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Abstract

Understanding how silent genes can be competent for activation provides insight into development as well as cellular
reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the
adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without
detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting
possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear
hormone receptors. We found one such target site at a cryptic ‘‘shadow’’ enhancer 7 kilobases (kb) downstream of the Cdx2
gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory
properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of
Barrett’s esophagus, its expression is not necessarily present in progressive Barrett’s with dysplasia or adenocarcinoma. By
contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to
cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased
expression of Rfx1 could be an indicator of progression from Barrett’s esophagus to adenocarcinoma and that similar
analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic
progression and cellular reprogramming.
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Introduction

The development of a multicellular organism requires the

formation of functionally distinct cell types through the differential

activation of gene expression. Such gene expression programs are

enabled by transcription factors that endow the progenitors with

the competence to differentiate under the influence of inductive

signals [1–6]. During pathogenesis, effectors that damage cells can

lead to aberrant induction of gene expression, but in these cases

less is known about the transcription factor networks that govern

the competence for such changes. In this paper, we describe a

means to reveal transcription factor networks that underlie the

ability of endoderm-derived tissues to undergo metaplasia, or cell

type conversion, during pathogenesis [7].

FoxA transcription factors help establish developmental com-

petence for the endoderm-derived tissues [6,8]. In the mouse there

are three non-allelic FoxA genes, each containing a highly

conserved winged-helix forkhead DNA-binding domain [9].

FoxA2 is the earliest to be expressed and is required for endoderm

development [10–12], while FoxA1 and FoxA2 are redundantly

required for liver development [13]. We previously found that a

FoxA target site is engaged at the alb1 gene enhancer in

undifferentiated mouse endoderm cells where alb1 is transcrip-

tionally silent, and occupancy correlates with the potential of the

cells to be activated in response to developmental signals [14–16].

FoxA factors were further shown to occupy their sites on

nucleosomes in compacted chromatin in vitro and open a local

domain for other factors to bind [17]. This led to the concept of

FoxA as a pioneer factor, endowing competence for silent genes to

be activated [6]. The pioneer model extends to acute hormone

regulation in adult cells, where prior FoxA engagement in

chromatin enables estrogen receptor and androgen receptor

binding to chromatin and subsequent gene activation [18–20].

Another context for silent gene activation is typified by

metaplastic transitions, where a cell changes from one type to

another. These transitions often occur in response to chronic

cellular injury, resulting in pathology. Cdx2 is a homeodomain

transcription factor expressed in the developing gut, where it
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mediates the differentiation of intestinal epithelial cells [21–23]. In

the adult, Cdx2 expression is normally restricted to the mid- and

hindgut regions; loss of Cdx2 in the gut leads to expression of an

esophageal program [23]. Indeed, chronic esophageal damage

from reflux of gastro-duodenal contents can result in the aberrant

expression of Cdx2 in the esophageal foregut epithelium and,

together with other molecular changes, promotes metaplasia of the

cells to an intestinal phenotype (Barrett’s Esophagus) and

subsequent adenocarcinoma [24–26]. A fundamental question in

such circumstances is whether pioneer or competence factors

might engage silent genes in normal cells, such as at Cdx2 in

endodermal cells of non-intestinal lineages, thereby potentiating

the genes’ aberrant activation. If such is the case, there may be

regulatory mechanisms that normally restrain such activation.

Understanding such networks would provide insight into the basis

for diverse pathologies.

To better understand how regulatory factors might endow

transcriptional competence for silent genes, as well as how other

factors might restrain such competence, we analyzed FoxA2

occupancy in the adult mouse liver, where FoxA factors can

occupy silent genes [27,28]. Using our genomic data, we analyzed

transcription factor binding motifs adjacent to FoxA2-bound sites

at genes that are silent, separately from motifs at FoxA2-bound

sites at genes that are active. We identified binding motifs for the

repressors Rfx1 and type II nuclear hormone receptors at the

silent FoxA2 gene targets and confirmed protein binding and

subsequent repression of adjacent FoxA2 sites at a novel and

otherwise silent, Cdx2 enhancer element in non-intestinal cells. We

further investigated the status of Rfx1 in human esophageal

epithelium and in different precursor lesions leading to adenocar-

cinoma. We conclude that FoxA can occupy silent genes whose

activation is restricted by locally binding repressors and suggest

that perturbation of such networks can help explain cellular

changes leading to invasive cancer. Our approach revealed that

Rfx1 expression decreases gradually during cellular progression to

esophageal adenocarcinoma, indicating that mechanistic and

clinically useful insights can emerge from studies of transcription

factors bound to silent genes.

Results

FoxA2 genomic location analysis
To identify FoxA2 occupied sites at active and inactive genes

relevant to endoderm-derived tissue in the adult liver, we designed

a high-density tiling microarray covering 210 genes related to

endoderm, liver, pancreas, lung, gut, signaling, and cancer

(Table S1 and Figure S1A). Each tiled locus included the coding

region and its flanking 30 kb upstream and 10 kb downstream

sequence, tiled at a density of one 50-nucleotide probe every

24 bp. For regions containing multiple genes of interest, we

included larger intergenic regions, such that the final coverage of

each of the selected loci ranged from 45–350 kb (Figure S1B). In

aggregate, the ‘‘endoderm array’’ covered 14 Mb or 0.5% of the

mouse genome. The arrays were masked for repeat sequences.

Next, we isolated chromatin from adult mouse livers which were

perfused with formaldehyde in situ [29] and sheared to 50–300 bp

(Figure S1C). ChIP-qPCR assays with a FoxA2 antibody,

comparing liver (FoxA2+) and kidney (FoxA2-) confirmed the

antibody specificity (Figure S1D). We pooled the DNA recovered

from triplicate immunoprecipitations, amplified the material by

ligation-mediated PCR (Figure S1E), and then labeled the DNA

and hybridized it to the endoderm array. We performed three

competitive hybridizations: FoxA2 ChIP vs. IgG ChIP, FoxA2

ChIP v.s input DNA, and IgG ChIP vs. input DNA. The resulting

hybridization signals were analyzed to locate significant sites of

FoxA occupancy using a sliding-window based approach similar to

MAT [30] and yielded a set of 193 FoxA2 bound sites on the array

(p,0.0001; Figure S2A, S2B, red arrows, and Table S2). We

tested 33 sites spanning the range of significant scores (putative

FoxA2 positive sites) and 35 sites with insignificant scores (putative

FoxA2 negative sites) by locus-specific ChIP-qPCR from indepen-

dent mouse livers. We observed a high concordance between

positive regions from ChIP-chip and FoxA2 occupancy from

locus-specific ChIP (Figure S2D, S2E) demonstrating the quality of

our bound FoxA2 site assignments (specificity = 90%, sensitivi-

ty = 81%). Further de novo motif analysis of FoxA2 occupied sites

revealed an extended in vivo derived FoxA consensus sequence that

closely matches the TRANSFAC FoxA motif (Figure S2F). In

addition, the sequences near the ChIP-chip defined FoxA2 sites

showed a much higher degree of local sequence conservation

among vertebrates, compared to distal flanking sequences and

random loci without ChIP signals (Figure S2G), suggesting that the

ChIP-chip defined regions represent elements under strong

purifying selection, with possible function. Finally, we compared

our peak assignments to those seen in two subsequent whole

genome studies [28,31]. Of their peaks that were covered by our

endoderm array, 86% and 90% overlapped with our hybridization

probes that gave us at least a 2-fold enrichment of FoxA2 signal

over input. Taken together, we generated a high quality set of

FoxA2 target sites in adult liver for further analysis.

FoxA occupancy at silent targets
We quantitatively assessed the relationship between FoxA

occupancy and gene activity using Taqman-low-density arrays

on 86 of our ChIP-chip positive FoxA target genes, spanning the

range of FoxA binding, with liver RNA. Using this information,

we partitioned genes that were below one ten-thousandth of alb1

(albumin) expression as weak or silent. By this classification system,

56 genes were highly expressed and 30 genes were weak or silent,

demonstrating that FoxA2 clearly occupies transcriptionally silent

loci (Figure S3A). Notably, we observed little correlation between

the level of gene activity and extent of FoxA occupancy, as

measured by ChIP-qPCR of individual genes (Figure 1A).

Author Summary

FoxA transcriptional regulatory proteins are ‘‘pioneer
factors’’ that engage silent genes, helping to endow the
competence for activation. About a third of the DNA sites
we found to be occupied by FoxA in the adult liver are at
genes that are silent. Analysis of transcription factor
binding motifs near the FoxA sites at silent genes revealed
a co-occurrence of motifs for the transcriptional repressors
Rfx1 and type II nuclear hormone receptors (NHR-II).
Further analysis of one such region downstream of the
Cdx2 gene shows that it is a cryptic enhancer, in that it
functions poorly unless Rfx1 or NHR-II binding is prevent-
ed, in which case FoxA1 promotes enhancer activity. Cdx2
encodes a transcription factor that promotes intestinal
differentiation; ectopic expression of Cdx2 in the esopha-
gus can help promote metaplasia and cancer. By screening
numerous staged samples of human tissues, we show that
Rfx1 expression is extinguished during the progression to
esophageal adenocarcinoma and thus may serve as a
marker of cancer progression. These studies exemplify how
the analysis of pioneer factors bound to silent genes can
reveal a basis for the competence of cells to deregulate
gene expression and undergo transitions to cancer.

Pioneer Factor at Cryptic Elements of Silent Genes
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Figure 1. FoxA occupies silent targets in the adult liver. (A) Comparison of liver gene expression as determined by Taqman Low-Density Array
to FoxA2 occupancy by ChIP after ranking genes by expression level. For genes with multiple FoxA target sites, the site with the strongest occupancy
is indicated. (B) Site-specific ChIP of FoxA2, FoxA1 and Pol II Phospho-serine 5 at ChIP-chip identified targets and nearby control regions in liver. Sites
are ranked by degree of Pol II occupancy, with signal as percentage of input after background subtraction.
doi:10.1371/journal.pgen.1002277.g001

Pioneer Factor at Cryptic Elements of Silent Genes
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However, FoxA2 binding within 5 kb of the transcriptional start is

more frequently associated with active genes under our classifica-

tion system, whereas more distal elements were equally associated

with active or inactive genes (Figure S2B). Taken together, FoxA

binds to silent genes in the adult liver, often through distal

regulatory elements, as has been observed in other cell types [19].

As an independent metric of gene activity, we performed ChIP

against the initiating form of Pol II (ser5-P) and assessed factor

occupancy at a set of FoxA target genes covering a broad range of

gene expression levels. At each gene we queried for Pol II

occupancy at the FoxA target site and at the gene promoter. These

sites were ranked by occupancy of active Pol II and tested for

occupancy of both FoxA1 and FoxA2 (Figure 1B). We found that

there was little correlation between the distribution of Pol II

occupancy and the distribution of FoxA occupancy (correlation = 0.1);

whereas there was good concordance between gene activity measured

by Pol II occupancy and RNA expression (correlation = 0.8). Indeed

FoxA was strongly bound to genes that are silent by mRNA

expression (Figure 1A) and the absence of pol II (Figure 1B), such as at

the Cdx2 gene. We also found that FoxA1 and FoxA2 have a

remarkably similar occupancy distribution (Figure 1B), suggesting

that the factors share a large set of in vivo binding sites. We conclude

that FoxA1 and FoxA2 can redundantly occupy a large set of target

sites at both active and silent genes in the liver.

Transcription factors co-associated with FoxA at silent
genes

To understand how factors co-bound at silent genes could

modulate FoxA activity, we performed motif analysis to identify

transcription factors which segregate with FoxA at active versus

silent genes. This was facilitated by the resolution our tiling

analysis, which allowed the direct identification of FoxA binding

sites (Figure S2F). We screened 673 TRANSFAC/JASPAR

vertebrate motifs of known transcription factors at FoxA targets

in two dimensions (see Materials and Methods). In the first

dimension, we identified motifs enriched near FoxA bound sites

compared to adjacent unoccupied sequences (Figure 2A–2C). In

the second dimension, we identified motifs enriched near active

FoxA sites compared to silent FoxA sites (Figure 2B), or vice versa

(Figure 2C). At active genes there was an enrichment of

transcription factor motifs known to be important for liver-specific

gene expression, including HNF4a, C/EBP, and HNF1 (Figure 2B)

[32,33]. In contrast, the transcription factor motifs enriched at

silent genes included those for Rfx (motif M00975), type II nuclear

hormone receptors (motif M00964), USF (motif M00217), PAX5

(motif M00143), and CDC5 (motif M00478) (Figure 2C). The Rfx

factors are a family of transcriptional repressors conserved from

yeast to mammals, with seven members in mammals [34,35]. Rfx1

is expressed in most cells, including in the liver, and has been

identified as the Rfx family member most functionally related to

the yeast repressor Crt1 [35]. We tested a subset of sites identified

by bioinformatics analysis and used ChIP-qPCR to confirm

co-occupancy of FoxA2 and Rfx1 at 5 of 7 sites tested (Figure 2D),

compared to a negative site control. This suggested a model where

the intrinsically positive action of FoxA at silent genes could be

counterbalanced by a repressive action of Rfx1.

Novel enhancer at the Cdx2 locus
To investigate the regulatory interactions between FoxA and

Rfx at silent genes, we focused on Cdx2 as a candidate gene. Cdx2

is transcriptionally silent in the liver both based on its lack of

mRNA expression and lack of Pol II occupancy at its promoter

(see Figure 1A and 1B). Cdx2 is ectopically expressed in various

pathologic conditions, including Barrett’s esophagus and biliary

cancer [24–26], so understanding its regulation is clinically

relevant. Our ChIP-chip analysis revealed a strong peak of FoxA2

at a previously uncharacterized element 7 kb downstream of the

Cdx2 transcription start site (TSS) (Figure 3A; see ’FoxA/Input"

track; bracketed region). This new element contains a 156 bp

sequence which exhibits greater than 78% sequence conservation

from mammals to birds and extends to about 500 bp overall

(Figure 3B and data not shown). Within this conserved region

there is an 83 bp sequence containing two FoxA sites, an Rfx site,

and a direct repeat consensus (DR1) for type II NHRs [36–39].

Previous work showed that the Cdx2 promoter and upstream

regulatory sequences are sufficient to drive expression in colon cells

[40–42], so we sought to similarly assess the in vivo function of the

FoxA-bound conserved element 7 kb downstream of Cdx2. Endog-

enous Cdx2 is initially expressed in the caudal region of the embryo

both in the distal gut tube and in the unsegmented parasomitic

mesoderm, and by day 12.5 of embryonic development, Cdx2

expression is largely restricted to the developing gut tube [21,22,41].

We made stable transgenic mice containing a nuclear b-galactosidase

reporter driven by a 500 bp fragment spanning the Cdx2 +7 kb

element (LacZ-wt) or the Cdx2 +7 kb element with both FoxA sites

mutated (LacZ-DFoxA). When tested in E12.5 embryos, the LacZ-wt

reporter line exhibited punctate nuclear LacZ staining beginning in

the colon and extending caudally to the stomach, where scattered cells

were positive (Figure 3C). We did not observe LacZ staining in the gut

tube anterior to the stomach, nor was staining visible in the liver or the

lung, mimicking the endogenous Cdx2 pattern. However, the

transgene did express LacZ in other embryonic tissues, perhaps due

to position effects (data not shown). In contrast, two independent

LacZ-DFoxA lines containing the same transgenic sequences, except

for clustered point mutations of the FoxA sites, failed to express LacZ

in the gut (Figure 3D) but retained non-specific expression (data not

shown). These results demonstrated that the Cdx2 +7 kb element is a

weak tissue-specific enhancer that is dependent upon FoxA binding

sites for activity in developing embryos.

Rfx sites restricting Cdx2 +7 kb enhancer function
We next sought to determine the role of the Rfx sites in the

regulation of the Cdx2 +7 kb element. Upon scanning endogenous

Cdx2 expression levels in cell lines, we found that HepG2 liver

carcinoma cells [43] express very low Cdx2 levels compared to the

Caco2 colon cancer line or mouse colon; though the gene was

expressed about 10-fold above the negative background seen in liver

(Figure 4A). Still, ChIP of the conserved +7 kb element (Figure 3B) in

HepG2 cells showed strong FoxA and Rfx1 binding, as seen in mouse

liver (Figure 2D), compared to a negative control site (Figure 4B).

We then created a series of luciferase reporter constructs with a

wild type copy of the 500 bp+7 kb element, as well as variant

elements with clustered mutations of the FoxA or Rfx sites,

inserted downstream of the reporter (Figure 4C). In three

independent HepG2 transfection experiments, each quantified in

duplicate, the wild-type Cdx2 +7 kb enhancer elicited a ten-fold

greater activity than the control plasmid in HepG2 cells

(Figure 4C, ‘‘wt Cdx2 +7 kb’’). Mutation of the FoxA sites

resulted in loss of enhancer activity (Figure 4B, ‘‘FoxA mut’’),

consistent with our results in transgenic mice. Strikingly, mutation

of the Rfx site resulted in an increase in reporter activity,

compared to the wild type element, demonstrating that factors that

bind the site repress the Cdx2 enhancer (Figure 4B, ‘‘Rfx1 mut’’).

Simultaneous mutation of both the Rfx and FoxA sites resulted in

a loss of enhancer activity, indicating that FoxA binding is

necessary for the cryptic activity when the Rfx1 site is lost. Using

Cdx2 as a representative, we suggest that FoxA is able to

functionally engage a silent or very poorly expressed gene and

Pioneer Factor at Cryptic Elements of Silent Genes
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Figure 2. FoxA co-interacting factors. (A) Schematic representation of the ChIP-chip signal at a FoxA bound site, with the FoxA element taken as
position 0. Region ‘‘A’’ is the 250 bases flanking the FoxA site and is considered the foreground in motif analysis. Regions ‘‘X’’ and ‘‘Y’’ are the flanking
sequence 250-500 bases form the FoxA site and constitute the background. (B) Two-dimensional motif significance of active genes. Each point is a
motif with –log10(p-value) shown. X-axis is the p-value from foreground (region ‘‘A’’) vs background (region X+Y) comparison. The Y-axis is the
p-value from comparison of motifs in region A for active genes compared to region A for silent genes. (C) Two-dimensional motif significance of silent
genes. The X-axis is as described for panel B. The Y-axis is the p-value from comparison of motifs in region A for silent genes compared to region A for
active genes. (D). ChIP against FoxA2 and Rfx1 at selected sites expressed as signal after subtraction of IgG control (n = 3). SpB -7 serves as a negative
control site.
doi:10.1371/journal.pgen.1002277.g002

Pioneer Factor at Cryptic Elements of Silent Genes
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that its potential stimulatory effect on gene activity can be

attenuated by Rfx1-mediated repression.

Progressive Rfx1 loss in esophageal adenocarcinoma
Inappropriate activation of Cdx2 is one of the initiating events in

the progression of normal esophageal mucosa to the development of

Barrett’s esophagus [24–26], where esophageal cells form columnar

cells that morphologically resemble those of the intestinal

epithelium. Patients with Barrett’s esophagus are at increased risk

to develop dysplastic Barrett’s esophagus and then esophageal

adenocarcinoma [44]. Since we found that Rfx1 is a negative

regulator of the Cdx2 +7 element, we wanted to determine if Rfx1

levels change during the progression from normal human

esophageal mucosa to the development of esophageal adenocarci-

noma. Accordingly, we performed immunohistochemistry on tissue

microarrays containing anonymized patient-derived samples from

the normal glandular mucosa at the gastro-esophageal junction

(n = 5), Barrett’s esophagus (n = 11), dysplastic Barrett’s (n = 6), and

invasive esophageal adenocarcinoma (n = 20) (Figure 5A–5H). The

dysplastic Barrett’s samples were from patients who had already

developed esophageal adenocarcinoma. We confirmed antibody

specificity by staining adjacent sections with Rfx1 antibody alone or

in the presence of blocking epitope peptide, and observed a loss of

positive nuclear staining in the presence of blocking peptide in both

the epithelial and stromal cells (Figure S4). In addition, we stained

contiguous serial sections for Cdx2.

Figure 3. Novel FoxA binding site at Cdx2. FoxA2 ChIP-chip signal at the Cdx2 locus on mouse chromosome 5. Signal from FoxA2 vs. input
(black) and IgG vs. input (grey) are shown on a linear scale. Below is an expanded view of the DNA sequence of the region within ChIP-chip peak,
depicting sequence conservation between mouse and chicken. Transcription factor binding sites for FoxA, Rfx, and NHR-II are indicated. (C and D)
LacZ staining of nuclear-b-galactosidase reporter mice at E12.5. Embryos containing reporter driven by the wild-type Cdx2 enhancer (C) and FoxA-site
mutants (D). Cross sections through hindgut (insets).
doi:10.1371/journal.pgen.1002277.g003

Pioneer Factor at Cryptic Elements of Silent Genes
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In the normal glandular epithelium of the gastro-esophageal

junction, we found that Rfx1 is expressed in the nuclei of the

epithelial cells lining the esophageal lumen (luminal epithelium;

not shown) and the deeper secretory portions of the glandular

epithelium (Figure 5A, "E", arrows). We also observed Rfx1

positive nuclei in the surrounding stromal cells (Figure 5A, ‘‘S’’,

arrowhead). In nearby sections, Cdx2 expression was either very

sparse or undetectable (Figure 5B). We conclude that Rfx1 is

expressed in normal gastroesophageal junction-glandular tissue,

whereas Cdx2 expression is marginal or non-existent. In Barrett’s

esophagus, comparing expression from 11 samples (Table 1), there

was a qualitative but not statistically significant decrease in the

percentage of Rfx1 positive nuclei in comparison to normal

samples (p#0.12) (Figure 5C, 5I; ‘‘E’’, arrows). Cdx2 was activated

in many of the Barrett’s samples (Figure 5D, 5I). However, as

noted previously [24–26], in Barrett’s esophagus with dysplasia

and in esophageal adenocarcinoma, the percent of Cdx2 positive

cells declined in most samples, but was persistent in others

(Figure 5F, 5H, 5I).

By contrast, in samples of Barrett’s esophagus with dysplasia, we

found a more marked, statistically significant decrease in the

percentage of Rfx1 positive nuclei in epithelial cells (p #0.0001)

(Figure 5E, 5I, arrows; Table 1), whereas the stromal cells retained

Rfx1 expression. The percentage of Rfx1 positive nuclei in

adenocarcinoma also decreased relative to normal esophageal

tissue, with virtually no staining of the epithelial cells in 18 of 20

samples (p#0.0001) (Figure 5G, 5I; Table 1) and sporadic staining

of the stroma. To confirm these data, we performed Western blot

analysis on a nuclear lysate from the H520 human cancer cell line

(positive control) and on cell lysates from six anonymized,

esophageal adenocarcinoma samples. The blots were also probed

to GAPDH to confirm protein loading. As seen in Figure S5, only

Figure 4. Genetic interactions at the Cdx2 +7 kb enhancer. (A) Endogenous Cdx2 expression in mouse liver, HepG2 cells, Caco-2 cells, mouse
colon and MEK cells, indicating the poor expression in HepG2 cells used for transfection. (B) ChIP for FoxA1 and Rfx1 in HepG2 cells comparing
occupancy at Cdx2 +7 kb and the negative control site TTF1 +2 kb. (C) Dual-reporter luciferase assays using the Cdx2 element, with combinations of
FoxA and Rfx1 site mutations. Cells were co-transfected with pRL-CMV-renilla and the indicated pGL3 reporter plasmids. Luciferase activity expressed
as fold over the empty pGL3 vector after normalization to CMV-renilla in arbitrary units.
doi:10.1371/journal.pgen.1002277.g004

Pioneer Factor at Cryptic Elements of Silent Genes
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Figure 5. Rfx1 downregulation in esophageal adenocarcinoma. (A–H) Immunohistochemisty of Rfx1 and Cdx2 expression in: (A, B) normal
glandular epithelium of the gastro-esophageal junction, (C, D) Barrett’s esophagus, (E, F) Barrett’s esophagus with dysplasia, and (G, H) esophageal
adenocarcinoma. Arrows indicate Rfx1 or Cdx2 positive nuclei in the epithelium (E); arrowheads indicate Rfx1 positive nuclei in the stroma(s).
Asterisks indicates large secretory vacuoles characteristic of intestinal metaplasia (Barrett’s esophagus). (A9–H9) higher magnification views of the
regions boxed in A–H. (I) Graph of the average percentage of Rfx1 positive nuclei at the indicated stages. Error bars indicate the standard error of the

Pioneer Factor at Cryptic Elements of Silent Genes
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the positive control cell line exhibited Rfx1 expression, suggesting

consistent down-regulation of Rfx1 in the tumor samples. Thus,

we conclude that Rfx1 expression in the esophageal epithelium is

very frequently lost during the progression to esophageal

adenocarcinoma, and its loss appears to be a more reliable

marker of cancer progression than the up-regulation and then

down-regulation of Cdx2 (Figure 5I).

To assess the functional consequences of Rfx1 loss in

nontransformed esophageal epithelial cells, we performed siRNA

knockdown of Rfx1 in a mouse esophageal keratinocyte (MEK)

cell line [45]. The MEK line is derived from the basal cell layer of

the squamous epithelium lining the esophagus, proximal to the

gastro-esophageal junction [45]. The basal cells of squamous

epithelia characteristically express high levels of Sox2 and

cytokeratin CK14 [46]. siRNA experiments in these and other

cells led to, at best, a 50% reduction in Rfx1 gene expression levels

(Figure 6A). The inability to obtain better knock-down seems likely

due to Rfx1 autoregulation (repression) of its own promoter [35].

Thus, as the factor’s mRNA is knocked down, its gene’s

transcription would go up. Under our best Rfx1 knock-down

conditions, we did not observe induction of Cdx2 expression (data

not shown), indicating that the 50% loss of Rfx1 is insufficient for

Cdx2 activation. Notably, though, upon Rfx1 knock-down we

observed a 50% decrease in the CK14 and Sox2 mRNA levels

(Figure 6). These findings demonstrate that Rfx1 helps maintain

the expression of genes, presumably indirectly, that contribute to

MEK cell differentiation. Taken together with our observation

that there is a marked decrease of Rfx1 expression in the

epithelium of Barrett’s esophagus with dysplasia, our findings

suggest that Rfx1 helps control the maintenance of the squamous

epithelial cell identity in the esophagus and hence antagonizes

dysplasia.

Role of Type II Nuclear Hormone Receptor motif at the +7
kb Cdx2 enhancer

The autoregulation of Rfx1 (35) and inefficiency of siRNA

knockdown led us to investigate other parameters affecting the

activity of the +7 kb Cdx2 enhancer. There are a large number of

type II nuclear hormone family members which can bind to DR1

motifs, such as those seen at Cdx2 (Figure 3B). Type II nuclear

hormone receptors (NHR-II), formerly orphan receptors, are a

class of transcription factors whose activating ligands are metabolic

products, such as bile acids [47], and that function as repressors in

the absence of ligand [48]. Indeed, bile acids and acidic culture

conditions can cause ectopic expression of Cdx2 [49]. Since type II

nuclear hormone receptors form obligate heterodimers with RXR,

we performed ChIP against RXR in HepG2 cells. We observed

RXR enrichment at the Cdx2 +7 kb element as compared to a

control site in the TTF1 gene (Figure 7A). The extent of RXR

enrichment at the Cdx2 +7 kb element was similar to that at the

Cyp7a1 promoter, which contains a known type II nuclear

hormone receptor binding site [50,51]. Furthermore, mutation

of the NHR-II site in the Cdx2 +7 kb enhancer resulted in a clear

increase in enhancer activity, comparable to that seen with the

Rfx1 mutation (Figure 7B). However, we were not able to identify

the heterodimeric receptor partner for RXR at the NHR-II

element in HepG2 and other cell contexts, and the effects of bile

acids on the activity of the Cdx2 +7 kb element in HepG2 and

MEK cells were inconsistent. Regardless, the repressive role of the

NHR-II site emphasizes the redundant nature of repression of

Cdx2 and the likely multistep nature required for ectopic gene

activation. Furthermore, RXR at the repressive NHR-II domain

of the +7 kb enhancer demonstrates how the FoxA pioneer factor

bound to silent genes can be restrained by different types of

transcriptional repressors.

Discussion

In contrast to other genomic studies of transcription factor

occupancy at active genes, here we focused on the interactions of

FoxA with silent target genes. Such an approach allowed us to

identify an element near the silent Cdx2 gene as a cryptic FoxA

target. This is notable because Cdx2 is activated during esophageal

metaplastic changes, thereby facilitating, in a percentage of cases,

the progression towards adenocarcinoma development [24–

26,52]. We employed a two-dimensional motif analysis to identify

transcription factors which may function with FoxA at silent genes

like Cdx2. By this approach, we found that the repressor Rfx1 can

restrict the activation of the cryptic FoxA target sequence. We

suggest that FoxA occupancy of silent genes in differentiated

tissues can endow the competence of such genes to be activated

aberrantly and may contribute to human disease. Indeed, FoxA1

has been implicated as a tumor promoting factor [53,54] and is

upregulated in a subset of esophageal cancers as a result of

genomic amplification [55]. In our studies, partial knock-down of

Rfx1 was insufficient to alter FoxA1 levels (data not shown).

mean. The difference in Rfx1 expression between normal and Barrett’s esophagus without dysplasia is not statistically significant (p#0.12); whereas
the difference in Rfx1 expression between normal and Barrett’s esophagus with dysplasia, and normal and adenocarcinoma are significant (p#0.0001
by the Student’s t-test).
doi:10.1371/journal.pgen.1002277.g005

Table 1. Summary of Rfx1 immunohistochemistry results.

Samples Total Nuclei Stained Nuclei % Positive Nuclei

N = Mean S.E.M. Mean S.E.M. Mean S.E.M.

A. Norm. gland. GEJ 5 351.0 57.8 219.8 41.6 61.6 3.3

B. Barrett’s Esophag. 11 305.0 50.7 139.1 52.5 42.2+ 7.6

C. Dyspl. Barrett’s 6 439.7 33.1 20.2 8.8 4.8{ 2.0

D. Adenocarcinoma 20 387.1 42.3 11.6 7.0 3.3{ 2.0

% Rfx1 positive nuclei between (A) normal glandular gastro-esophageal junction and: (B) +Barrett’s Esophagus p#0.12, (C) {Dysplastic Barrett’s p#0.0001, or
(D) {adenocarcinoma p#0.0001. Of the 20 adenocarcinoma samples in (D), two outliers had 16% and 38% of their nuclei expressing Rfx1 and 18 samples
expressed Rfx1 in only 0.6%.
doi:10.1371/journal.pgen.1002277.t001
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We observed a marked and statistically significant decrease in

the levels of Rfx1 expression in Barrett’s esophagus with dysplasia

and in esophageal adenocarcinoma. Since most Barrett’s esoph-

agus lesions do not become dysplastic, it is useful to possess

markers that are indicative of the dysplastic transition. We

therefore suggest that Rfx1 loss will function as such a marker,

and more reliably so than the induction of Cdx2 in earlier stage

Barrett’s and then its variable down-regulation during progression

[24–26]. Indeed, recent experiments suggest that Cdx2 plays a

relatively early role during progression [56,57], and thus its

expression pattern may be less informative for the later stages.

With regard to the small fraction of adenocarcinomas that retain

Rfx1 expression, we suggest that either Rfx1 loss is not absolutely

necessary for such progression or, like many other genes that are

involved with cancer, the samples could, for example, contain

point mutations that are not reflected in changes in protein

abundance. Many well-known cancer markers appear in a

frequency comparable to or less than those in our initial studies

of Rfx1. For example, a meta-analysis showed that K-ras

mutations progress from an occurrence in 36–44% of early stage

pancreatic neoplasias to 87% in later stage cancers [58]. Mutations

in p53 occur in frequencies of 25–80% in various cancers tested

[59] and mutation in APC occur in up to 83% of colorectal tumors

tested [60]; in both cases using tissue sample numbers comparable

to those used here. Given the difficulties in qualitative assessment

of tissue morphology, specific molecular markers such as Rfx1 can

be of high utility in the diagnosis of cancer and its precursors.

Further studies are required to assess whether Rfx1 has a direct

tumor suppressive role in the esophageal epithelium. Rfx1 functions

genetically downstream of ATR and contributes to the DNA

damage response and stalled DNA replication [35]. In response to

DNA damage, Rfx1 binding to DNA is lost, leading to the activation

of many of its target genes, such as its own promoter and the

ribonucleotide reductase gene [35]. Rfx1 also binds the genes for

PCNA and c-Myc, thus loss of Rfx1 binding or expression could

promote increased cell proliferation [34,61,62]. Rfx1 expression

was found to be down-regulated in gliomas as a result of promoter

methylation and the reintroduction of Rfx1 in transfected glioma

cells resulted in decreased cell proliferation, suggesting that Rfx1

may play a role as a tumor suppressor in glioma tumorigenesis [63].

Given these extensive activities of Rfx1 in cell growth and

oncogenesis, our discovery of the gradual loss of Rfx1 expression

in the progression to esophageal adenocarcinoma suggests that the

factor has a functional role in that context. Considering the poor

clinical prognosis of esophageal adenocarcinoma [64], Rfx1 down-

regulation during progression to adenocarcinoma may be a useful

new marker of cancer development. Mechanistically, Rfx1 is a

winged helix factor [65,66] and therefore, like FoxA, could be

normally bound to silent chromatin by virtue of intrinsic chromatin

binding properties.

By taking a genomic view of FoxA occupancy and focusing our

analysis on the interactions at silent target genes, we have

uncovered novel gene regulatory interactions at a cryptic

enhancer. We found that the +7 kb Cdx2 enhancer weakly

recapitulates part of the developmental activity of the upstream

promoter region (Figure 3C), but only the +7 kb element binds

FoxA in liver cells, not the Cdx2 promoter (Figure 3A). We suggest

that the +7 kb element functions as a shadow enhancer, similar to

those recently discovered in Drosophila [67,68]. As an additional

regulatory element at a gene, possibly arising by sequence

duplication, a shadow enhancer may ensure a more precise gene

expression pattern in development or allow a new regulatory

function to evolve, while other regulatory elements maintain

crucial regulatory functions. Although the normal function of the

Cdx2 +7 kb element, if any, is not clear, binding by FoxA factors

appears crucial for cryptic activation. The stringency with which

FoxA is held in check is revealed by there being two nearby,

repressive factor binding sites for Rfx and NHR-II.

Given that the genome appears to contain an abundance of

cryptic regulatory elements [69], we suggest that our approach to

investigating factor occupancy at silent genes will reveal the

potential for other genetic programming transitions that are rare

but can contribute to the basis for devastating human diseases.

Materials and Methods

Ethics statement
All work with animals for this study was performed in

accordance with an approved IACUC protocol and relevant

national guidelines. No animal survival studies were performed.

Tiled array fabrication
Selected 210 genes of interest, and included 30 kb upstream and

10 kb downstream of the gene boundaries bases on UCSC Mouse

Genome Browser, March 2005 build. Custom microarray

containing 50mer probes with 24 bp overlap. Repetitive elements

were masked. The final array contained 380,000 features.

(Nimblegen). A list of the gene regions probed is provided in

Table S1.

Figure 6. Knock-down of Rfx1 causes diminution of CK14 and
Sox2 expression. The panels show qRT-PCR data of RNA from MEK
cells treated either with control siRNA, siRNA to Rfx1, or the latter but
without addition of RT to the reaction. The Rfx1, CK14, and Sox2 genes
were investigated. The data indicate that diminution of Rfx1 causes a
similar diminution of the CK14 and Sox2 expression in esophageal
epithelial cells.
doi:10.1371/journal.pgen.1002277.g006
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Chromatin immunoprecipitation
Mouse livers from C3H strain, were crosslinked by perfusion

through the portal vein and nuclei were isolated as described in [29].

Nuclei were resuspended in liver sonication buffer (50 mM Tris,

2 mM EDTA, 0.5% N-laurylsarcosine, 50 mM PMSF, protease

inhibitors) held on ice for 5 min, then sheared in a bath sonicator

(Diagenode Bioruptor) for 10 min with 30 sec ON/OFF intervals.

RNAse was added to 40 ng/ml and chromatin was dialyzed to TE

overnight 4uC, DNA was quantitated, and adjusted to 50 mg per ChIP

reaction in 1X RIPA buffer. Immune complexes formed overnight at

4uC, and were recovered with 40 ml 50% pre-cleared protein A beads

for 2 hr at 4uC. Beads were washed 6 times with high salt RIPA and

eluted twice with 100 ml elution buffer (1% SDS, 0.1 M sodium

bicarbonate) at 42uC. Protein-DNA crosslinks were reversed overnight

at 68uC, and DNA was recovered by phenol-chloroform extraction

followed by ethanol precipitation and resuspension in dH20. For locus

specific ChIP, enrichment was quantitated by standard curve analysis

using SYBR Green QPCR (iCycler, BIO-RAD). A list of oligonucle-

otides used for ChIP-qPCR is provided in Table S3. For ChIP-chip

analysis three competitive hybridizations were performed (FoxA2 vs

IgG, FoxA2 vs input DNA, IgG vs input DNA). LM-PCR and DNA

hybridization were performed per Nimblegen protocol. For cultured

cells, ChIP was performed as described by Odom et al 2004.

Sonication and immunoprecipitation performed as described for liver.

Antibodies: FoxA2 (Upstate 07-633), Pol II phospho serine5 (Covance

MMS-134R), IgG (Upstate), rabbit serum (Sigma), FoxA1 [29] and

(Chemicon AB4124), Rfx1 (Santa Cruz sc-48809).

Bioinformatics methods
To detect FoxA2 occupied regions or ChIP regions, we apply

sliding-window method adapted from MAT [30] to the log-ratio

intensities. For each window of a specific size w, a score

T~
P

i xi

� �� ffiffiffi
n
p

is calculated, where xi is the intensity of each

probe in the window, and n is the number of probes in the

window. The T-scores follow symmetric and asymptotically a

normal distribution, therefore, the negative T-scores were used to

estimate the empirical null distribution and p-values. Significant

windows that are nearby each other, with a distance smaller than a

specified gap size g, were merged, and the best T-score among

them and the associated p-value were reported. We optimized the

three parameters, window size w and gap size g, and p-value p,

using a small subset of positive and negative controls. The reported

results were obtained using w = 400 nt, g = 100 nt, and p = 0.0001.

A region is called significant if p,0.0001 in the hybridization of

either FoxA2 vs. IgG or FoxA2 vs. input DNA. We estimate an

FDR of 16%, using the control hybridization of IgG vs. input

DNA. To identify the motifs significantly enriched in the ChIP

regions, we use 500-nt sequences centered in each ChIP region,

and upstream/downstream sequences of the same size as

background. We scan all 673 matrices of vertebrate transcription

factors from TRANSFAC (Matys 2003) and JASPAR [70], by

comparison occurrences of each matrix in ChIP and background

datasets. The significance of enrichment in the ChIP regions was

evaluated by a Binomial distribution, and the threshold of motif

scores was optimized to maximize the enrichment. This analysis

Figure 7. Repressive NHR-II factor binding to the Cdx2 +7 kb enhancer. (A) ChIP for RXR in HepG2 cells showing occupancy at the
Cdx2 +7 kb enhancer comparable to that at the positive control site at the Cyp7a1 promoter, versus the signal at the negative control TTF1 +2 kb
enhancer. (B) Dual-reporter luciferase assays using the Cdx2 element, with combinations of FoxA, Rfx1, and NHR-II site mutations. Cells were
co-transfected with pRL-CMV-renilla and the indicated pGL3 reporter plasmids. Luciferase activity expressed as fold over the empty pGL3 vector after
normalization to CMV-renilla in arbitrary units. The overall transfection efficiency of this experiment was lower than that seen in Figure 4.
doi:10.1371/journal.pgen.1002277.g007
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was performed using the motifclass program in the CREAD

package (http://rulai.cshl.edu/cread/).

Gene expression analysis
RNA was isolated using TRIzol reagent (Invitrogen) or RNeasy

kit (QIAgen). 1 mg of RNA was converted to cDNA using iScript

cDNA Synthesis kit (BIO-RAD.) and gene expression assessed by

SYBR green QPCR using iCycler (BIO-RAD) or by TAQman low

density arrays on an PRISM machine (Applied Biosystems.) Gene

expression determined by the delta Ct method using HPRT as a

reference. A list of Taqman probe IDs is provided in Table S4.

Luciferase assays
Enhancer elements were PCR amplified and TOPO TA cloned

(Invitrogen). Binding site mutations were introduced by overlap-

extension PCR and constructs were sequence verified. Enhancer

elements were subcloned into pGL3-promoter vector (Promega)

downstream of the luciferase reporter gene. Cells were cultured in

6-well dishes and co-transfected with 1250 ng pGL3 vector and

125 ng pRL-CMV with Fugene reagent (Invitrogen). 72-hrs after

transfection cells were lysed and luciferase activity was measured with

the Dual-luciferase kit (Promega) per manufacturer’s instructions.

Histopathology and immunohistochemistry
We studied a tissue microarray containing 44 one millimeter cores

from 22 anonymized esophageal mucosa samples, including

5 normal mucosa samples, from the gastroesophageal junction and

17 Barrett’s esophagus lesions (11 Barrett’s without dysplasia and

6 Barrett’s with dysplasia). In addition, a total of twenty esophageal

well differentiated invasive adenocarcinoma samples from the

archives of FCCC were used. Paraffin sections were dewaxed using

xylenes and hydrated using a series of ethanol. No antigen retrieval

methods were necessary. Endogenous peroxidases were quenched

with a short treatment of 1% hydrogen peroxide. Sections were

incubated overnight with primary antibodies, washed the next day

with PBS, incubated with biotinylated secondary antibodies (Vector

Labs), incubated with Vecta Elite ABC kit (Vector Labs), developed

with a DAB kit (Vector Labs) and counterstained with hematoxylin.

Specimens were documented photographically using a Nikon

Optiphot microscope, equipped with an Optronics CCD camera.

Antibody against Rfx1 (Santa Cruz sc-10652) was used at a dilution

of 1/50. Negative controls were incubated in the absence of primary

antibodies as well as using a specific blocking peptide (Santa Cruz

sc-10652 P) previously incubated together with the primary antibody

at a concentration ten times higher than the latter. The percent of

positively stained nuclei in normal and abnormal esophageal

epithelium was determined by counting directly a total of 300–600

cells per sample (in at least three random fields per sample) using

a micrometric eyepiece grid at a magnification of 400X.

siRNA experiments
Smart pools (Dharmacon control siRNA D-001206-14-20; Rfx1

M-058841-01-0020) were added to cells in 6 cm dishes at 50 nM

concentration using RNAifect (QIAGEN) per manufacturer’s

instruction. Cells were harvested for protein and RNA analysis 3

days post-transfection.

Accession codes
Microarray data has been deposited to the NCBI GEO database.

Supporting Information

Figure S1 (A) Pie chart representing the primary tissue of

expression for the 210 selected genes on tiling array. (B) Schematic

of tiling for gene regions on the microarray. Each tiled locus

includes the gene coding region and flanking 30 kb upstream and

10 kb downstream sequence tiled at a density of one 50-nucleotide

probe every 24 bp. In aggregate the array covers 14 Mb of the

mouse genome. (C) Representative gel of chromatin shearing. (D)

Comparison of FoxA2 ChIP to known sites in liver versus kidney,

the latter being as a negative control that lacks FoxA2, showing the

specificity of the FoxA2 antibody for FoxA2 antigen. (E)

Bioanalyzer (Agilent) pseudo gel of DNA following LM-PCR,

depicts the retention of small size distribution after amplification.

(TIF)

Figure S2 (A–C) Specificity of FoxA2 ChIP-chip. Region scores

by sliding window analysis for ChIP-chip data (solid line)

compared to randomized data (dotted line) for the three

competitive hybridizations performed. Comparisons of FoxA2

with either IgG (A) or input DNA (B) using an empirical p-value of

0.0001 yielded ChIP-chip enrichment scores that were signifi-

cantly above those expected from normally distributed data (red

arrow). By contrast, the enrichment scores of the IgG ChIP vs

input DNA comparison fit normal distributions very well,

suggesting no significant ChIP regions (C). (D, E) FoxA2 ChIP

validation of regions selected by ChIP-chip analysis. Site-specific

ChIP-qPCR was performed from 4 mouse livers, and average

signals greater than 2-fold enrichment over background were

considered positive. (F) Pictogram of TRANSFAC FoxA motif

(top) and that of in vivo FoxA binding motif determined by de novo

motif analysis using 193 FoxA2 targets (bottom). (G) FoxA2 bound

regions have a high degree of sequence conservation. A

comparison of evolutionary conservation was performed between

the sequences flanking the 193 ChIP-chip defined FoxA site (solid

line) and sequences flanking the 2783 unbound predicted FoxA2

sites present in the intervals covered by the endoderm array

(dotted line). A 2 kb region was extracted for each locus, and the

PhastCons scores were averaged for each set of regions [71].

(TIF)

Figure S3 (A) Gene expression of 86 FoxA targets in liver,

expressed as fraction of maximal expression. Weakly expressed

and silent genes were binned as genes less than 1/104 of albumin

expression. Under this classification active FoxA target genes

included Alb1, TTR, FoxA2, Gata4, Xbp1, Prox1, and Hex; whereas

silent target genes included AFP, Cdx2, SftpB, and Sox17. (B) Gene

activity expressed as function of distance between FoxA site and

TSS showed that proximal FoxA binding was associated with gene

activity.

(TIF)

Figure S4 Serial sections of Rfx1 IHC in a Barrett’s esophagus

in the presence of Rfx1 antibody (A), or Rfx1 antibody previously

incubated with blocking peptide (1 to 10) (B). In (A) arrows

indicate Rfx1 positive nuclei in the epithelium; arrowheads

indicate Rfx1 positive nuclei in the stroma. Matched cells lacking

Rfx1 positive stain are indicated in (B). Epithelial layer indicated

by ‘‘E’’; stromal cells indicated by ‘‘S’’.

(TIF)

Figure S5 Loss of Rfx1 expression in esophageal adenocarcino-

ma. Western blots with Rfx1 antibody and GAPDH control, using

extracts from H520 lung cancer cell line as a positive control and 6

anonymized samples of esophageal adenocarcinoma. Numbers to

right indicate relative molecular masses of standards (not shown) in

kD.

(JPG)

Table S1 Endoderm Array Gene Loci.

(DOCX)

Pioneer Factor at Cryptic Elements of Silent Genes

PLoS Genetics | www.plosgenetics.org 12 September 2011 | Volume 7 | Issue 9 | e1002277



Table S2 Liver FoxA Binding Sites.

(DOCX)

Table S3 Primers for ChIP-qPCR.

(DOCX)

Table S4 Taqman Probe Ids.

(DOCX)
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