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Abstract

A novel result of the current research is the development and implementation of a unique functional phylogenomic
approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the
nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient
results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister
to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented
functional gene ontology categories in genes that provide positive branch support for major nodes prompting new
hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a
significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and
rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role
in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control
of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes
advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in
plant evolution within a phylogenomic view of species’ diversification.
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Introduction

Attempts to clearly resolve the relationships among major seed

plant groups using nuclear gene sequences have been hampered

by the small number of completely sequenced genomes, the

scarcity of ESTs for certain plant groups, and the lack of

automated tools that can assemble and analyze large phyloge-

nomic data sets. Existing phylogenetic hypotheses from molecular

data, are often disputed due to the small sample of genes and/or

taxa used in the analyses, regardless of the degree of support.

Various conflicting topologies for the five basic seed plant groups

have been obtained over time [1,2]. Plant molecular phylogenetics

has long relied on plastid genomes and only a few nuclear markers

to infer relationships [1,3–9]. Recently, progress has been made in

generating plastid genome-based plant phylogenies [3,10–16], but

nuclear genome-scale analyses of plants have only recently started

appearing in the literature [17–19]. The incorporation of nuclear

phylogenomic information in plant phylogenetics would accom-

plish two important goals. First, the phylogenetic patterns

discovered using nuclear genomic information could be used to

corroborate the many well-supported plastid relationships, and to

shed light on those relationships that are still at odds. Second,

nuclear phylogenomic information can be used to derive new

hypotheses for the function of plant genes that are relevant to

major divergence events in plant evolution. In this study, we use

phylogenetic information (emergent measures of phylogenetic

support [20]) as the platform to identify candidate genes that may

have played a role in plant adaptation. We first identify sets of

orthologs from genomic sequences using a phylogenetic context

[21]. We next use these orthologs to construct a total-evidence

phylogeny and examine the distribution of their support metrics

per node [20]. We then assess the statistical significance of Gene

Ontology (GO) categories for gene lists that provide positive

phylogenetic support to a node with functional processes of

interest (e.g. seed development) [22]. The main premise of this

approach is that genes (partitions) that are in agreement or in
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conflict with the overall evolutionary history of a particular node in

a phylogeny, can be detected and used to derive hypotheses for the

genes and biological processes potentially responsible for some of

the more interesting organismal differences among the taxa in a

phylogenetic analysis. We thus employ a phylogenomic approach

to postulate hypotheses of gene function distributions and

evolutionary mechanisms. These hypotheses can be validated

experimentally in follow-up studies, focusing the effort of finding

candidate genes and planning downstream experiments on those

candidates based on a phylogenomic context. This functional

phylogenomic approach is fundamentally different than classical

phylogenetic analysis methods and also from current functional

genomic methods that mine genomic information without

incorporating a phylogenetic context in their search for both

orthologs and candidate genes of functional importance. The

present study is also a step toward generating an automated

phylogenomic method for the entire nuclear component of plant

genomes. Here, we use this approach to begin exploring and

deriving hypotheses for the evolutionary mechanisms that underlie

plant adaptation and diversification, as exemplified by the

explosion of biodiversity within the seed plants, underlying

Darwin’s abominable mystery on the sudden appearance and

rapid diversification of flowering seed plants, but also on the

persistence of the gymnosperms over evolutionary time.

Results

Inferred seed plant phylogeny
We used OrthologID (OID) [21] – a program for automated,

parsimony tree-based orthology determination, to identify 22,833

sets of orthologs from 150 plant species (see Materials and

Methods for a description of the extended OID pipeline). These

plant species, belonging to 101 different genera, represent a broad

taxonomic range of angiosperms and extant gymnosperms. To

reduce the size of the dataset for maximum likelihood (ML)

analysis, and to remove partitions with the most missing data, we

also constructed a matrix by only including genes with at least

30% representation across all genera. In this .30%-matrix,

multiple taxa belonging to the same genus are collapsed into a

single taxon. The average number of genera represented in each

gene partition is 41 (40.6%) in this matrix. The cumulative

distribution of gene partitions by taxon representation is shown in

Figure S2. We performed maximum parsimony (MP) analysis on

both matrices (MP-full and MP-30), as well as maximum

likelihood analysis on the .30%-matrix (ML-30) (see Text S1).

Figure 1 shows the phylogenetic tree generated from the ML-30

analysis.

The basic topologies for all three trees of the seed plants (MP-

full, Figure S3; MP-30, Figure S4; and ML-30) are essentially

identical. Node support based on bootstrap methods yielded a

robust inferred phylogenetic tree overall. All three of our analyses

(MP-full, MP-30, and ML-30) corroborate the same monophyletic

groups of seed plants, as revealed in all previous morphological

analyses and most molecular analyses, namely the seed plants, the

cycads, the conifers, the gnetophytes, and the angiosperms.

Moreover, all of our analyses support the gymnosperms as a

monophyletic group (bootstrap = 100%). This is congruent with

all comparable molecular data sets to date [1,5,11,23], and in

contrast to most morphological analyses, which retrieve gymno-

sperms as paraphyletic [7,24,25]. The differences between

molecular-based topologies of the gymnosperms mainly involve

the placement of the gnetophytes, that is with the gnetophytes as

sister to the conifers [5], nested in conifers [1,11,13,16], as sister to

all other gymnosperms [23], or sister to all other seed plants

[13,26]. The position of the gnetophytes among seed plants, is

indeed one of the most interesting unresolved issues in plant

systematics, as reviewed in [2]. Our inferred genome-wide

phylogeny (bootstrap = 100%) supports the gnetophytes as basal

extant gymnosperms. This finding supports earlier hypotheses

retrieved from individual gene trees such as rpoC1 and rbcL, as well

as the non-coding regions of the inverted repeat representing the

plastome [27–29], and from phytochrome genes [23,30], AGA-

MOUS-like genes [31,32], and FLORICAULA/LEAFY [33] repre-

senting the nuclear genome.

The topology of this phylogenomic view of the seed plants with

a pectinate (i.e. maximally asymmetric, e.g. [34]) series of

angiosperms, Gnetales, cycads + Ginkgo, and conifers has a impact

on the interpretation of plant evolutionary changes, as characters

are optimized in different ways. For example, in the previous view

that cycads are sister to the rest of the gymnosperms, with ferns as

sister to both flowering plants and gymnosperms, then the

comparison is that angiosperms carpels are megasporophylls

(seed-bearing sporophylls), and the angiosperm gynoecium is a

simple strobilus (reproductive organ). By contrast, our phyloge-

nomic view of the seed plants, Gnetales are sister to the rest of the

gymnosperms with ferns as sister to all seed plants, and in this view

each angiosperm carpel bearing ovules can be most parsimoni-

ously interpreted as a simple strobilus. In this phylogenomic view,

the angiosperm gynoecium would now be interpreted as a

compound strobilus, with each carpel representing a bract

enclosing an axillant ovule-bearing axis (Figure S6A). Another

example of the impact of optimization is found with motile male

gametes. Motile male gametes characterize all of the non-seed

plant out-groups, and within seed plants are found only in cycads

and Ginkgo. In our phylogenomic topology, motile male gametes

would be independently and uniquely evolved (apomorphic) in

cycads plus Ginkgo, and loss of motile male gametes in Gnetales

and conifers would be ancestral in the gymnosperms (plesio-

morphic). In contrast, if cycads were sister to the rest of the

gymnosperms, the loss of motile male gametes would be

Author Summary

Understanding the genetic and genomic basis of plant
diversification has been a major goal of evolutionary
biologists since Darwin first pondered his ‘‘abominable
mystery,’’ the rapid diversification of the angiosperms in
the fossil record. We develop and deploy a functional
phylogenomic approach that helps identify genes and
biological processes putatively involved in species diver-
sification. We assembled a matrix of 22,833 orthologs from
150 species to reconstruct seed plant phylogenetic
relationships and to identify gene sets with a unique
evolutionary signal. Our analysis of overrepresented
biological processes in these sets narrowed down possible
genetic mechanisms underlying plant adaptation and
diversification. The phylogenetic relationships we uncov-
ered support the hypothesis that gnetophytes are closely
related to the rest of the gymnosperms at the base of the
living seed plants. We also found that genes involved
in post-transcriptional silencing via RNA interference
(RNAi)—increasingly important in understanding plant
evolution—are significantly represented early in angio-
sperm and gymnosperm divergence, with an apparent
loss of specific classes of small interfering RNAs (siRNA) in
gymnosperms. Our functional phylogenomic approach
can be applied to any taxa with available sequences to
enhance our knowledge of the evolutionary processes
underlying biodiversity in general.

A Functional Phylogenomic View of the Seed Plants
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convergent in conifers plus Gnetales and in the angiosperms, as an

independently derived apomorphy. In this case, motile male

gametes in cycads and Ginkgo would be a gymnosperm

plesiomorphy (Figure S6B). Perhaps the most interesting aspect

of these reversed character optimizations is that with the Gnetales

sister to the rest of the gymnosperms as in our phylogenomic tree,

Figure 1. Maximum Likelihood Phylogram of the Genus-Only Alignment of 101 Taxa with at Least 30% Representation per
Partition (ML-30) Using the GTR Substitution Matrix and the CAT Model of Among-Site Rate Heterogeneity. Taxon with genus-only
label represents multiple species of the same genus. ML and MP bootstrap support percentages are color-coded. ML node values indicate the
percentage of rapid bootstrap pseudoreplicates containing the nodes of the best ML tree. MP values correspond to the bootstrap proportions on the
50% majority-rule consensus tree. The red bars represent the relative number of genes per species represented in this matrix. The most-represented
species in the full matrix (with respect to number of genes) is Glycine max (10,071 genes), and the least-represented species is Puccinellia tenuiflora
(173 genes; see Table S1). The median number of gene partitions in which a taxon is represented is 2,071. This ML-30 tree has 101 taxa (genera),
derived from 2,970 gene partitions and 1,660,883 characters. Outgroups include the ferns, Adiantum and Ceratopteris; the mosses Physcomitrella and
Tortula; and the liverwort, Marchantia. The estimated GTR substitution matrix is provided in Table S5.
doi:10.1371/journal.pgen.1002411.g001

A Functional Phylogenomic View of the Seed Plants
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the interpretation of character evolution is the same as in the

Anthophyte hypothesis, where Gnetales is sister to angiosperms,

and cycads are sister to all other seed plants. The optimization of

motile male gametes of cycads and Ginkgo in our phylogenomic-

based topology is thus equivalent to the optimization of characters

required to explain the Gnetales as nested within the conifers. In

this case, the reinsertion of the inverted repeat in the plastid

genome of the Gnetales would be required after its loss in all of the

conifers [11].

It is noteworthy that in this phylogenomic view of the seed

plants, the basic topology of the angiosperm tree used by the

Angiosperm Phylogeny Group (APG II, III) [35,36] is supported

with only minor changes (Figure S5). We retrieve the same

topology of major groups on the pectinate backbone, starting with

Amborella followed by Nuphar, magnoliids, ranunculids, caryophyl-

lids, rosids, and asterids. The few discrepant nodes between our

phylogenomic trees generated using different approaches (e.g. MP

and ML), and between our tree and other major phylogenies, have

low support, and are likely the consequence of ambiguous

orthology statements due to missing data. For instance, Vaccinium

is placed with low support (,65%) either sister to the caryophyllids

in our ML-30 tree (Figure 1), or within the asterids (with

caryophyllids as sister to both rosids and asterids) in the MP-30

tree (Figure S4), which is congruent with APG III (with

caryophyllids as sister to asterids). Resolution of either hypothesis

will probably depend on sampling the Cornales, of which core

taxa have been placed within the asterids, and as sister to Ericales

containing Vaccinium [35,37]. Similarly, increased sampling of the

alismatids and aroids will help confirm the position of Acorus within

the angiosperms. Our findings of Acorus as sister to all other

monocots, supports most analyses conducted with single and

multiple gene trees [38–41], except for those that include atpA,

which in some instances, place Acorus within the Alismatales aroids

plus alismatids [42–44]. Within the rosids, the topology of MP-30

departs from that of APG III, by placing the Sapindales (Citrus and

relatives) with the rosids I, versus rosids II in APG III and in our

MP-full and ML-30 analyses. Our phylogenomic analysis identifies

these controversial nodes and points to the taxa that need further

sampling.

A controversial topology that is present and well supported

(bootstrap = 100%) in all our of phylogenomic trees is the

placement of the monocots between Nuphar and magnoliids. The

monophyly and placement of the magnoliids has been enigmatic

for some time, although recent work has suggested some

resolution. The position of the monocots with respect to

magnoliids has also been controversial. The three principal

competing hypotheses for the position of the magnoliids are as

sister to the eudicot lineage [45–47], as sister to the monocots plus

the eudicots [38,39], and as sister to the monocots [41–43]. By

contrast, our phylogenomic tree firmly places the magnoliids as

sister to the eudicots, and the monocots as sister to the magnoliids

plus the eudicots, both with high support (100%). In fact, bootstrap

support percentages along the backbone (the pectinate portion) of

the angiosperms, also show that overall, our phylogenomic analysis

provides a robust topology for this important group, based on a

broad sampling of genomic and EST data.

Identifying candidate genes of functional significance
within a phylogenomic framework

With the large number of genes in our phylogenomic matrix

covering every Gene Ontology (GO) category for plants [48] (see

Table S2), we are able to derive hypotheses for the functional

evolution of genes in a phylogenomic context, by analyzing gene

partitions that lend evidence of support at the major nodes on the

tree [49]. Currently, one of the most widely used methods in

testing for selection in phylogenomics, such as dN/dS [50], relies

mostly on statistical methods of detection of natural selection.

Partitioned phylogenetic support detects any positive or negative

support that a gene or category of genes has on any given node on

a phylogenetic tree. We propose that genes with positive

partitioned support at nodes are a broader category of candidate

genes for exploring function that would include genes evolving not

only under positive Darwinian selection, but also under stochastic

processes and even purifying selection. Once these candidate gene

lists that provide positive branch support are derived, we can then

examine them using positive selection scans to determine the

functional categories of genes that are under selective pressure.

Instead of requiring overwhelming statistical evidence of positive

selection, our method identifies significant evolutionary trends by

quantifying both phylogenetic congruence and incongruence, thus

detecting potentially important genes that might be evolving

neutrally or under negative selection. In this way, phylogenetic

incongruence between a functional class of genes (e.g. RNA

silencing genes) and the organismal phylogeny, would suggest that

this given gene has experienced a unique evolutionary history

relative to that of the organisms per se. Detection of such sequences

is given by character information, meaning that no previous

knowledge about the gene or gene function is required. Apart from

being an unbiased approach, this method allows for the discovery

of candidate genes with potential evolutionary and functional

relevance, which can then be evaluated for evidence of selection

using downstream validation and standard evolutionary tests

[51,52]. Here we provide a few examples of candidate genes for

such validations.

For this analysis to be computationally feasible, and to exclude

gene partitions with a large amount of missing taxa, while

retaining as many partitions as possible for statistical analysis, we

extracted a 9,787-gene matrix with .10% representation per

partition and performed Partitioned Bremer Support (PBS)

analysis [20]. This metric gives a relative measure of positive

support on a gene-by-gene basis for each node. We identified

7,689 gene partitions with positive PBS values at one or more

nodes in the simultaneous analysis tree. Of the 7,000+ genes, 4,803

of them have identifiable Arabidopsis orthologs, which were used to

annotate the partitions with GO and MIPS [53] terms. To assign

significance, we tested each node for overrepresented GO or

MIPS categories within the list of gene partitions with positive

PBS. As with any phylogenetic tree, missing genes as a result of

incomplete EST coverage, and the proportion of matches to GO

and MIPs categories, could shift PBS support. Importantly, the

proportion of overrepresented genes with positive PBS is not just a

numbers game, as it does not correlate with the number of genes

per species in our matrix (e.g. Figure 1 shows Glycine and Phaseolus

with a large EST set vs. Cucumis and Juglans regia, with a moderate

EST set, but highly significant overrepresented genes with positive

PBS). Furthermore, although the proportion of positive PBS varies

within the phylogenomic matrix, it remains high even in nodes

with lower numbers of genes and GO and MIPs terms (Figure S7).

This analysis of genes providing positive branch support at key

nodes in the phylogenomic tree identified 29 overrepresented

GO/MIPS term-node pairs (p,0.01), 87 such pairs (p,0.05), and

138 (p,0.10) (see Table S3 for the complete list and Figure 2 and

Figure 3 for the distribution map of overrepresented GO/MIPS

terms). The significant overrepresentation of genes in these GO/

MIPS terms, points to potential candidate genes involved in

metabolic and developmental traits associated with the evolution

of taxa within these clades. Note that overrepresentation in this

context is unrelated to levels of gene expression, referring instead

A Functional Phylogenomic View of the Seed Plants
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to the overrepresentation of proteins in each functional category

among those with amino acid sequences contributing positive PBS

to gene partitions.

An example of a node with an overrepresentation of genes

involved in a metabolic process is Node 15, which includes the

caryophyllids, members of which include the salt/drought-tolerant

plants Mesembryanthemum and Tamarix. This node shows significant

overrepresentation of genes involved in ‘‘sulfur compound

catabolic processes’’ (p = 0.002), for which experimental data

relates both genes in this GO term (MGL1 and GGT3), to the trait

of drought stress in Arabidopsis [54–56]. The examination of GO

overrepresentation in a phylogenomic framework, confirms

expected patterns of well-characterized genes in some taxa, and

also allows us to identify similar gene functions in atypical

candidates. Genes involved in ‘‘oxygen and radical detoxification’’

were overrepresented in Node 52 (p = 0.046), Node 19

(p = 0.00054), and Node 31 (p = 0.027). Species like tomato

(Solanum lycopersicum) [57] and pepper (Capsicum annuum) [58] in

Node 52, Euphorbia esula and E. tirucalli [58,59] in Node 19, and

walnut (Juglans regia) [60] in Node 31, are well known sources of

detoxifying and antioxidant compounds. The predominance of

glutathione-related genes involved in detoxification [61] in those

clades is not surprising and demonstrates our approach in

principle. The overrepresentation of glutathione peroxidase genes

in other taxa such as melon (Cucumis melo) and cucumber (C. sativus)

in Node 19, is thus worth examining further.

Another example of this functional phylogenomic approach

identified genes belonging to ‘‘cell fate commitment’’ (p = 0.04)

and ‘‘auxin metabolism’’ (p = 0.025) as overrepresented GO terms

among genes with positive PBS at Node A (Figure 2), that defines

all monocots except Acorus. These include three genes that encode

proteins involved in cell fate decision, AGO1, KANADI and

LACHESIS. LACHESIS controls the cell fate within female

gametophytes in Arabidopsis, where mutants have supernumerary

egg cells and are semi-sterile [62]. LACHESIS is a homolog of

yeast PRP4, a kinase that influences mRNA splicing. AGO1 is the

key effector endonuclease for multiple aspects of RNAi, including

cleavage and translational inhibition of target messages via

microRNA and trans-acting short interfering RNA (tasiRNA).

Weak alleles of AGO1 in Arabidopsis have drastic effects on leaf

polarity [63]. KANADI is also a master regulator of leaf polarity,

along with the auxin response factor ARF3 (a target of tasiRNA).

The mRNA export factor homolog SDE5 also contributes positive

PBS to the monocot clade, and is required for trans-acting siRNA

accumulation [64], along with the RNA-dependent RNA

polymerase RDR6, which was found to contribute positive PBS

to the monocot clade in a smaller study of 17 taxa [65]. Mutants in

the tasiRNA pathway disrupt the eponymous monocotyledonous

embryo of rice, which displays radial asymmetry, far more severely

than the symmetric dicotyledonous embryo of Arabidopsis [66],

perhaps because tasiRNA act non-autonomously in Arabidopsis.

Thus, it is hypothesized from this phylogenomic analysis that

RNAi had a significant influence in the divergence of monocots

and magnoliids plus eudicots from the ancestral angiosperm. This

is an exciting hypothesis derived from the functional phylogenomic

analysis of the seed plants, as we are increasingly aware of the

importance of siRNAs and transcriptional gene silencing pathways

of RNAi for plant evolution [67].

In perhaps the most important hypothesis derived from the

phylogenomic approach we describe, the plant-specific RNA

polymerase subunit NRPD2 contributes PBS to several nodes

among lower plants, including conifers and Marchantia/moss, but

especially to gymnosperms as a group, for which there are 21 steps

of support, which is among the highest 2% of all genes with

positive support for the gymnosperm clade. In Arabidopsis, NRPD2

is a subunit of both RNA polymerase IV and RNA polymerase V,

both of which are required for 24nt siRNA biogenesis and for

RNA-directed DNA methylation. Remarkably, 24nt small RNAs,

which correspond to transposons and heterochromatic repeats in

angiosperms, are absent from Pinus contorta, the only gymnosperm

in which they have been examined [68]. They are nonetheless

found in non-seed plants such as Physcomitrella and Selaginella [69].

Our phylogenomic analysis implicates NRPD2 in the loss of 24nt

siRNA from gymnosperms that have very large unmethylated

genomes [70], consistent with a loss of transposon control via

siRNA.

In support of this derived hypothesis, high levels of maternal

24nt siRNA are found in the endosperm of developing Arabidopsis

seeds in which NRPD2 is highly expressed [71]. In angiosperms,

fertilization of both the egg and the central cell nucleus (double

fertilization) lead to embryo and endosperm development,

respectively, while in gymnosperms, the megagametophyte

develops maternally without fertilization [71]. Interestingly,

maternal mutants in Arabidopsis that disrupt this small RNA

pathway are defective in transposon defense and develop

unreduced gametophytes [72], the first step in maternal endo-

sperm formation. We propose therefore that transposon-defense,

mediated by small RNA, is responsible, in part, for the emergence

of novel reproductive strategies within the flowering plants.

Along with NRPD2, a total of 297 genes in the phylogenomic

tree provide PBS for the gymnosperm clade, while 407 genes

provide PBS for the angiosperm clade, but the vast majority of the

remaining ,7,000 genes in this seed plant matrix provide support

for individual nodes in the tree. These candidate genes lay the

ground for new testable hypotheses concerning the evolutionary

changes in function that may be of relevance in the astounding

radiation of flowering plants, potentially underscoring Darwin’s

‘abominable mystery’ of seed plant radiation [73].

In our effort to examine patterns of natural selection across the

seed plants, we used established measures of synonymous (dS) and

nonsynonymous (dN) nucleotide substitution rates – not in a gross

fashion across the whole gene sequence, but rather on a codon-by-

codon basis. The rate ratio dN/dS is a commonly used measure of

selective pressure that has been expanded to incorporate sequence

and codon evolution models, as well as branch rate variation [50].

dS is vulnerable to substitution saturation, and is not reliably

estimated for very divergent taxa, even below the genus level [74].

In this study we are dealing with extant spermatophyte taxa that

diverged near the Devonian–Carboniferous boundary at ca. 350

Ma, with their daughter groups diversifying after the Carbonif-

erous (gymnosperms and conifers), and in the Jurassic in the last

200 million years (Myr) (angiosperms) [75], therefore substitution

saturation is expected at synonymous substitutions. In an attempt

to circumvent dS estimation issues, and thus undefined codon-

specific dN/dS values, we allowed for the non-synonymous

evolutionary rate to vary along the phylogeny, and more

Figure 2. Select Overrepresented GO/MIPS Categories of Genes with Positive PBS at Major Nodes. There are statistically higher numbers
of genes belonging to these GO/MIPS categories with positive support for the specific clades, implying that these genes may have special functional
importance to the evolution of the corresponding clades. Only gene categories mentioned in the main text are shown. For a full list of
overrepresented categories in each node see Table S3.
doi:10.1371/journal.pgen.1002411.g002

A Functional Phylogenomic View of the Seed Plants
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Figure 3. Distribution Map of Overrepresented GO Terms per Node. Each GO/MIPs category is shown in the upper axis. Color gradients
show differences in proportions of these genes, with red being the category with the highest counts, light blue the least counts, and black with no
match to any category. Overrepresentation is estimated on per-node basis. The reference tree is based on the MP-30 phylogenetic tree, and can be
used to locate the relative position of a node represented by a heatmap row. The node numbering here corresponds to the node labels in Figure S7.
Heat map constructed based on the Arabidopsis genome (source: http://noble.gs.washington.edu/prism – accessed on February 2009).
doi:10.1371/journal.pgen.1002411.g003
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specifically, in the two subtrees united by the node where markedly

high positive PBS scores where detected. We selected genus

Euphorbia (angiosperms, eudicots, rosids, Malpighiales) as a case

study. This is one of the most taxonomically rich plant genera

likely encompassing ,3000 species (http://www.plantsystematics.

org) [76], that occupies habitats distributed worldwide and displays

a marked degree of morphological and anatomical variation. The

pantropical and very speciose family Euphorbiaceae (,6300

species [76], 245 genera [77]) may have diverged from other

Malpighiales in the Lower Cretaceous Aptian age around 119.4–

101.1 Myr before present), but diversification within the family is

much more recent, e.g. within Acalyphoideae within the last ,70

Myr [78]. Note that Acalyphoideae is sister to the rest of the

Euphorbiaceae including Euphorbia (see Figures 3 and 4 in [79])

that is itself nested inside Euphorbiaceae with an origin estimated

at ,38 Myr ago with most of its diversification having occurred in

the interval 30–10 Myr before present (see Figure S1G in [80]).

Euphorbia exhibited high positive PBS scores for 13 proteins

involved in oxygen and radical detoxification (MIPS functional

category 32.07.07). Codon-wise estimates of synonymous rates

showed a highly positively skewed distribution within each gene,

with discrepant median and mean values (dS across genes: median

range = 2.1–3.8, mean range = 89–685, skewness = 3.31–11.05),

thus reinforcing our hesitation to use dS and subsequently dN/dS

(Table S6). Gene-wide estimates of dN/dS [81] were well below 1.0

showing no evidence of the action of positive selection with rate

ratio values ranging from 0.138 to 0.41 (Table S6). Contrasting dN

between the subtree leading to Euphorbia and the ‘‘background’’

subtree, we found statistical evidence (p,0.05) of non-synonymous

rate variation in 3 to 25 codons per gene. More specifically, we

detected a general trend of non-synonymous rate acceleration in

the subtree containing Euphorbia. A more complex picture became

apparent in the case of 2 of those 13 genes (At1g76080 and

At1g76080), where around half of the codons that showed

significant evidence of dN rate change decelerated in the

Euphorbia-containing clade. Detailed results are provided in Table

S6.

Discussion

Using a phylogenetic matrix with broad taxonomic sampling

and gene representation, we are able to provide support for some

of the more controversial topologies within plants, and in

particular within the various hypotheses of gymnosperm evolution.

From a phylogenomic perspective, we suggest hypotheses on genes

and their evolutionary processes might be related to patterns in

plant diversification. By focusing on the clade-specific variation of

phylogenetic characters in a multi-gene matrix, we can determine

the effect of individual genes or groups of genes within a particular

gene category, on support metrics and their statistical correlation

with functional processes of interest (such as seed development and

gene silencing). Specifically, we can pinpoint the amino acid

sequences that support individual branches in the tree. This

enables us to investigate the genetic mechanisms that underlie the

rapid radiation of the angiosperms and the persistence of the

gymnosperms on a subset of candidate genes in follow-up studies.

Our tree-based method, combined with maximum likelihood

methods of non-synonymous and synonymous evolutionary rate

variation, isolated 14 genes involved in oxygen and radical

detoxification from one of the most speciose plant genera,

exhibiting evidence for changes in selective pressure through

non-synonymous rate heterogeneity. Most importantly, our

functional phylogenomic method has shed light on the evolution

of very large gymnosperm genomes, and on maternal endosperm

development via the role of small interfering RNA in transposon

defense and in asexual development.

In all, we demonstrate how a functional phylogenomic

approach can be used to postulate hypotheses of gene function

distributions and evolutionary mechanisms. Our framework sets

the groundwork for future molecular biology, ecological genomics,

and evolutionary development research, which will refine the

hypothesized role of the genes we have identified herein.

Furthermore, with the increasing amount of genomic sequence

data available, we expect to see increased resolution of the seed

plant tree, and more genes of importance to the evolution of major

clades to be discovered using the phylogenomic methodology

described herein.

Materials and Methods

Sequences and orthologs
Sequences were collected from the gene sets of 5 completely

sequenced plant genomes and ESTs of 145 other plant species

with at least 2,000 unigenes. The complete genomes include

Arabidopsis thaliana (TAIR), Oryza sativa (JCVI), Populus trichocarpa

(JGI), Vitis vinifera (Genoscope), and Physcomitrella patens (JGI).

Unigenes were obtained from the TIGR Plant Transcript

Assemblies (http://plantta.jcvi.org).

Orthology was determined using an extended OrthologID

pipeline (Figure S1). The original OrthologID pipeline [21] only

utilizes complete genomes in the generation of ‘‘guide trees’’ which

are used to classify ESTs and determine their orthologs. However,

the limited number of completely sequenced plant genomes to

date would hamper the accuracy of EST placement when large

numbers of ESTs from diverse plant species are classified into gene

family trees with limited taxonomic representation. To alleviate

this problem, we also included 17 extra species (ingroup and

outgroup) with high number of ESTs in the generation of ‘‘guide

trees’’. These extra species represent a full spectrum of plant

lineages and include: Adiantum capillus-veneris, Aquilegia formosa,

Amborella trichopoda, Ceratopteris richardii, Cichorium intybus, Coffea

canephora, Gossypium hirsutum, Liriodendron tulipifera, Marchantia poly-

morpha, Medicago truncatula, Nuphar advena, Pinus taeda, Saruma henryi,

Solanum tuberosum, Welwitschia mirabilis, Zamia fischeri, and Zingiber

officinale. As in the original OrthologID pipeline, gene families were

clustered using a 1e-20 BLAST E-value cutoff, and were aligned

with MAFFT [82] using three different sets of parameters with

ambiguous regions culled. OrthologID generated guide trees from

these gene families using parsimony. ESTs from all other species

were then classified into gene families using the following stepwise

shortest-tree method extrapolated from OrthologID: Each EST

was identified with a gene family using BLAST. The complete set

of ESTs that belong to a gene family were sorted in decreasing

order of similarity according to their highest BLAST e-values

against gene family members in the guide tree. Each EST was then

inserted into the fixed guide tree in the aforementioned order. At

every iteration the tree with the shortest length (most parsimoni-

ous) with respect to the guide tree is chosen. Finally, we

determined sets of orthologs from the gene family tree by

extracting the largest non-overlapping subsets of genes that are

orthologous according to the topology. In cases where there is a 1-

to-many or many-to-many ortholog relationship, each of the

multiple orthologs is treated as equal and only a randomly selected

one from each species is included in the matrix. In the .30%-

matrix, multiple species of the same genus are represented by a

single taxon. For each gene partition in this matrix, the gene

sequence from the most ancestral of the species belonging to the

A Functional Phylogenomic View of the Seed Plants

PLoS Genetics | www.plosgenetics.org 8 December 2011 | Volume 7 | Issue 12 | e1002411



same genus, as identified by the MP-full tree, is chosen to be the

representative for that genus (taxon).

Phylogenetic analysis
We assembled an alignment phylogenetic matrix of amino acid

residues using the ortholog sets determined above and partitioned

by gene. Only genes with at least four taxa present were included,

resulting in a matrix with 22,833 partitions and 10,768,363

characters. Parsimony analysis was performed on the full

alignment matrix and the .30%-representation genus alignment

matrix using PAUP* v4b10 [83] and TNT [84]. The most efficient

parsimony tree search strategy used the tree fusion method [85]:

100 jackknife resamplings (proportion = 0.3679) were searched

with subtree pruning-regrafting holding two trees per resampling.

The collected jackknife trees were then submitted to 100 rounds of

tree fusion. Parsimony ratchet [86] also resulted in the same

shortest trees (Figures S3 and S4). Node support was evaluated

with 2,000 bootstrap pseudoreplicates and summarized on a 50%

majority-rule consensus tree. Partitioned Bremer support (PBS)

analysis was done on a submatrix that included only gene

partitions with at least 10% taxon-representation. We use PBS to

assess the direction of support (positive, negative, or neutral) of a

particular gene to the various branches or nodes in a phylogeny.

PBS is defined as follows: for a particular combined data set, a

particular node (branch), and a particular data partition, PBS is

the minimum number of character steps for that partition on the

shortest topologies for the combined data set that do not contain

that node, minus the minimum number of character steps for that

partition on the shortest topologies for the combined data set that

do contain that node [20]. Values for these metrics can be positive,

zero or negative, and indicate the direction of support for the

overall concatenated hypothesis: a positive PBS value indicates

that the partition provides support for the node. Negative PBS

means that the length of partition is shorter on an alternative tree

(i.e. that partition provides contradictory evidence). The sum of

PBS values for each data partition always equals Bremer Support

for combined data [87]. We used TreeRot v3 [88] to generate PBS

values for each partition-node pair.

We performed maximum likelihood (ML) inference of phylog-

eny on the .30% representation genus matrix using the fine-

grained parallel Pthreads (POSIX Threads Library) [89] and MPI

(Message Passing Interface) [90,91] implementations of the 2009

development version of RAxML [92]. Our analysis represents the

largest ML-based phylogenetic inference with respect to main

memory requirements (89.2 GB) conducted to date. We employed

both the JTT substitution matrix [93] with empirical amino acid

residue frequencies (F), and the general time-reversible (GTR)

substitution matrix [94] estimated directly from the genus-only

alignment (Table S5). Both amino acid substitution models yielded

the same overall topology. The JTT+F model was selected as the

best-fit model based on its likelihood score among 22 models

overall (11 with fixed residue frequencies and 11 with empirical

residue frequencies calculated from the data in hand). We

investigated the effect of the starting topology on the ML tree

search and determined the best-scoring ML tree by employing ten

random and ten randomized stepwise-addition MP trees in order

to assess convergence to the final best ML topology, as well as the

best single MP tree produced in our parsimony analysis. The way

among-site rate heterogeneity was modeled had an impact on the

final likelihood score; the CAT approximation model [95] with 25

per-site rate categories produced a better likelihood score than the

C-distributed rate heterogeneity model with four discrete rates

[96] in all cases where MP starting trees were used, while the

GAMMA model performed better in 60% of the inferences when

random starting trees were used (Table S4). Using the MP tree as a

starting tree produced better likelihood scores for both rate

heterogeneity models in conjunction with the GTR substitution

model (logLikCAT = –35,802,562; logLikGAMMA = –35,802,416)

(Table S4). Node support was quantified by means of 223 rapid

non-parametric bootstrap pseudoreplicates (RBS) [97]. In order to

determine if we conducted a sufficient number of RBS replicates

we applied the novel bootstrap convergence test [98] implemented

in RAxML a posteriori to our collection of 223 RBS trees. The

Weighted and Frequency Criteria (WC and FC, respectively) [98]

suggested that more than 74 and 122 replicates, respectively,

would not induce significant changes on node support. Unlike

majority-rule consensus trees, these support values indicate the

percentage of pseudoreplicates in which the nodes of the best ML

tree are present. Additional information on the ML analysis can be

found in Text S1.

Gene Ontology analysis
In order to functionally characterize the genes that are

providing positive support to the phylogenetic tree, we identified

the Arabidopsis orthologs of gene partitions with positive PBS at

each node and determined GO [99] and MIPS [100] terms that

are statistically overrepresented at each node. The analysis was

performed using the BioMaps tool [101] available on VirtualPlant

(http://www.virtualplant.org) with the hypergeometric statistics

using the union of genes with positive PBS at all nodes as the

background population, with a correction for multiple hypothesis

testing. Terms with a p-value less than 0.05 were considered

statistically significant. The Gene Ontology version of 31 May

2008 and the MIPS Functional Catalogue (FunCat) database

version of 27 May 2008 were used. Given that we only include

gene partitions with positive PBS in our functional GO term

analysis, but do not use the actual PBS value in our statistical

analysis, the use of a randomly selected ortholog in a gene

partition in the case of multiple co-orthologs will likely have no

effect on our results, except for the cases where the PBS values are

very close to zero. In those scenarios, using a different co-ortholog

may cause the PBS value to change from positive to non-positive,

or vice versa, and therefore be excluded or included in the GO

analysis. However, in a very large dataset, we expect the

randomness to have a cancelling effect when we look at high-

level GO categories that include many genes. Similarly, nodes with

low support in our guide trees may affect orthology determination

and subsequent GO term analysis. However, we expect the effect

to be minimal due to our large sample size.

Selection analysis
The extent of the pressure of natural selection was measured by

estimating the ratio of the rate of nonsynonymous substitutions

(dN) to the synonymous substitution rate (dS). A dN/dS rate value

near one indicates neutral evolution, while deviations exceeding

one are suggestive of positive selection, and positive values below

one are considered to be evidence of purifying or negative

selection as a result of strong structural or functional constraints at

the protein level [102]. Functional protein-encoding genes tend to

be subject to negative selection across their codons [103], therefore

when only a few codons are positively selected [104] the measure

of natural selection is averaged across all codons as a gene-wide

dN/dS rate ratio. Our inference of episodic instances of positive

selection becomes more powerful if, instead of averaging, we allow

for dN/dS rate ratios to vary along the sequence alignment on a

per-codon basis and across the phylogenetic tree [105,106]. For

this reason we estimated dN, dS, and dN/dS in a maximum

likelihood framework as implemented in the latest development
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build of HyPhy v2.0 [107] (http://www.hyphy.org). Coding

sequence evolution was modeled using the generalized Muse–

Gaut (MG94) [108] model crossed with the Hasegawa–Kishino–

Yano (HKY85) [109] nucleotide substitution model. The selective

pressure at each codon site was quantified using the fixed effects

likelihood (FEL) method [110] that estimates separately dN and dS

rates for each codon and subsequently contrasts them through a

likelihood ratio test (LRT). So as to avoid unpredictably biased

dN/dS results because of saturation of the synonymous substitution

rate dS across such a deep evolutionary timescale examined here,

we chose to compare the variation of nonsynonymous rate dN

along the phylogeny alongside gene-wide dN/dS estimates [81].

We selected a set of genes whose corresponding amino acid

sequences exhibited strong, positive PBS (PBS.10) and belonged

to the same MIPS term, such as 13 genes involved in oxygen and

radical detoxification supporting consistently the node leading to

the genus Euphorbia (Arabidopsis gene symbols: At1g65820,

At1g76080, At2g47730, At1g64500, At3g54960, At3g15360,

At4g33040, At1g20620, At4g31870, At1g19570, At3g27820,

At5g23310, At2g31570). By allowing dN to vary in the two

subsequent subtrees (Euphorbia-containing clade vs. the rest of the

tree), we discounted possible dS biases and examined whether

there is statistical evidence through a LRT for a change in

nonsynonymous rates.

Computing
We performed maximum parsimony (MP) and Bremer support

analysis on a 64-node Linux cluster at NYU. MP bootstrap

analysis was performed on the 2,000-node BlueHelix HPCC

facility at CSHL. In order to analyze this challenging dataset

under maximum likelihood (ML) we used several clusters, multi-

core nodes, and supercomputers: the Woodcrest Cluster at the

Regionales Rechenzentrum Erlangen in Germany (868 Intel

Woodcrest cores, Infiniband interconnect), the Infiniband Cluster

at the Technical University of Munich (128 AMD Opteron cores,

Infiniband interconnect), the AMD Barcelona multi-core nodes at

the Swiss Federal Institute of Technology in Lausanne (2 16-core

AMD Barcelona nodes), and the SGI ALTIX 4700 supercom-

puter at the Leibniz Rechenzentrum in Munich (8192 Intel

Itanium cores, custom interconnect). The selection ML analysis

was carried out on an Apple Mac Pro 12-core with Intel Xeon

2.66 GHz processors and 8 GB of RAM (1333 MHz DDR3)

running 20 processes for each inference.

The complete phylogenomic matrix and trees are available at

the BIGPLANT website (http://nypg.bio.nyu.edu).

Supporting Information

Figure S1 Extended OrthologID pipeline. (A) Complete ge-

nomes and a selected sets of species with large number of ESTs are

clustered into gene families. These families are aligned and

phylogenetic trees created. Orthologs are determined according to

the phylogenies of these gene families. (B) Sets of orthologs are

determined from a gene family tree in the following manner: as we

move up from the taxa towards the root of the tree, sets of genes

are gathered at each node, until the sets of species of two

descendent nodes overlap. This indicated we encounter a

duplication event, in which case we output the two sets of

orthologs separately as they are not orthologous to each other. In

the figure, A, B, and C are species. Two sets of orthologs are

identified: {A1, B1, C1} and {A2, A3, B2, C2}.

(EPS)

Figure S2 Cumulative distribution of gene partitions by taxon

density in the .30% matrix. The rate of increase in gene

partitions decreases exponentially with the number of taxa

represented.

(EPS)

Figure S3 Maximum parsimony simultaneous analysis tree of

150 taxa and 22,833 genes (MP-full). Support values are based on

2,000 bootstrap pseudoreplicates.

(EPS)

Figure S4 Maximum parsimony simultaneous analysis tree of

the genus-only matrix with 101 taxa and at least 30%

representation per partition (MP-30). Support values are based

on 2,000 bootstrap pseudo-replicates. Nodes with overrepresented

GO/MIPS terms have numeric labels that match the node

numbers in Table S3.

(EPS)

Figure S5 Our ML-30 tree is in broad agreement with the APG

III tree. Relationships among major clades are identical, with the

main exception of the magnoliids as shown here.

(EPS)

Figure S6 Impact on character optimization due to different

topologies. Depending on the topology, a single character can be

interpreted as an apomorphy in one group and a plesiomorphy in

another, or a result of convergence and independently derived

apomorphies. (A) Simple and compound strobilus. Photos of cycad

megasporophylls (right), Liriodendrum tulipifera (tulip) flower (upper

left) and Welwitschia mirabilis seed cones (lower left) illustrate seed-

bearing sporophylls, a gynoecium and ovulate strobili respectively.

(B) Absence and presence of motile sperm. Photo of motile

spermatozoid of Zamia pumila is shown.

(EPS)

Figure S7 Proportion of the number of genes with a positive

PBS (PPBS) from the total of genes per GO and MIPs terms. In (A)

all nodes in our tree, and (B) nodes highlighted in Figure 2 (GO

and MIPs terms are combined), shown here is Euphorbia and sister

taxa 19; (Cucumis/Juglans regia) 31; (Capsicum annum/Solanum) 52;

(Nicotiana (Capsicum annum/Solanum) 53; the split of the Caryophil-

lids 65; the split of Acorus 94; and the Monocots clade 95.

(EPS)

Table S1 List of 150 plant species, sequence sources, and the

number of genes represented in the full matrix.

(DOC)

Table S2 Number of genes with identifiable Arabidopsis orthologs

in the full matrix for each GO Slim category. Each gene may

belong to more than one category.

(DOC)

Table S3 Complete list of overrepresented GO/MIPS terms on

the MP-30 tree. Nodes are numbered as in Figure S4.

(DOC)

Table S4 Log-likelihood scores for inferences based on the CAT

and GAMMA rate heterogeneity models from different starting

trees under the GTR substitution matrix. Inferences that yielded

better likelihood scores in CAT-GAMMA comparisons are shaded

for clarity.

(DOC)

Table S5 GreenREV – a dedicated amino acid general time-

reversible (GTR) substitution matrix estimated from our dataset.

Rectangular symmetric GTR substitution rate matrix, where

amino acids are ordered alphabetically according to their three-

letter code. The bottom line contains the empirical amino acid

frequencies in the same order. This can be used as a user-defined
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amino acid substitution matrix in RAxML using the -P option. See

file GreenREV.txt.

(TXT)

Table S6 Selection analysis results for the Euphorbia candidate

genes. Values given for 13 genes whose amino acid sequence

showed strong, positive PBS (PBS.10) and belonged to the same

MIPS term.

(DOC)

Text S1 Supporting Methods.

(PDF)
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