

<99.5% that have too many introns with noncanonical splicing

sites are removed; these transcripts generally come from paralo-

gous or cross-species gene products. This usually limits the number

of predictions with noncanonical splicing sites to <2%–4%, close

to the ratio among FLcDNA-confirmed introns in A. thaliana and

rice (Sparks and Brendel 2005).

Next we process the predicted transcripts to merge partial

gene models and to remove those that are redundant. This is

a critical step, as gene expression evidence is highly redundant by

nature. For example, many ESTs are fragments originating from the

same gene. We first remove transcripts that are completely covered

by others. We then merge overlapping transcript models that have

no incompatible introns (i.e., overlapping introns with different

boundaries). If two transcripts share at least one exon, and all

overlapping introns are identical, they are merged into a single

Figure 1. Overview of gene build data processing in the Gramene
pipeline.
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transcript. Alternatively spliced transcripts are preserved if their

sequence identity level is above a predefined threshold (typically

99.5%). We always set this threshold higher than the typical rice

FLcDNA mapping identity (95%) used in other studies (e.g., Satoh

et al. 2007; Zhu and Buell 2007), to limit the overall number of

alternative splicing forms.

The low-confidence transcripts are utilized in two ways. First,

if a low-confidence transcript extends the ends of a partial high-

confidence transcript, we will use it to extend the ends. Second, if

a low-confidence transcript does not overlap a high-confidence

gene model at all, we will retain it in the final gene set. Low-

confidence transcripts that overlap with high-confidence models

with incompatible introns between them are removed to limit the

number of artefactual alternative splicing predictions that result

from the gain and lost of splice sites during evolution.

After processing, we obtain a set of predicted transcripts for

each type of evidence. We mix these sets and reprocess them as

described above. The processed nonredundant transcripts are

classified by their translational potential arbitrarily. We typically

require a minimum ORF length of 50 amino acids (aa) as used in

the method of Ouyang et al. (2007) for a transcript to be labeled as

protein coding. We use less-stringent criteria for known protein-

supported genes (e.g., 25 aa) and more-stringent criteria for single-

exon transcripts with scant EST support (e.g., 100 aa). The re-

mainders of the predicted transcripts that have a maximum ORF

less than these values are labeled as either untranslated (e.g., <25

aa) or short proteins (which are usually single-exon transcripts

derived from ESTs). All of these parameters are configurable.

We then subgroup the protein-coding transcripts into two

categories by labeling transcripts with a coding sequence (CDS)

that includes both start and stop codons as full-length transcripts;

conversely, we label transcripts that lack either a start or stop codon

as partial transcripts. A partial transcript that lacks a start codon

must have its ORF begin within the first three nucleotides.

The last step of the pipeline is to group the protein-coding

transcripts into genes, as in the original Ensembl pipeline: A gene is

defined as a set of transcripts that together share at least one exon.

A full-length gene is defined as a transcript set whose longest CDS

is full-length. A partial gene is defined as a transcript set whose

longest CDS is partial.

Evaluating the quality of predicted genes

To evaluate the quality of the genes predicted by the Gramene

pipeline, we use the metrics developed by Ensembl (Curwen et al.

2004; Eyras et al. 2004), EGASP (Guigo et al. 2006), and the earlier

GASP (Reese et al. 2000) gene prediction assessment tests to mea-

sure the sensitivity (Sn) and specificity (Sp) of the predicted genes.

In addition to the metrics defined in those articles, we define the

following terms: Two genes or exons touch if they share at least one

nucleotide on the same strand. Two exons are identical if they have

the same start and end coordinates. If two exons overlap, but

the region of nonoverlapping involves a putative splice site, then

they are called different exons. If two exons overlap, and the non-

overlapping parts are beyond the sequence end of the transcript (or

CDS) that the smaller exon is in, then the smaller is a partial exon

and the longer is an extended exon. An extended CDS covers all the

exons (either extended or identical with at least one extended) of

another and does not have additional or different internal exons. A

partial CDS is the counterpart of an extended CDS. If two CDSs (or

transcripts) contain at least one different exon or a missed internal

exon, then they are called different (or incompatible).

At the gene level, we use two different metrics. The first is the

locus sensitivity measure used by Ensembl; it considers only the

gene locus but not the gene structure. A gene is considered to be

found if it overlaps a standard gene by at least one nucleotide. This

will measure the number of missed genes (for the sensitivity test) or

extra genes (for the specificity test). The second metric is derived

from EGASP; it considers only genes with identical CDSs: Two

genes are considered to be the same if and only if they contain at

least one identical CDS. In our assessment, we did not directly

compare CDSs, but instead we compared their translations. We call

two CDSs identical if their protein translations are exactly the

same. This is a very stringent measure of correctness. Predicted

genes that are not identical can be extended, partial, or different

depending on their CDS comparisons.

We also have made comparisons at the transcript level, which

takes alternative splicing patterns into account. Such metrics,

however, are less informative in this study than are CDS- or

translation-level metrics, since none of the standard gene sets

available to us have significant information on alternative splicing.

We believe that the cutoff we use to select alternative transcripts

(99%–99.5%) is more stringent than that used by other genome

annotation projects to predict alternative transcripts. Thus, we will

not discuss transcript-level results in this article. Interested users

can find the results in the Supplemental material.

At the exon and base-pair level, we calculate the sensitivity

and specificity of gene prediction using transcript pairs among

overlapping genes only, following the method used by Ensembl

with slight modifications. If two genes overlap each other by at

least one nucleotide (on the same strand), we pair up all their

transcripts and calculate the sensitivity and specificity of the

identical exons within the matching transcripts. If one transcript is

paired up with two or more nonoverlapping transcripts, we treat

the exons from these nonoverlapping transcripts as from one

transcript, largely to reduce the bias introduced by the split gene

predictions that are originated from ESTs. A standard gene is con-

sidered split if it overlaps more than one predicted gene. Our exon-

level assessment compares unique exons at the transcript level

among overlapping genes, which is different than that used in

EGASP, which compares only unique exons at the gene level and

among all genes. However, our method gives more information

about the exon structure of the predicted transcripts than does the

EGASP method and reduces the bias introduced by the different

degree of alternative splicing between the predicted gene sets. The

base-pair-level comparison is based on exons only.

Gene builds using cross-species ESTs

Because there are abundant cross-species EST data from related

species among the crop monocots, one of our major goals is to

leverage this type of data in the Gramene pipeline. We applied the

Gramene pipeline using cross-species plant ESTs on the repeat-

masked A. thaliana (Swarbreck et al. 2008) and O. sativa ssp.

japonica (rice) (Ouyang et al. 2007) genomes. We evaluated the

sensitivity of the predicted gene sets against the FLcDNA-supported

standard genes assembled as described in the Methods (11,378 and

11,785 genes for A. thaliana and O. sativa, respectively).

We first grouped the ESTs according to the taxonomy of their

source organisms to generate a gene set for each group on both

genomes. By comparing the sensitivity of the CDS predictions (see

Supplemental Table S1), it is clear that the evolutionary distance

between the EST source and the target genome plays an important

role in the quality of the gene predictions. Most notably, ESTs from

Liang et al .
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dicot species are much more effective for

predicting dicot genes than monocot

ESTs are, and vice versa (also see below).

Within the dicot and monocot classes, it

seems that ESTs coming from very closely

related species are more effective for ac-

curate predictions than those from dis-

tant species. For example, the ESTs from

Brassica and Raphanus, which are in the

same taxonomic family as A. thaliana (all

in tribe Brassiceae), give more correct

genes in A. thaliana than similar numbers

of ESTs from other dicot tribes. Never-

theless, adding ESTs from distant dicot

taxonomic families to the ESTs from

Brassica and Raphanus can still improve

the predicted gene quality significantly.

We expect that the gene prediction qual-

ity will also be influenced by the quality

of the ESTs. However, the EST data quality

is not readily available in many of these

data sets, so we do not consider this cri-

terion further.

Based on these observations, we

grouped the ESTs into dicot and monocot

categories. We used in total 5.13 million

monocot ESTs and 7.88 million dicot

ESTs. We evaluated the sensitivity of

the predicted gene sets given increasing

numbers of cross-species ESTs against the

FLcDNA-supported standard genes. The

results, shown in Figure 2, A (A. thaliana)

and B (O. sativa), show that the predicted

gene sets’ coverage of confirmed genes

(‘‘di-touch’’ or ‘‘mo-touch’’) and CDS

sensitivity (‘‘di-same’’ or ‘‘mo-same’’) in-

crease as a function of the number of

cross-species ESTs made available to the

pipeline, and begin to plateau as the

number of mapped ESTs exceeds 3 mil-

lion sequences. In A. thaliana, >94% of

the genes in the confirmed set are

touched by a predicted gene, with ;68%

of the confirmed genes’ structures pre-

dicted correctly across their entire coding

region. In rice both the gene coverage

(>89%) and CDS sensitivity (>50%) are

reduced due to the smaller number of monocot ESTs available (or

due to lack of within-tribe ESTs or both).

The within-class ESTs are much more effective in gene pre-

diction than cross-class ESTs. When 2 million dicot ESTs are ap-

plied to the A. thaliana pipeline, >90% of the confirmed genes are

touched, but <75% of the genes are touched when the same

number of monocot ESTs are used. Similarly, in O. sativa 2 million

monocot ESTs produce gene models that touch ;89% of con-

firmed genes, but <75% of the confirmed genes are touched when

we attempt to use dicot ESTs.

When both within-class and cross-class ESTs are combined,

we see coverage and accuracy that is similar to using the within-

class ESTs alone (see the rightmost data points on Fig. 2A,B). For A.

thaliana, where the number of within-class ESTs is saturating, the

effect of supplementing dicot ESTs with monocot ESTs is negligi-

ble. However, for O. sativa, where the number of monocot ESTs

have not yet saturated, there is a small but still observable increase

in coverage and accuracy when all the dicot ESTs are added.

In addition to the correctly identified genes, each predicted

gene set also includes partial genes and incorrect genes. When the

EST data size is small, most of the predicted genes are partial (data

not shown). The change of number of the correct genes and in-

correct genes in Figure 2 reflects the internal properties of the gene-

building process: As more ESTs are added, the genome coverage by

their alignments increases, leading to an increase in correct gene

models and a slower increase in incorrect models, presumably due

to the gene structural difference between the species. The number

of incorrect gene models increases faster when using cross-class

ESTs than within-class ESTs. For within-class ESTs, the number of

incorrect gene models plateaus at 15.5% in A. thaliana and 17.3%

Figure 2. Gene build results using cross-species ESTs on A. thaliana (A) and O. sativa ssp. japonica (B).
Mo- indicates using monocot ESTs; di-, using dicot ESTs; comb-, using combination of all monocot and
dicot ESTs; touch, a predicted gene overlapping a standard gene on the same strand by at least one
nucleotide (gene locus sensitivity); same, identical CDS between the predicted gene and the standard
gene (gene CDS sensitivity); and diff, the predicted gene’s CDS is different than that of the standard
gene.
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in O. sativa; for cross-class ESTs, the number of incorrect gene

models increases to 19.3% in A. thaliana and 26.6% in O. sativa. It is

important to note, however, that the number of incorrect gene

models increases only slightly (<0.3%) in either species when all

the cross-class data are combined with the in-class ESTs.

Gene builds using FLcDNA, EST, and protein evidence

In addition to ESTs, independently sequenced proteins and

FLcDNA data resources are available for some species. How do

various combinations of these different evidence types affect gene

coverage and quality?

There are substantial numbers of full-length and partial cDNA

sequences (Seki et al. 2002; Kikuchi et al. 2003) available for Ara-

bidopsis and rice (O. sativa) in addition to ESTs. We will refer to the

combination of FLcDNA/ESTs as mRNAs. There are also small

numbers of independently sequenced proteins available. To create

comprehensive evidence-based gene sets, we used a combination

of both species-specific and cross-species proteins, FLcDNAs, and

ESTs in both A. thaliana and rice (for the data set details, see

Methods). The cross-species proteins include all SWISS-PROT

proteins and plant proteins from TrEMBL. We treated all gene

products from the same genus as species-specific evidence, after

observing no significant differences in alignment scores between

within-genus and within-species proteins (data not shown).

Using all available transcriptional and translational evidence,

we predicted 25,298 genes (22,502 full-length and 2796 partial) in

A. thaliana and 33,836 genes (27,190 full-length and 6646 partial)

in rice after repeat-masking the genomes. There were 7598 (30%)

and 9919 (29.3%) genes displaying alternative splicing with an

average 2.53 and 2.77 transcripts among them in A. thaliana and

rice, respectively. Table 1 shows the distribution of genes based on

the type of evidence used to predict them. More than 86.5% of

predicted A. thaliana genes and more than 79% of the predicted

rice genes are supported by two or more sources of evidence. Cross-

species expression data support a large portion of the genes

(92.18% in A. thaliana and 82.6% in rice). The gene coverage by

cross-species data is close to the numbers (94% and 89%, re-

spectively) described in the previous section. Proteins provide

a minor contribution to the rice gene set due to the limited number

of proteins available, whereas ESTs (both same-species or cross-

species) are the major contributory source for both A. thaliana and

rice.

To evaluate the quality of the genes predicted from evidence

and the performance of the Gramene pipeline on different evi-

dence types, we performed separate gene builds using different

combinations of evidence types. Since one of our goals in this

study is to provide guidance on the best strategy for annotating the

genomes that lack of known proteins and FLcDNAs, we focus on

predictions made without the benefit of same-species FLcDNAs

and proteins. These gene sets were evaluated with the standard

gene sets described in Methods, and the results are discussed in the

following sections.

Evaluation of evidence-based genes in A. thaliana

Using the metrics described above, we tested each predicted gene

set by comparing it to the set of 11,378 FLcDNA-based standard

genes to evaluate sensitivity, and to the TAIR7 (Swarbreck et al.

2008) annotated genes (27,029 genes) for specificity. The latter is

a set of predicted and confirmed Arabidopsis genes that have been

hand-curated over a period of years, while the former is essentially

a highly reliable subset of the latter. The gene-level assessment

metrics are shown in Table 2 . For our purpose mentioned in the

previous section, among the gene sets listed in Table 2, the most

interesting categories are those based on species-specific ESTs

(Arabi-EST), cross-species dicot ESTs (Dicot-EST), cross-species pro-

teins (OProtein), and combinations of them (AllEST for combina-

tions of same-species and cross-species ESTs; AllEST-OPro for

combinations of AllEST and OProtein).

We find that the gene locus sensitivity and specificity of these

gene sets—with the exception of the OProtein set—are uniformly

high (Sn, 96.6%–98.4%; Sp, 93.6%–96.8%). As described later, the

accuracy of the OProtein set is limited by the small number of

independently derived protein sequences for Arabidopsis. At the

more stringent CDS level, however, there are important differences

between the evidence sets. When using species-specific ESTs to

predict Arabidopsis genes, the major artifact is the generation of

partial CDSs. The gene-level CDS sensitivity

and specificity of the Arabi-EST genes are

62% and 41.7%, respectively. Among the

partial proteins, the dominant error is ‘‘split

genes,’’ in which a gene is split into two or

more predicted genes due to the lack of

transcript evidence joining them. A total of

18.8% of the genes are incorrectly split into

two or more predicted genes in the Arabi-EST

set.

Compared with gene models built using

same-species ESTs, those built from cross-

species dicot ESTs give a higher CDS sensi-

tivity and specificity (67.5% and 51%, re-

spectively), most likely due to the larger

number of cross-species ESTs available to the

gene build pipeline since the similar number

(1.48 million) of random selected cross-species

ESTs give a lower CDS sensitivity (<60% for

1.5 million mapped dicot ESTs in Fig. 2A).

The number of split genes (4.3%) and partial

proteins (11.5%) is correspondingly lower

than those generated from same-species ESTs.

Table 1. Percentage of gene set supported by different evidence types

Evidence type
Only source
of evidence

Contributory
source of
evidence

A. Total A. thaliana evidence genes: 25,298 (36,960 transcripts)
Arabi cDNA 0.7 56.76
Arabi EST 3.96 80.58
Arabi protein 0.8 21.14
Non-Arabi protein 0.76 64.27
Non-Arabi EST 7.25 92.18

B. Total rice evidence genes: 33,836 (51,369 transcripts)
Rice cDNA 1.72 72.3
Rice EST 5.31 82.07
Rice protein 0.07 18.71
Non-rice protein 0.23 6.56
Non-rice mRNA 12.85 82.6

Arabi cDNA indicates FLcDNAs originated from Arabidopsis; Arabi EST, ESTs from Arabidopsis; Arabi
protein, SWISS-PROT proteins from Arabidopsis; non-Arabi protein, proteins of non-Arabidopsis
source in SWISS-PROT, TrEMBL, and GenBank; non-Arabi EST, ESTs from non-Arabidopsis dicot
species; rice cDNA, rice FLcDNA; rice EST, rice ESTs; rice protein, rice proteins in SWISS-PROT; non-
rice protein, non-rice proteins in SWISS-PROT, TrEMBL, and GenBank; and non-rice mRNA, monocot
non-rice FLcDNAs and ESTs.
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On the other hand, cross-species ESTs introduce more incorrect

gene structures (15.8%) than do same-species ESTs (5.1%) (see

Supplemental Table S2). However, the combination of all species-

specific and cross-species dicot ESTs increases the predicted gene

accuracy significantly compared with either source type only (CDS

Sn, 82.1%; Sp, 59% at the gene level).

We also tested the predictive power of cross-species proteins.

Although we used all plant non-Arabidopsis proteins from SWISS-

PROT and TrEMBL, the OProtein gene quality (CDS Sn, 25.8%; Sp,

23.4% at gene level) is much lower than that of cross-species ESTs,

largely due to the limited number of suitable proteins available.

Among the three evidence types, the OProtein gene set has the

largest proportion of missed genes and the smallest number of

false-positive genes. The addition of cross-species proteins only

slightly improves the gene quality relative to that of all dicot ESTs

(AllEST-OPro CDS Sn, 82.2%; Sp, 60.6% at the gene level).

The assessment results at the exon and base-pair levels are

provided as Supplemental material. Here we provide only a brief

summary of the predicted transcript properties. Among the over-

lapping transcripts, the base-level specificity for any gene set is at

least 96.2%. The base-level sensitivity is at least 92.2%, except for

EST-only genes (80.5%). The exon-level sensitivity and specificity

of AllEST-OPro genes (Sn, 92%; Sp, 88.3%) are slightly higher than

that of AllEST genes (Sn, 91.8%; Sp, 88.1%). The exon-level sen-

sitivity and specificity for either Arabi-EST (Sn, 76.7%; Sp, 81.7%)

or cross-species Dicot-EST (Sn, 86.9%; Sp, 87.3%) are lower, largely

due to partial exons (13.4% and 12.7%, respectively) and missed

exons (10.5% and 6.3%, respectively). These partial exons and

missed exons can explain the large number of partially predicted

genes found in EST-based gene predictions.

Evaluation of evidence-based genes in rice

The rice genome is the second well-annotated plant genome

available. Rice is an economically important monocot species.

Relative to A. thaliana, rice has a larger genome and more genes

(Ouyang et al. 2007). For reference purposes, we compare the genes

predicted by the Gramene pipeline to three gene sets generated by

ab initio methods: an Fgenesh (Solovyev et al. 2006) set (56,453

predicted genes) available in the Gramene database, a Twinscan

(Korf et al. 2001) set (50,975 predicted genes) graciously provided

by C. Zhang and B. Barbazuk (The Donald Danforth Plant Science

Center, St. Louis, MO), and an ExonHunter (Brejova et al. 2005) set

(29,970 predicted genes) graciously provided by B. Brejova and

T. Vinar (Cornell University, Ithaca, NY). We evaluated the pre-

dicted rice genes as we did for A. thaliana using 11,785 confirmed

genes supported by FLcDNAs (see Methods) for sensitivity testing

and 41,042 TIGR5 gene predictions (Ouyang et al. 2007) for

specificity testing. The former set can be viewed as a highly reliable

subset of the latter. There exists another annotated rice gene set

from the Rice Annotation Project (RAP) (Tanaka et al. 2008), which

contains 30,192 protein-coding genes that are supported by

species-specific expression evidence. We did not compare our gene

sets with the RAP set since the RAP set uses a different genome

assembly than TIGR5.

The gene-level sensitivity and specificity for all rice gene

categories are shown in Table 3 . When all evidence was used, the

Gramene pipeline predicted 33,836 rice genes (All-evidence, which

is also mentioned in Table 1B), compared with 41,042 genes not

related to transposable elements (TEs) in TIGR5. The All-evidence

set contains 3201 (9.5%) genes that are not present in the TIGR5

reference set (with an additional 7.3% on the opposite strand—

both treated as false-positives in this test). On the other hand, there

are 13,830 TIGR5 gene predictions not present in the All-evidence

set for which there was no supporting EST, FLcDNA, or protein

evidence, or which were filtered out due to low-confidence evi-

dence during the gene build process. Comparison of the TIGR and

Fgenesh sets reveals that 95.1% of these missing genes overlap

Fgenesh genes and 12,505 (86.3%) of them are identical to Fgenesh

gene predictions. This reflects a fundamental difference between

the evidence-based gene build methods and ab initio methods: The

evidence-based methods predict a gene only if there is evidence for

its transcription; they can therefore potentially miss real genes that

ab initio methods can catch based on the latter’s statistical models

on gene structure. However, as the abundance of the available gene

products increases, the missing genes from evidence-based meth-

ods will decline commensurately. On the other hand, ab initio

predictions usually suffer from relatively low accuracy compared to

evidence-based gene predictions (Guigo et al. 2006). Therefore,

one should treat the gene specificity in Table 3 with care as it is

inevitably inflated for the Fgenesh set but may underestimate the

Table 2. Gene-level assessments in A. thaliana

Locus
Sn Missed

CDS
Sn

Locus
Sp Extra

CDS
Sp Split

Arabi-EST 98.4 0.8 62 96.8 1.5 41.7 18.8
Dicot-EST 96.6 2.5 67.5 95.4 3.6 51 4.3
AllEST 98.3 0.2 82.1 93.8 4.6 59 3.7
OProtein 88.4 11.4 25.8 97.7 1.6 23.4 1.4
AllEST-OPro 98.1 0.2 82.2 93.6 4.7 60.6 3.1
Arabi-protein 29.7 70.3 27.2 99.6 0.3 85.3 0.4
Arabi-cDNA 99.8 0 99.6 97.5 2 85.1 0.7a

All-evidence 98.6 0 94.5 93.2 6.0 70.4 3.4a

Sensitivity (Sn) is measured on the FLcDNA-based standard genes, and
specificity (Sp) measured on the TAIR7 set. The CDS Sn and Sp values are
calculated using identical proteins only. Two overlapping genes on op-
posite strands were classified as ‘‘missed’’ genes to each other if both have
multiple exons. Arabi indicates Arabidopsis; AllEST, combination of Ara-
bidopsis ESTs and other dicot ESTs; and OProtein, all cross-species pro-
teins. All values are percentages.
aAll split genes are measured on FLcDNA-standard genes, except the
Arabi-cDNA and the All-evidence sets, which are measured using TAIR7
set.

Table 3. Gene-level assessments in rice

Locus
Sn Missed

CDS
Sn

Locus
Sp Extra

CDS
Sp Split

Fgenesh 98.9 1 32.9 97.3 2.3 66.8 2.7
Twinscan 95.4 4.1 34.1 76.2 20.7 22.9 2.3
ExonHunter 96 3.9 35.8 90.4 8.4 26.8 4.8
Rice-EST 94.2 3.2 42.8 85.4 7.7 26.5 21.2
OmRNA 92.5 5.4 49.9 89.2 4.2 36.1 5.2
EST-OmRNA 98.1 0.3 67.8 82.8 9.0 40.7 7.5
OProtein 27.5 72.3 5 86.5 9.5 14.3 2.5
EST-OmRNA-OPro 98.1 0.3 67.8 82.8 9.1 40.8 7.4
Rice-cDNA 99.5 0.1 95.7 85.6 7.9 64.8 1.2a

Rice-protein 9.1 90.9 6.4 89.8 9.4 61.4 0.7
All-evidence 99.6 0 89.3b 83.1 9.5 54.7b 3.9a

Sn values are measured on FLcDNA-based standard genes, and Sp values
measured on the TIGR5 set. See Table 2 for further explanation. OmRNA
indicates monocot non-rice FLcDNAs and ESTs.
aMeasured on the TIGR5 set; all other split predictions are measured on
FLcDNA-based standard genes.
bThe low values of CDS Sn/Sp are largely due to extended proteins not
included for Sn calculation.
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specificity for the other gene sets. Please see Supplemental Table S7

for a comparison between ab initio predictions and FLcDNA-based

standard genes.

For our purposes, the gene sets of greatest practical interest

are based on rice ESTs (rice-EST), cross-species monocot mRNAs

(OmRNA), or cross-species proteins (OProtein) and on combina-

tions of them (EST-OmRNA and EST-OmRNA-OPro). As expected

from our results on Arabidopsis, it seems that the depth of the raw

EST coverage is more important than the evolutionary distance of

the ESTs, provided that they remain within the same dicot/monocot

class. Predicted genes derived from 1.2 million same-species ESTs

give lower gene-level protein sensitivity (42.8%) than the sensitivity

obtained using 3.5 million cross-species monocot mRNAs (49.9%).

Combining both types of evidence (EST-OmRNA) improves the

gene quality markedly (gene-level protein sensitivity, 67.8%). The

rice-EST gene predictions suffer from a large number of split genes

(21.2%) and partial genes (38.7%). When cross-species mRNAs are

added, the number of split genes and partial genes reduces to 7.5%

and 13%, respectively. As with the previously described results in A.

thaliana, the addition of non-rice proteins does not improve pre-

dicted gene set quality appreciably over the combination of species-

specific ESTs and cross-species monocot mRNAs.

To evaluate how well the EST and cross-species data perform

in practical gene predictions, we compared the predicted genes

against ab initio predictions. The gene locus sensitivity of EST-

OmRNA-OPro genes (92.5%–98.1%) is comparable to that of the

three reference ab initio gene predictors (95.4%–98.9%), but their

gene-level CDS sensitivity is substantially better than that achieved

by the ab initio predictors (67.8% vs. 32.9%–35.8%). The gene locus

specificity of the Gramene pipeline (82.8%–89.2%) is comparable

to that achieved by the two ab initio predictors, Twinscan and

ExonHunter (76.1%–90.4%); the Fgenesh set was not included in

the specificity comparison due to the large number of the Fgenesh

predictions in the TIGR5 set.

We calculate the exon-level sensitivity and specificity of the

non-FLcDNA-based gene sets as described earlier using the subset

of predicted genes that overlap the confirmed genes (Table 4). We

observe several interesting differences between the evidence-based

predicted genes and ab initio predicted genes. The three ab initio

methods missed only a small number of coding exons (1.2%–5.5%

false-negatives) but added many extra, apparently incorrect, exons

(17.7%–24% false-positives). In comparison, the EST-OmRNA-

predicted genes missed 4.1% of the coding exons but added only

5.2% extra coding exons. The ab initio methods also introduce

slightly more incorrect internal exons than do the evidence genes

(ab initio, 4.8%–8.4%; evidence, 1.5%–3.5%). The base-pair-level

assessments are provided as Supplemental material.

Among the genes built from a combination of all evidence

types, there are 1516 genes (6% in Table 2) not found in TAIR7 and

3201 (9.5% in Table 3) genes absent from TIGR5. We treat these

extra genes as false-positives in our tests. However, inspection of

their supporting evidence type shows that 41.6% of the A. thaliana

genes and 50% of the rice genes are supported by multiple sources

of evidence. This suggests that in fact many of these extra genes

could be real. While preparing this manuscript, a new TAIR an-

notation set, TAIR8 (http://www.arabidopsis.org), was released.

Comparing this annotation set with TAIR7, we find that 136 (9%)

of the extra All-evidence genes in A. thaliana appeared in TAIR8.

Further work is needed to test how many of the other genes are real.

For rice genes, a potential real gene absent from TIGR5 is shown

in Figure 3. This gene is supported by many species-specific and

cross-species ESTs but is not represented by any FLcDNAs. We also

observed that some of these extra genes had been included in

a new TIGR gene set (now called MSU gene set; see http://rice.

plantbiology.msu.edu; data not shown).

How many genes are in the rice genome?

We now attempt to estimate how many genes exist in the current

rice genome and thus how many of them are still missing in the

rice gene set predicted by the Gramene pipeline. We divide the

predicted non-TE-related genes by Fgenesh and Twinscan into two

groups each—genes supported by rice cDNA/EST (‘‘supported,’’

26,289 genes and 26,404 genes, respectively) and not supported

(‘‘unsupported,’’ 12,686 genes and 15,470 genes, respectively)—

and map these genes to the repeat-masked sorghum genome using

TBLASTN (Altschul et al. 1997; see Methods). Sorghum (Sorghum

bicolor) is a monocot species that is evolutionarily close to rice. The

two species have been diverged for 50 Myr (Wolfe et al. 1989).

Sorghum genome has been recently sequenced (Paterson et al.

2009), showing a close gene content to rice genome. The per-

centage of rice genes mapped to the sorghum genome (the map-

ping ratio) plotted against their TBLASTN alignment P-value is

shown in Figure 4. We note that the unsupported genes exhibit an

appreciably lower mean sequence identity to sorghum genome

matches than do supported genes, as expected.

Table 4. Exon-level per transcript-pair comparison to standard genes in rice

Sn Sp

Same Ext Part Diff Missed Alla Same Ext Part Diff Extra Alla

Fgenesh 81.7 2.4 2 8.4 5.5 91.7 71.4 2.0 1.8 7.1 17.7 83.9
Twinscan 85.1 3.1 1.5 7.1 3.2 94.6 66.4 2.3 1.2 6 24 77.9
ExonHunter 87 6.2 0.9 4.8 1.2 98.5 70.7 5 1.1 3.9 19.3 83.6
Rice-EST 73.1 1.1 10.9 1.2 13.6 89.4 77.8 1.2 12.3 5.2 3.5 96.9
OmRNA 83 1.5 4.9 3.5 7.0 92.9 85.3 1.4 5 3.2 5.1 95.4
EST-OmRNA 89.3 1.5 3.4 1.5 4.2 97.9 84.7 1.4 4.1 4.9 5.2 95.4
OProtein 64.3 0.8 13.8 4.5 16.5 86.5 70.7 0.7 16.8 6.5 5.5 94.3
EST-OmRNA-OPro 89.4 1.6 3.3 1.5 4.2 97.9 84.2 1.4 4.3 4.9 5.2 95
Rice-protein 91.8 1.2 3.1 1.1 2.7 95.4 89.9 1.1 3.1 1 4.9 95.4

Only exons that are in predicted genes overlapping a FLcDNA-based standard gene are compared. The transcripts in overlapping genes are paired up
with their best matching transcripts. The exons in each pair are compared and summed up for all transcript pairs for percentage calculation. Ext indicates
extended; Part, partial; and Diff, different.
aThese columns include all CDS exons and UTR exons touching a standard exon. All other columns are for CDS exons only.
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We choose a stringent P-value cutoff of 1310�5 to be the

maximum P-value for a real rice gene mapped to sorghum genome

based on the suggestions by Bennetzen et al. (2004). Above this

cutoff, protein-to-DNA alignment is generally considered as

background noise rather than due to true protein homology. We

treat all supported genes as real genes. At P-values less than 13

10�5, the mapping ratio for supported Fgenesh genes is 89.87%

and that for supported Twinscan genes is 85.06%. The mapping

ratios are close to the estimated rice gene coverage by the mixture

of non-rice monocot ESTs described earlier (89%). If we assume the

real genes among the unsupported category are mapped to the

sorghum genome with the same mapping ratio as the supported

genes, and none of the false-positive genes are mapped to the

sorghum genome, we can estimate the number of the real genes in

the unsupported group using the following formula (see Supple-

mental data for the derivation of this):

Number of real genes unsupported = all genes unsupported 3

mapping ratio unsupported=mapping ratio supported:

Using this formula and the mapping ratio of the unsupported

genes with a P-value less than 1310�5 (35.57% for Fgenesh genes

and 25.91% for Twinscan genes), we estimate the number of real

genes in the unsupported group to be 5021 for Fgenesh and 4712

for Twinscan. By adding this to the supported genes, we estimate

the total number of real genes in the Fgenesh set to be 31,310 and

31,116 in the Twinscan set. To estimate the total number of rice

genes, we need another ratio: the gene locus sensitivity of the

Fgenesh and Twinscan sets. If we assume that all the 33,836 rice

evidence genes are real, the gene coverage of this set is 89.6% for

Fgenesh and 88.9% for Twinscan. Dividing the number of real

Fgenesh and Twinscan genes by their gene coverage, we estimate

the number of rice genes to be 34,944 and 35,001, respectively.

There are a few factors that affect

this estimate. Highly expressed genes are

both more likely to have supporting evi-

dence and are more likely to be strongly

conserved. Therefore the mapping ratio

of unsupported real genes might in fact

be lower than that of supported genes, in

which case the total number of real genes

will be higher. Alternatively, there might

be false predictions that map to the sor-

ghum genome. In this case, the total

number of real genes will be lower. Other

factors to affect this estimation are the

ratesof splitgenes and joinedgenes ineach

geneset; however, theerror rate due tosplit

and joined genes is <3.9% for Gramene

evidence genes, setting an upper bound on

the estimation error due to this factor.

If we use the mean value of the two

estimated gene numbers at the P-value

cutoff of 1310�5 (34,973) and ignore

issues arising from split and joined genes,

we find that the number of Gramene

evidence-based genes is 3.3% lower. Based

on this analysis, we confirm that the rice

gene number is below the upper bound

(40,000) estimated by Bennetzen et al.

(2004); this is also well below the current

TIGR5 annotation (41,042 genes), which are thought to contain

many TE-related genes or pseudogenes (e.g., see Paterson et al.

2009). The missing genes from the Gramene evidence set will

possibly be identified by adding new expression evidence and/or

ab initio predictions.

An evidence-based gene build in a 22-Mb maize genome region

To test the effectiveness of the pipeline in a newly sequenced ge-

nome, we apply the Gramene pipeline to a 22-Mb testing region of

maize (Zea mays) (The Maize Sequencing Consortium, unpubl.).

The maize genome is known for its large transposon and repeat

content: 76.4% of the maize region is masked as repetitive (see

Methods). Using all the gene products used for rice, we obtained

1005 protein-coding genes (1266 transcripts), 642 apparently full-

length, and 363 partial. There are 148 (14.7%) gene predictions

that contain alternative splicing with an average of 2.97 transcripts

among them. As expected from the order of magnitude difference

in genome sizes, the maize gene density (;45 genes/Mb) is much

lower than that in rice (;89 genes/Mb); however, relative to the

maize genome as a whole (data not shown), this still represents

a gene-rich region.

There were around 11,700 newly sequenced FLcDNAs from

the maize full-length cDNA project (http://www.maizecdna.org) in

GenBank when we did this analysis. To evaluate the quality of

our gene build, we did not include these FLcDNAs among

the transcriptional evidence, but instead used them to generate a

separate set of well-supported genes (see Methods). We compared

the 1005 non-FLcDNA evidence-based genes (non-cDNA) with

the 148 FLcDNA-based genes (157 transcripts). For reference pur-

poses, we also compared two intermediate gene sets based on

maize EST (maize-EST) and cross-species mRNAs (OmRNA), and

Fgenesh-predicted (Solovyev et al. 2006) ab initio genes to the

FLcDNA-based genes. Using these FLcDNA-based genes as a

standard set, we are essentially measuring sensitivity, though the

Figure 3. A rice gene on chromosome 8 that is predicted using EST only. The gene on the right side
has FLcDNA support, which is correctly identified in both the TIGR5 set and the Gramene evidence set.
The gene on the left side does not have FLcDNA support, which is missed from the TIGR5 set. Fgenesh
incorrectly joins the two genes together. The left gene is supported by many same-species and cross-
species ESTs.
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assessment might be biased due to the small number of FLcDNA-

based genes. We are unable to evaluate the predictions’ specificity

due to the lack of a comprehensive gene set in this region.

The results are shown in Table 5 . The non-cDNA genes touch

144 (97.3%, as gene locus sensitivity) of the FLcDNA-based genes.

At the gene level, identical CDSs cover 100 (67.6%, as gene CDS

sensitivity) of them, with an additional 29 (19.6%) being covered

by extended CDSs in the non-cDNA set. Many extended proteins

are caused by extension at the 59 end by ESTs, which could be due

to alternative transcription start sites or, more likely, the truncation of

the FLcDNAs at their 59 ends. This suggests that the current avail-

able gene products, excluding maize FLcDNAs, enable us to identify

>87.1% of the genes (in full CDS) supported by these FLcDNAs.

In comparison, the maize-EST and OmRNA evidence sets

yield 64.9% identical (and 12.8% extended) and 54.7% identical

(and 16.2% extended) CDSs, respectively. Fgenesh predictions

touch all the FLcDNA-based genes except one (which was on the

opposite strand). However, ;46% of the Fgenesh genes give dif-

ferent (incorrect) CDSs. We obtained slightly more identical CDSs

in maize than in rice based on cross-species mRNAs as expected

since there were many more rice FLcDNAs used for maize gene

predictions than maize FLcDNAs used for rice gene predictions.

The Fgenesh assessment results are comparable between maize and

rice. In addition to the FLcDNA-based genes, we also compare the

non-cDNA gene predictions to Fgenesh predictions. The number

of non-cDNA genes that Fgenesh genes touch is 704 (70%), with an

additional 73 (7.3%) genes on the opposite strand. Among the

overlapping genes, even though around 60% of them had different

protein translations, we find good agreement at the nucleotide and

exon levels: 87% of bases in CDS regions among the evidence-based

genes were shared by Fgenesh predictions and 65% of the CDS exons

predicted by the Gramene pipeline are identical to Fgenesh exons.

As discussed in earlier sections, split gene predictions can be

a problem when there is insufficient evidence to cover the whole

CDS region. We find four of the non-

cDNA genes are partial gene pairs that

overlap two FLcDNA-based genes, for

a split gene rate of only 1.4%. To check

other potential split predictions, we use

EST pairs (one 59-ESTand one 39-EST) that

originated from the same FLcDNA clones.

Using a match cutoff of 90% sequence

identity, we are able to map 2047 pairs to

the region. The pipeline built 2006 of

these pairs (98%) into single genes. The

remaining 2% either exist as two partial

predictions, or the pipeline failed to ac-

cept one or both of them. This suggests

that up to 2% of real genes are split in the

non-cDNA predicted set.

Discussion
We report here the design and imple-

mentation of an evidence-based gene pre-

diction system based on multiple sources

of gene expression information, both

within and between species. This system

has several advantages over nonevidence

methods. The major improvement over

other gene prediction methods is the

Gramene pipeline’s ability to prioritize

the gene prediction process according to the confidence of un-

derlying supporting evidence, thus increasing the specificity of the

predicted gene sets. When using any of the evidence types avail-

able or combination of them, we achieved high specificity at the

gene locus level (>93.2% in A. thaliana and >82.8% in rice), which

compares favorably to the specificity of the unmodified Ensembl

pipeline in humans using known proteins and FLcDNAs (72%–

77%) (Curwen et al. 2004). Most importantly, although we are not

trying to provide a generalized score for each gene predicted by the

Gramene pipeline, the Ensembl system can store and display the

supporting evidence for each gene, allowing researchers to de-

termine for themselves how well they trust the prediction. Another

advantage of evidence-based predictions is that they can identify

alternatively spliced transcripts. The major limitation is that the

accuracy of this method will vary depending on the nature and

quantity of the available expression data.

One of our major goals was to study how well the Gramene

pipeline performs on genomes with only incomplete or cross-species

gene products. We have found that cross-species mRNA data

within a dicot- or monocot-class are a valuable source of evidence

Table 5. Comparing maize-predicted genes with FLcDNA-based
genes

Overlapping Opposite Missed

Protein (CDS)

Same Ext Part Diff

Non-cDNA 97.3 1.4 1.4 67.6 19.6 2.0 8.1
Fgenesh 99.3 0.7 0 38.5 12.2 2.7 46
Maize-EST 98.6 1.4 0 64.9 12.8 14.2 6.8
OmRNA 93.9 3.4 2.7 54.7 16.2 7.4 16.2

All numbers are percentages relative to 148 maize FLcDNA-based genes.
Non-cDNA indicates using all evidence except maize FLcDNAs; OmRNA,
all monocot non-maize FLcDNAs and ESTs.

Figure 4. Mapping rate of rice genes on sorghum genome using TBLASTN. Rice genes predicted by
Fgenesh and Twinscan are each divided into two groups: (1) supported by FLcDNA/EST (Fgenesh_sp
and Twinscan_sp) and (2) not supported by FLcDNA/EST (Fgenesh_unsp and Twinscan_unsp). The
genes are already filtered using MIPS TE library to remove TE-related genes. The x-axes �log(P-value)
greater than 250 (P-value < 1310�250) is taken as 250. The P-value cutoff 1 3 10�5 is labeled as a vertical
dashed line. The confirmed genes with FLcDNA-support are included for reference purposes.
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for gene prediction. Further, we showed that species-specific EST

and cross-species mRNAs are highly effective in combination,

yielding predicted gene locus sensitivity in excess of 98% in both

Arabidopsis and rice. The predicted gene CDS sensitivity is 82.1%

and 67.8% in the two species, close to or better than the best hu-

man gene prediction programs described in EGASP (71.6%). The

accuracy of the Gramene pipeline is also significantly superior to

ab initio gene prediction programs that we evaluated.

The Gramene pipeline uses a rule-based method to select

relatively high-confidence transcripts first, which are then im-

proved if necessary using low-confidence transcripts. The high-

confidence genes can be improved by low-confidence genes in two

ways: (1) identify and fix some of the incorrect introns with non-

canonical splicing sites and (2) connect a partial gene pair or ex-

tend the partial translation frame. Although the resulting genes do

not necessarily all have correct gene structure, the presence of

high-confidence exons in the model usually guarantees at least

partially correct translations, which make them useful in genome

annotations. In much the same way that the Gramene pipeline

uses low-confidence transcripts to incrementally improve those of

high confidence, we have also used ab initio genes to improve

evidence-based genes (e.g., to connect partial gene pairs using ab

initio exons or extend the ORF of the partial evidence-based genes).

This is a different approach from the more traditional gene anno-

tation approach in which evidence is used to improve or support ab

initio genes (see Zhu and Buell 2007), but it more closely mirrors

the human curation process where high-confidence genes are se-

lected first and low-confidence genes are used only if necessary.

Our experience in rice shows that roughly 50% of partial-evidence

gene pairs can be incorporated into a single gene using ab initio-

predicted exons from the three programs used in this study (data

not shown). As this manuscript was being written, the whole

maize genome was sequenced (http://www.maizesequence.org)

and the Gramene pipeline (by combining ab initio predictions)

was being used to generate a gene set for further annotations.

Application of the Gramene pipeline to new genomes

The strategy of using cross-species transcriptional evidence should

be applicable to gene prediction in other closely related species. For

example, in sorghum there are almost no FLcDNAs available be-

sides a small number of ESTs (;230,000 ESTs) in GenBank. Due to

the short evolutionary distance between sorghum and maize—

diverged ;11.9 Mya (Swigonova et al. 2004)—the maize cDNA/

ESTs are ideal cross-species gene products. Based on our testing in

rice, one could apply the several million cross-species monocot

mRNAs (including ;40,000 newly deposited maize FLcDNAs in

GenBank not used in this study) to make a predicted sorghum gene

set with an expected sensitivity (at the gene CDS level) of 50%–

70%. In dicots, A. lyrata (http://www.jgi.doe.gov/sequencing/why/

3066.html) is estimated to have diverged from A. thaliana only

;5 Mya (Koch et al. 2000). We can use all FLcDNAs and ESTs

from A. thaliana, Brassica, Raphnus, and 1–2 million other dicot

ESTs to produce a predicted gene set with higher sensitivity (>70%–

80% at gene CDS level); the within-genus mRNAs can be used as

within-species mRNAs. We anticipate various but significant suc-

cess rates for the Caenorhabditis nematodes (http://www.wormbase.

org) as well as the Drosophila insects (Clark et al. 2007), for which

the research community has aggressive genomic sequencing pro-

grams, but few plans for new FLcDNA or EST sequencing.

For other closely related animal species, such as mammals, we

expect that a similar gene prediction strategy might yield good

results. A potential confounding factor, however, is the large in-

tron size in mammals. The accuracy of the Gramene pipeline

largely depends on Exonerate, which is able to correctly call

introns up to 20 kb in rice (and introns up to 110 kb in humans in

our preliminary tests). In humans, fewer than 10% of introns are

>11 kb in length (Sakharkar et al. 2004). Therefore, for species-

specific ESTs, we think the large intron size should not be a major

problem; however, more study is needed to test whether cross-

species mRNAs will be as effective in mammals and other long-

intron organisms as they are in higher plants.

Using the Gramene pipeline with data from new
sequencing technologies

Same-species EST- and FLcDNA-sequencing data are always to be

preferred to cross-species data, (e.g., for identifying species-specific

genes and alternative splicing), but the expense of acquisition is

high using traditional sequencing technologies. However, new short-

read sequencing technologies (for a review, see Mardis 2008) such as

Illumina and ABI SOLiD can quickly and inexpensively generate

high-coverage EST sequencing information; the drawback is that the

reads are short, generally on the order of 30–50 bp. The 454 Life

Sciences (Roche) sequencing technology costs more per base but

produces longer reads—on the order of 200–300 bp. While it is hard

to estimate how many ESTs are required to generate a high-quality

gene set for a new sequenced genome, we are expecting a much

higher sequencing depth to achieve the similar gene sensitivity

from short sequence reads than that for current existing ESTs. For

example, 1.4 million EST sequences with a mean length of 265 bp

in A. thaliana and 1.2 million EST sequences with a mean length of

480 bp in rice are equivalent to 10.3 million and 16 million short

reads of length 36 bp for the same sequencing depth, respectively.

Exonerate is good at aligning short reads (e.g., 20 bp) in our

tests (data not shown). However, for evidence-based gene builds,

a major challenge is to correctly identify the exon–intron bound-

aries. For 454 data, many alignments will span exon–intron bound-

aries, so that they can be used directly. For Illumina and ABI SOLiD

data, on the other hand, we expect that a high coverage in depth

and mate pairs or paired-end reads will be required to identify

introns accurately. The required large data size will increase the

number of the sequence alignments dramatically, thus increasing

the data storage and decreasing the running speed of the pipeline.

A solution is to use short read assemblies to alleviate the problem

and potentially for more confident alignments. The constant

improvements on the short-read sequencing technologies to in-

crease the read length will also help us to incorporate this source of

transcription data into the Gramene pipeline.

Methods

Genomes, gene products, and mapping
The genome assemblies of A. thaliana (TAIR7, Swarbreck et al.
2008), O. sativa ssp. japonica (TIGR5, Ouyang et al. 2007), and
S. bicolor (Paterson et al. 2009) are stored in the Gramene data-
base (http://www.gramene.org) using the Ensembl system. Their
chloroplast and mitochondria genomes were not included for
simplicity. The maize 22-Mb genome region was obtained from the
Maize Sequencing Consortium (http://www.maizesequence.org).
The genomes were repeat-masked with RepeatMasker (http://www.
repeatmasker.org) and the MIPS plant repeat library RE-dat (http://
mips.gsf.de/proj/plant/webapp/recat). The unmasked (nonrepeat)
sequences are ;84.8%, 61.4%, 49.6%, and 23.6% in A. thaliana,
rice, sorghum, and maize, respectively.
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The gene products include FLcDNAs, ESTs, and proteins. All
nucleotide sequences were downloaded from GenBank (http://
www.ncbi.nlm.nih.gov). The FLcDNAs were downloaded from the
core nucleotide database, with entries from genome annotation
projects being removed. All protein sequences were downloaded
from SWISS-PROT and TrEMBL (http://expasy.org/sprot; only plant
proteins were downloaded from TrEMBL). Specifically, the data sets
include the following: cDNAs from Arabidopsis (57,918), Oryza
(72,919 including many duplicated entries from RefSeq), Zea
(18,124), and other monocot species (;14,000); ESTs from Arabi-
dopsis (1,478,777), Brassica (839,215), Raphanus (287,482), Asterales
(875,854), Fabales (1,228,828), Malpighiales (640,931), Malvales
(380,596), Rosales (432,206), Sapindales (473,991), Solanales
(868,521), Vitales (380,597), Oryza (1,217,859), Zea (1,443,805),
Triticum (1,066,552), Hordeum (499,423), and other monocots
(902,666). For protein, there are 2222 Oryza proteins, 6668 Arabi-
dopsis proteins, and ;350,000 other proteins from SWISS-PROT
and 836,692 non-Arabidopsis plant proteins from TrEMBL. Addi-
tional newly deposited ;11,700 full or partial maize cDNAs were
used in maize gene builds.

All gene products were mapped to each genome using Exon-
erate (Slater and Birney 2005; the program is available at http://
www.ebi.ac.uk/;guy/exonerate) with suitable alignment models.
All alignments were done using Exonerate version 1.0, since all the
newer versions lack an optimization option, which can increase
the alignment accuracy significantly. The optimization step
decreases the speed by five to 10 times. Due to the large quantity
of cross-species ESTs, their alignment represents the most time-
consuming step of the process. On a 1000-CPU computer cluster, it
takes up to 3–5 d to map 6–7 million cross-species ESTs to A.
thaliana or rice genome. The computation speed also depends on
the disk usage and database server usage. For A. thaliana, compu-
tation can be completed within 1 d with the full usage of both the
cluster and database server. The running of the whole Gramene
pipeline on a computer cluster requires job management and
many other required Perl modules from the Ensembl pipeline
(Potter et al. 2004; http://www.ensembl.org).

We computed the Exonerate mapping rate. For species-
specific mapping at 90% sequence identity, the mapping rate of
FLcDNA is 98.9% for Arabidopsis and 93.7% for rice; the mapping
rate of EST is 90.9% for Arabidopsis and 84.3% for rice. For cross-
species ESTs at 40% sequence identity, the respective mapping
rates are as follows: dicots to Arabidopsis, 46.3%–83.4%; monocots
to Arabidopsis, 25.1%–45.1%; monocots to rice, 40.2%–65.9%; and
dicots to rice, 17.4%–54.4%. The protein mapping rate for same-
species is 98.8% at 90% alignment identity and 35%–40% at 30%
alignment identity for cross-species. Multiple mappings from each
sequence on the genome were all used for gene builds.

The Fgenesh gene sets in rice and maize were generated using
the default parameters for monocot ab initio gene predictions.
We filtered the rice genes (proteins) predicted by Fgenesh and
Twinscan by removing TE-related genes based on the MIPS and TIGR
(Ouyang and Buell 2004) repeat library with TBLASTN (WU-BLAST,
http://blast.wustl.edu/) using a P-value cutoff of 1310�5. The
resulting non-TE genes were compared with cDNA/EST-supported
evidence-based genes and were classified as supported genes and
unsupported genes. These genes (proteins) and the rice FLcDNA-
supported standard genes were aligned to the whole sorghum ge-
nome using TBLASTN.

Generation of standard gene sets

To evaluate the quality of predicted genes, we constructed a gene
set using pure FLcDNAs in both A. thaliana (Seki et al. 2002) and
rice (Kikuchi et al. 2003).

For A. thaliana, we constructed the standard gene set as fol-
lows: (1) map full-length A. thaliana cDNAs to repeat-masked TAIR7
genome; (2) select alignments with coverage of at least 95% and
identity of at least 99.5%, and do a gene build; (3) filter out genes
with non-GT|AG introns, with excessively long UTRs (to remove
incomplete splicing forms or pseudogenes), and with incomplete
CDS or protein length less than 50 aas; and (4) compare with the
TAIR7 gene set, and select only those genes that have the same
protein (UTR length not necessarily the same).

For rice, the first three steps were performed similarly on the
TIGR5 genome, and an extra step was added to remove TE-related
genes based on the MIPS and TIGR repeat library with a TBLASTN
P-value cutoff 1310�5. The resulting genes were compared with
the TIGR5 set; we found that <3% of them were different or absent
from the TIGR5 set. These different or absent genes were inspected
to ensure their similarity to other genes in translation length and
exon number.

Finally, 11,378 genes (12,011 transcripts) were selected as the
standard genes in A. thaliana. The rice standard gene set consists of
11,785 FLcDNA-based genes (12,324 transcripts). The maize genes
based on pure FLcDNAs were generated using the first three steps
listed above.
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