
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Statistical significance of cis-regulatory modules
Dustin E Schones*1,2, Andrew D Smith1 and Michael Q Zhang1

Address: 1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA and 2Department of Physics and Astronomy, Stony Brook 
University, Stony Brook, NY 11790, USA

Email: Dustin E Schones* - dschones@cshl.edu; Andrew D Smith - asmith@cshl.edu; Michael Q Zhang - mzhang@cshl.edu

* Corresponding author    

Abstract
Background: It is becoming increasingly important for researchers to be able to scan through
large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-
regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid
detection and assessment of cis-regulatory modules. While various algorithms for this purpose have
been introduced, most are not well suited for rapid, genome scale scanning.

Results: We introduce methods designed for the detection and statistical evaluation of cis-
regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites
with constrained organization. In order to determine the statistical significance of module sites, we
first need a method to determine the statistical significance of single transcription factor binding
site matches. We introduce a straightforward method of estimating the statistical significance of
single site matches using a database of known promoters to produce data structures that can be
used to estimate p-values for binding site matches. We next introduce a technique to calculate the
statistical significance of the arrangement of binding sites within a module using a max-gap model.
If the module scanned for has defined organizational parameters, the probability of the module is
corrected to account for organizational constraints. The statistical significance of single site
matches and the architecture of sites within the module can be combined to provide an overall
estimation of statistical significance of cis-regulatory module sites.

Conclusion: The methods introduced in this paper allow for the detection and statistical
evaluation of single transcription factor binding sites and cis-regulatory modules. The features
described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM) and
MODSTORM software.

Background
The identification of transcription factor binding sites and
cis-regulatory modules is a crucial step in the study of gene
regulation. Transcription factor binding sites often occur
together in clusters as cis-regulatory modules and these
modules can regulate the transcription of genes 100 kilo-
bases (kb) or further from the module sites [1,2]. To study

the regulation of transcription in silico, it has become nec-
essary to scan large intergenic regions for occurrences of
these modules. When scanning through large intergenic
regions, it is important to be able to evaluate the statistical
significance of predicted module sites in order to distin-
guish likely modules for experimental validation. The
methods we introduce in this paper allow for the rapid
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detection of cis-regulatory module sites as well as an esti-
mation of their statistical significance. These tools will be
of great use to any researcher wishing to scan large inter-
genic regions for potential cis-regulatory modules.

The p-value corresponding to a given match score for a
transcription factor binding site is the probability of
observing a match score at least as great for a randomly
generated site. We start by describing a method for the
accurate estimation of statistical significance of single
binding sites. This method utilizes an extensive database
of known human, mouse and rat transcription start sites,
the CSHL mammalian promoter database (CSHLmpd)
[3] to tabulate frequencies of occurrences for all k-mers in
known sequences. This information is then used to calcu-
late p-values that correspond to particular thresholds for
matrices as well as to calculate the threshold of occurrence
corresponding to a given p-value. If a number of binding
sites have been predicted and a position frequency matrix
(PFM) that corresponds to these binding sites is known,
this technique can be used to obtain a p-value for the pre-
dicted sites. Conversely, if the desired p-value is known for
a given matrix, the threshold corresponding to this p-value
can be calculated and this can be used to find the sites in
sequences. One major advantage of using an extensive
database of known sequence regions to estimate p-values
is that the result will not depend on the sample data and
therefore results obtained from different motif-finding or
scanning algorithms can be compared using p-values.
Although previous work has addressed the problem of
estimating the statistical significance of binding site
matches, these methods were forced to either assume uni-
form nucleotide frequencies for all sequences tested or to
look at distributions of scores across random sequences to
be computationally feasible. The novel methods we
present here utilize known DNA sequence in an efficient
manner to avoid any prior assumptions on nucleotide dis-
tribution in regulatory DNA sequences. This allows us to
make more accurate estimates on statistical significance of
binding site predictions.

After describing the estimation of p-values for single tran-
scription factor binding sites, we show how the single site
p-values can be combined with a clustering probability to
determine the overall module probability. We consider
two separate models of cis-regulatory modules, modules
with constrained organization and modules without con-
strained organization. Modules without organizational
constraints are simply a cluster of individual binding sites
with the only parameters of the model being the p-values
of the individual sites and the clustering p-value. The clus-
tering probability in this model is calculated using a max-
gap model. We also consider modules that have pre-
scribed organizational constraints. The organizational
parameters we consider are the order, spacing and orien-

tation of motifs in the module. For modules with organi-
zational constraints, the module probability is calculated
using a max-gap model, and then adjusted for the organi-
zational parameters.

Results
Statistical significance of single sites
Previous work on statistical significance of single sites
Many approaches to obtain p-values for motif site matches
using position weight matrices (PWMs) have been intro-
duced [4-12]. We now briefly review the original works in
this field, and touch upon some of the more recent work
that has extended these original methods.

The work of Staden is the original work on calculating
probabilities for finding motif matches in DNA sequence
[4]. The method outlined by Staden uses probability gen-
erating functions to calculate the theoretical probability of
finding motif matches. Much of the existing work on cal-
culating probabilities of motif matches is built directly on
Staden's work. Claverie showed that given the base com-
position of random sequence, one can compute the
expected distribution of random scores for each individ-
ual position and, iteratively, the expected distribution of
the total score [5]. This distribution of scores is close to a
Gaussian, as in Staden's work, and the expected best
matching score in each sequence follows an extreme value
distribution. The software program NMksite allows for the
calculation of statistical significance given a PFM and a
threshold [6]. Beckstette et al. [11], introduced the ESAse-
arch algorithm which assesses the statistical significance
of binding site matches using a method based on Staden's
work. Baily and Gribskov introduced a method to esti-
mate the statistical significance of motif matches based on
Fisher's "omnibus" procedure for combining one-sided
statistical tests [7]. Hertz and Stormo introduced two
methods to approximate the significance of motif
matches, one based on large-deviation theory and one
purely numerical [8]. Nagarajan et al. extended the
numerical method of Hertz and Stormo using a cyclic
shifted Fast Fourier Transform [12].

Obtaining match p-values from database frequencies
Assuming the sequences being scanned are a sample from
a known population of sequences, we can query that pop-
ulation directly to obtain the p-value associated with any
match score. For example, suppose we are searching a set
S of 10 kb sequences immediately upstream of the tran-
scription start site (TSS) of a set of human genes. The pop-
ulation D would be the entire set of 10 kb upstream
regions in the human genome. For a scoring matrix M,
and a match score t, the probability that a randomly
selected site from S scores at least t when matched with M
is
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where S and D are treated as the sets of sites they contain,
and ND is the number of possible sites in D. The ideal way
to evaluate Equation 1 is to scan all sequences in D and
count the sites with scores at least as great as t. In most
applications, however, D is prohibitively large and this
ideal solution is impractical.

We describe here a technique that preprocesses a sequence
database to create a summary data structure encoding suf-
ficient information to accurately estimate the probability
described in Equation 1. We refer to these summary data
structures as (g, k)-tables, because they tabulate all g-
spaced k-mers (defined below) in the sequence database.
Given a matrix and a cutoff score, a (g, k)-table allows
rapid estimation of the p-value for that score. Similarly,
the (g, k)-table allows a cutoff score associated with a
given p-value to be computed. This process is illustrated in
Figure 1.

Preprocessing sequence databases as (g, k)-tables
A g-spaced k-mer is a sequence segment that consists of k/
2 contiguous nucleotides, a space of width g following

position k/2, and the next k/2 contiguous nucleotides
starting at position k/2 + g + 1 (enforcing k to be even). As
an example, the 5-spaced 6-mer ACGTCA occurs in the
following sequence beginning at the fourth position:

TAGACGTTATGTCAA

Although it is possible to construct (g, k)-tables from other
formations of words, this format of a g-spaced k-mer can
adequately represent the majority of binding sites present
in the TRANSFAC [13] and Jaspar [14] databases. A
sequence database D may be either a single long sequence
or multiple sequences. Both cases are treated similarly.
The (g, k)-table for database D contains the number of
times each (g'-spaced k-mer occurs in a sequence of D, for
0 ≤ g' ≤ g. For a given word w of width k and containing g
spaces, the (g, k)-table documents the number of times w
occurs in D with at most g central spaces. For larger values
of k and g, a (g, k)-table contains more information about
D, providing more accurate p-value estimates with more
of the positions in a matrix considered exactly. However,
the total size of the (g, k)-table will be larger.

Calculating expected frequencies of long words
To calculate the expected frequency of words longer than
the words tabulated from the database, we first look for
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Converting between p-values and match scores using (g, k)-tablesFigure 1
Converting between p-values and match scores using (g, k)-tables. Based on a sequence database, a (g, k)-table 
encodes sufficient information to calculate match score p-values, or produce a score cutoff corresponding to a given p-value. 
Details of this process are described in the text.
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the most informative positions in the matrix, with the
information content of positions in the matrix defined as
in [15]. If the tabulated frequencies are of size k, we find
the most informative positions in the matrix that are in
the format of a g-spaced k-mer: k/2-gap-k/2. All k-mers
that can be generated from these positions are enumer-
ated using a branch and bound algorithm. The frequency
of each k-mer above threshold is then looked up in the (g,
k)-table. To estimate the expected frequencies of the
longer words we use the nucleotide content of the data-
base to create a Markov model of order k/2. With this, the
consecutive positions of the matrix that are not part of the
k most informative positions contribute to the expected
frequency in a way that is proportional to their frequency
in the promoter database.

Converting between p-values and scores
Given a scoring matrix M, and a match score t, let W (M,
t) be the set of all words w such that score(M, w) ≥ t.
Define Nest (w, D) as the estimated number of times the
word w occurs in sequences of D. We estimate the proba-
bility from Equation 1 as

We now describe how, for a given word w, we obtain an
accurate value for Nest (w, D) using a (g, k)-table. We first
identify the k positions in M with the greatest information
content, under the restriction that those positions must
match the format of a g-spaced k-mer. Let w' be the g-
spaced k-mer in w corresponding to the aforementioned
most informative positions in M. Using the (g, k)-table,
we obtain the exact number of times w' occurs in D. This
number of occurrences is then multiplied by the probabil-
ity of observing the nucleotides at remaining positions in
w given the nucleotides at positions in w', as described
above.

Implementing this technique, for a given matrix, requires
enumerating all words with a match score greater than the
specified cutoff. Such enumeration is feasible for the
majority of binding site matrices. If a p-value is given
instead of a threshold, the process is reversed: the p-value
is converted into an occurrence frequency, and the (g, k)-
table is used to estimate a score threshold for which we
will observe that occurrence frequency in the database.
When scanning sequences, each site constitutes a distinct
trial, and therefore, the p-values must be corrected for
multiple testing. The simple Bonferroni correction [16],
which assumes independence between trials, may be used
in this case. Any dependencies introduced by autocorrela-
tion are accounted for by the counts tabulated in the (g,
k)-tables: autocorrelating words will have greater counts
in the database, and this is directly reflected in the (g, k)-
table.

Accuracy of (g, k)-table calculations
To assess our ability to determine p-values of binding site
predictions using (g, k)-tables, we carried out the follow-
ing tests. Tables for two different size promoters: small (-
500 to +100 w.r.t TSS) and large (-5000 to +500 w.r.t.
TSS), and two sizes of k-mers: 6-mers and 8-mers, were
constructed for all human promoters in CSHLmpd. The
subset of TRANSFAC (v9.3, [13]) matrices described used
for testing was all vertebrate matrices with integer counts.

Each matrix in the subset was scanned on both of the
human promoter sets and thresholds for site matches
were set at a functional depth of 0.9. A functional depth
(described in the Methods section) of 0.9 was used here
because all matrices have a reasonable match threshold
corresponding to this functional depth. The empirical p-
value corresponding to this functional depth was then cal-
culated as the number of site matches divided by the total
number of windows of the size of the matrix contained in
the particular promoter set. The matrix threshold corre-
sponding to a functional depth of 0.9 was then converted
to a p-value using the appropriate (g, k)-table and an error
was calculated as the difference between the empirical p-
value calculated as above and the p-value calculated using
the (g, k)-table. The average error for all matrices tested for
both sizes of promoters and k-mers is shown in Table 1.

We also wanted to measure the error created with the
approach to p-value calculation as implemented in the
ESAsearch program. To test this software, we first calcu-
lated an empirical p-value for each matrix in the manner
described above. This p-value was then used as an input
parameter for ESAsearch to scan for sites with at least this
probability. The resulting number of sites found by ESAs-
earch was used to calculate the empirical p-value resulting
for the program and the error in the process was calculated
as the difference in the two p-values. The average errors
produced by the ESAsearch algorithm are listed in Table 1.

The error in the calculations using the (g, k)-tables
decreases as we use larger promoters and larger k-mers to
construct the (g, k)-tables, which is expected. As more
information is used in the calculation, the errors involved
will be reduced. More suggestions on the proper selection
of sequences to construct a (g, k)-table are included in the
Discussion section. We also tested the NMksite software
[6] in its ability to carry out this procedure. For the two
cases it was tested on (both small and large promoters),
out of the 524 matrices that were tested, NMksite could
not return thresholds for p-values small enough for 148
and 132 of the matrices respectively. This is due to the fact
that NMksite produces a distribution of thresholds and p-
values and if the desired p-value is smaller than any of the
p-values listed by NMksite, the user is unable to get a cor-
responding threshold. If we ignored the matrices NMksite
could not determine thresholds for, the errors for the
small and large promoter sets were 1.30e-2 and 1.35e-2
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respectively, which are much larger than the errors intro-
duced by either the ESAsearch or (g, k)-table method.

Statistical significance of module sites
As mentioned previously, it is often the case that binding
sites occur together in clusters as cis-regulatory modules
and these modules can occur in regions very far from the
genes they regulate. In this section, we extend the method
described above for the estimation of statistical signifi-
cance of single binding sites to the statistical significance
of modules.

To assess the statistical significance of gene clusters,
Hoberman et al. [17,18] developed statistics for gene clus-
ters based on a max-gap parameter, which is defined as
the maximum distance allowed between any two genes in
a cluster. In the following sections, we outline how the
max-gap technique can be extended to assessing the statis-
tical significance of clusters of transcription factor binding
sites. Once we have estimated the statistical significance of
the clustering of motif sites, we can combine p-values for
individual sites with the clustering p-value to get an over-
all significance estimation for cis-regulatory modules.

Previous work on scanning for cis-regulatory modules
The algorithms that have been introduced to find cis-reg-
ulatory modules can be divided into four types of algo-
rithms: (1) algorithms for de novo module discovery, (2)
algorithms that attempt to cluster binding sites found
with traditional methods into modules, (3) algorithms
that use phylogenetic information and (4) algorithms that
scan for a pre-defined module profile. Algorithms for de
novo discovery of modules include ModuleSearcher [19],
Co-Bind [20], Bioprospector [21], MITRA [22], dyad
search [23], CisModule [24], EMCModule [25] and the
Gibbs Module Sampler [26]. Algorithms that combine
single sites together to form modules include the logistic
regression analysis method introduced by Wasserman and
Fickett [27], MSCAN [28,29], COMET [30,31], MCAST
[32], Composite Module Analysis [33], Ahab [34], Mod-
uleFinder [35] and methods based on estimating the clus-
tering significance of single sites under a Poisson
distribution model of motif sites used by Lifanov et al.

[36] and Wagner [37-39]. In addition to these methods, a
number of recent algorithms have used conservation to
try to predict cis-regulatory modules [40-44]. Algorithms
designed specifically for scanning include CisModScan
[45], Target Explorer [46] and ModuleScanner [19]. We
will discuss these algorithms further when comparing
their performance to our method.

The original work by Wasserman and Fickett [27] took
into account the overall organization of a module in that
their technique has the ability to learn the order of the
motifs in a module and the method used by Klingenhoff
et al. considered the distances between single sites in a
module [47]. A few of the more recent algorithms for de
novo module discovery have also begun to take into
account the organization of modules. For example, the
algorithms introduced by Gupta and Liu [25] and Thomp-
son et al. [26] take into account the distances between
motif sites in a module. These methods, however, are not
built for scanning through sequences for defined modules
but rather for de novo discovery of modules. None of the
existing algorithms that allow for identifying and estimat-
ing the statistical significance of module sites allow the
user to search for modules with defined organization.

Statistical significance of modules without constrained organization
In this section we deal with the calculation of statistical
significance of motif clusters with no consideration given
to overall module organization. Hoberman et al. [17,18]
considered the clustering of a chain of genes where genes
were treated as points in a chain. Therefore, they did not
have to deal with the lengths of genes or the lengths of
gaps between genes in a cluster. For our situation, we are
considering motifs in a sequence window and the lengths
of motifs are very important. Our treatment of the max-
gap statistics diverges from that of Hoberman et al. due to
this. An example of a max-gap cluster of m binding sites of
width w in a sequence of length l with a max-gap g can be
seen in Figure 2.

Counting arrangements
The number of ways of creating a max-gap cluster of m
motifs, a maximum gap of g and total length l is equiva-

Table 1: Error in the estimation of p-values using (g, k)-tables. 

Test k-mer size Promoter Set Error (Ave ± S.D.)

(g, k)-table 6 small 3.53e-5 ± 1.87e-4
large 2.65e-5 ± 1.04e-4

8 small 1.84e-5 ± 6.57e-5
large 1.16e-5 ± 4.35e-5

ESAsearch small 1.23e-4 ± 5.96e-4
large 1.61e-4 ± 7.68e-4

Errors in the estimation of p-values using (g, k)-tables of various sequence sets and also the ESAsearch program [11,56]. The error in the calculation 
of p-values using (g, k)-tables decreases as larger k-mers and larger sequences are used to build the (g, k)-tables.
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lent to rolling to m - 1 dice, with faces numbered 0 to g,
such that the sum of their faces is equal to l - ∑i wi, where
0 <i ≤ m. This is, in turn, equivalent to rolling to m - 1 dice
with faces numbered 1 to g + 1 with the sum of their faces
equal to l - ∑i (wi - 1) - 1. Using this analogy, Hoberman et
al. [17,18] derived an expression for the number of ways
to construct a max-gap cluster of m genes anywhere in a
sequence of length l. When considering motifs with
widths, the expression

counts the number of ways to form a max-gap cluster of m
factors with widths wi, in a sequence of length l and a max-
gap parameter g. The differences in this expression and the
expression derived by Hoberman et al. are first, in Hober-
man et al., the sum of all the gaps was equal to l - 1 while
here the sum of all the gaps is equal to l - ∑i (wi - 1) - 1 and
second, we multiply the entire expression by m! because a
group of factors in a unique order qualifies as a unique
module.

Probabilities for the occurrence of clusters
With the ability to enumerate all possible ways to place m
factors with widths wi in a sequence of length l such that
the maximum possible gap allowed between any two fac-
tors is g we can calculate a p-value for the max-gap config-
uration. Under the null hypothesis that each site is
uniformly distributed in the sequence, the p-value for the
max-gap configuration is

The numerator in this equation is given by Equation 2
with the m! factor canceled by the denominator. The
denominator in this equation is the number of ways to
place m non-overlapping motifs in a sequence of length l

(see Additional file 1), with the m! factor canceled by the
numerator.

Statistical significance of modules with constrained organization
Here we extend the treatment of modules without organ-
izational constraints to deal with the organizational
parameters of the ordering of motifs, the spacing between
the motifs and the orientation of the motifs in a module.
Any or all of these organizational parameters can be spec-
ified when searching for a given module. In this section
we outline methods to calculate statistical significance of
module sites with any or all of these organizational
parameters specified. In each case, the overall probability
of the cluster with no organization is first calculated, and
then this probability is corrected for the organizational
constraints. An example of a module with specified organ-
izational parameters can be seen in Figure 3. We note that
a smaller module with organization can exist within a
larger module without organization.

Modules with order specified
We again define m as the number of motifs, g as the max-
gap parameter and l as the total length of the window. The
total number of permutations of m factors is simply m!.
Therefore, if the order of the factors in a module is speci-
fied, along with a max-gap parameter, the probability of
the module is:

Pr(gap ≤ g|{m, w, l}, r) = Pr(gap ≤ g, |m, w, l) P (r),

where Pr(gap ≤ g|m, w, l) is given by Equation 3 and,

Modules with spacing specified
The correction for the probability of a module site when
the spacing between any two pairs of factors is known can
be calculated as
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Max-gap cluster – module with organizational constraintsFigure 3
Max-gap cluster – module with organizational con-
straints. Max-gap cluster of motifs as a module with organi-
zational constraints. There are four motifs in this module 
that must occur in the order A,B,C,D. The spacings between 
the motifs are defined as sx and the orientations of the motifs 
are labeled with arrows above the motifs.

Max-gap cluster – module without organizational constraintsFigure 2
Max-gap cluster – module without organizational 
constraints. A max-gap cluster of motifs as a module with-
out organizational constraints. The length of the sequence (l) 
is 16 bases, the number of motifs (m) is four, the widths of 
each motif (wi) is two bases and the max-gap (g) is three 
bases.
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Pr(gap ≤ g|{m, w, l}, r, s) = Pr(gap ≤ g, |m, w, l) P (r) P (s),

where Pr(gap ≤ g|m, w, l) is given by Equation 3, P (r) is
given by Equation 4 and

where ms is the number of spacings which are defined in
the organization and spani is the size of the allowed span
between the two factors flanking the ith spacing (e.g. spani
= 25 if the spacing between motif A and motif B is known
to be between 10 and 35 bases). In this situation we have
also corrected for the order of the motifs in the module
being specified. In general, when the spacing between two
factors is defined, the order of the factors will be defined
as well.

Modules with strands specified
If the strands of the motifs in the module are specified,
then the final probability of the module is simply multi-
plied by 1/2 for every motif that has a specified strand.
Therefore, if the organization of a module has specified
strands, the final probability for the module is

Pr(gap ≤ g|{m, w, l}, d) = Pr(gap ≤ g|m, w, l) P (d)

where Pr(gap ≤ g|m, w, l) is given by Equation 3 and,

where md is the number of motifs for which strand infor-
mation is known.

Combining significance values from individual sites and module 
structure
With p-values calculated for individual sites as well as for
the clustering property of the module, we can combine
these significance values to get an overall module signifi-
cance. There are a number of ways that this can be done
depending on the situation. If it is desirable to have the
individual sites contribute more to the overall module
score, the p-values for the individual sites can be weighted
accordingly. Conversely, if the clustering property is more
important, the probability of clustering can be weighted
more. The most straightforward way to combine the p-val-
ues is just to take the product of the individual p-values as
the overall probability value and apply a Bonferroni cor-
rection. The technique we choose to combine the p-values
in MODSTORM is the technique used by Bailey and Grib-
skov [48].

Scanning for the IFN-β enhancer
The IFN-β enhancer is a classic example of an module
with organizational constraints, occurring in the pro-
moter of the IFN-β gene [49,50]. To examine the ability of
MODSTORM to find modules with organization in the
human genome, we scanned all intergenic regions in the
human genome with a module representing the IFN-β
enhancer (for details see Additional file 2). Scanning for
this module using MODSTORM and a module without
any constrained organizational parameters finds nine
occurrences of this module genome-wide. By enforcing
the organization, only one occurrence is found and it is
immediately upstream of the IFN-β gene. The location of
this predicted module is shown in Figure 4. The p-value
for this module site is 6.74e-12. This module site is also
found when searching for the module without defined
organizational parameters. However, the module p-value
in this case is only 2.13e-9.

To compare MODSTORM with other existing module
scanning tools, we scanned for the IFN-β module in a
sequence set consisting of all large promoters (-5000 to
+500 w.r.t. TSS). The MODSTORM software, with or with-
out organization, scans through all of these sequences and
finds the one true occurrence of this module in roughly
two minutes and 30 seconds on a modern LINUX work-
station. CisModScan takes 30 minutes on the same
machine to repeat the same task and is not able to find the
true module site. Sosinsky et al. tested Target Explorer on
the task of finding the IFN-β module. Target Explorer was
used to scan for windows of 50 bp within which at least
one binding site for c-Jun, ATF-2, IRF, and NF-κB occurred
and it was able to find a window where all occurred in the
human interferon-beta promoter [46]. Target Explorer
does not attempt to assign any statistical significance to
module occurrences. Aerts et al. also applied the ModuleS-
canner algorithm to the problem of finding the IFN-β
enhancer. They constructed a module consisting of motifs
for NF-κB, IRF-1 and HMGIY. ModuleScanner found
many occurrences of this module, with the fourth most
significant hit being upstream of the human interferon-
beta gene. In general, algorithms that just scan for module
occurrences will be much faster than any of the algorithms
that attempt to cluster together single sites from a library
of known matrices. To illustrate this, we tested the
COMET software for its ability to find the IFN-β enhancer.
COMET, given the four PFMs that make up the IFN-β
module as a library, scans for two hours, again on the
same machine. While it does find some clusters contain-
ing three or four matrices, COMET does not find the true
site.

Implementation of STORM and MODSTORM
The method of using a sequence database to convert
between score cutoffs and p-values was implemented in
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STORM, the Search Tool for Occurrences of Regulatory
Motifs. STORM searches sequences for sites that match a
scoring matrix, and is ideally suited for searching for mul-
tiple motifs simultaneously because the sequences are
preprocessed as suffix trees [51]. Once the suffix trees are
constructed, scoring matrices are matched along the suffix
trees using a branch and bound strategy, making the time
to search with each matrix proportional to the width of
the matrix, instead of the length of the sequence.

The MODSTORM software preprocesses sequences into
suffix trees in the same manner as STORM. When search-
ing for modules without organizational constraints, the
motifs making up the module are ranked by information
content. The highest information content motif is
scanned for first. If occurrences of this motif are found, the
remaining motifs are searched for in a window surround-
ing the first located motif. The motifs are searched for in
order of information content. If at any step, the motif
being searched for is not found in the window, the search
for the remaining factors is abandoned and the scanning
for the highest information content motif is resumed.

When searching for modules with organizational con-
straints, the 5' most motif is scanned for first. If an occur-
rence of this is detected, a window size defined by the
organization of the module is scanned for the next motif

in the module and so on. If any one of the motifs is not
discovered, the scanning for the 5' most motif is resumed.

Discussion
Importance of choosing the correct database to build (g, 
k)-tables
For p-values to be informative they must be calculated rel-
ative to the appropriate sequence database. When search-
ing for sites in 1 kb proximal promoters from the rat
genome, the most appropriate database to use is the com-
plete set of 1 kb rat promoters. When scanning through
human intergenic regions that have been masked using
RepeatMasker [52], the most appropriate background
sequence set to use in constructing a (g, k)-table is the
complete set of masked human intergenic regions. One
common problem in transcription factor binding site
detection is the presence of CpG islands. To address this
issue, tables can be constructed for CpG and non-CpG
sequence and the appropriate table can be used when
scanning in regions where the CpG status is known. In
addition to CpG islands, there are numerous features of
genomic sequence (such as repetitive regions) that could
affect the statistics calculated using (g, k)-tables. The selec-
tion of a proper background set to create (g, k)-tables
when analyzing such regions is imperative to the interpre-
tation of the results. In addition to the software which cre-
ates (g, k)-tables, we provide tables calculated for human,

IFN-β enhancerFigure 4
IFN-β enhancer. A screen shot of the IFN-β enhancer found with MODSTORM as a track on the UCSC genome browser 
(Human Mar. 2006 (hg18) assembly [55]). The top track spans the entire length of the module and is labeled with the module 
significance. The individual motifs occurrences are shown below. The predicted location of this site is consistent with the 
experimentally verified site.
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mouse and rat promoters from the CSHL mammalian
promoter database for three sizes: small (-500 to +100
w.r.t TSS), medium (-1000 to +300 w.r.t. TSS) and large (-
5000 to +500 w.r.t. TSS) as well as tables constructed from
all intergenic regions in human, mouse and rat. It is
important to stress the difference between statistical and
biological significance of k-mers in genomic sequence.
While this method will find k-mers that are statistically
significant, wet lab experiments must be performed to
determine biological significance.

Finding optimal modules with organizational parameters
When scanning for modules with organizational parame-
ters, the current method will not necessarily find the opti-
mal scoring module. A scenario exists where weaker
motifs existing in advantageous organization would score
higher than stronger motifs in less advantageous organi-
zation in the same genomic window. Our algorithm is
based on finding motifs first and then assessing organiza-
tion and would thus return the stronger motifs with the
weaker organization as the module hit from this region.

Modifications of our current algorithm which performs
the module search in a more iterative fashion would be
better able to deal with the situation of weaker motifs hav-
ing strong organization. For example, after finding mod-
ule sites, the threshold scores of the motifs comprising the
module could be lowered and the module region could be
searched for each motif again. If lower scoring motifs are
found, the module could be optimized by its overall sig-
nificance by considering motif scores and organization.

Extension of MODSTORM to module discovery
The MODSTORM software could easily be extended to
library based module discovery algorithm. In this case, a
library of known motifs would be scanned across every
window and motif combinations that lead to significant
modules would be retained. This is an interesting prob-
lem and there are multiple existing software tools that
attempt to solve this problem, several of which have been
mentioned above. We choose to focus here on the effi-
cient scanning for defined modules as this is an area of
research that is lacking.

Conclusion
We have introduced novel methods to aid in the detection
and estimation of statistical significance for both single
sites and modules of transcription factor binding sites.
Our method of using real promoters to estimate statistical
parameters provides an intuitive way to interpret the
threshold for binding site matches. The techniques intro-
duced to calculate the statistical significance of clusters of
transcription factor binding sites allow for the statistical
evaluation of putative cis-regulatory modules. The search
algorithms and statistical significance calculations imple-

mented in the software tools we provide allow for the
scanning of large intergenic sequences for single transcrip-
tion factor binding sites as well as cis-regulatory modules.
These software tools have the potential to greatly aid in
the in silico study of transcriptional regulation.

Methods
Other scoring methods allowed in STORM and 
MODSTORM
In addition to scoring putative motif site matches with p-
values as described above, we have also incorporated a
number of other scoring schemes into the STORM and
MODSTORM software. The additional scoring methods
include standard PWM threshold scoring, the percentage
of maximum score, and the functional depth.

A common and intuitive approach for cutoff selection
takes the maximum possible score derived from a given
matrix, and sets the threshold for occurrence at some per-
centage of the maximum score. This idea was shown to
have merit by Tronche et al., [53] who showed that HNF1
sites with a score greater than 83% of the maximum score
of the scoring matrix showed experimental evidence of
binding. Although this score of 83% of the maximum
score works well for HNF1, it is expected that different fac-
tors will have different percentages of maximum scores
allowed for binding.

The term "functional depth" was first introduced by Beer
and Tavazoie [54] as a term to represent the threshold
above which functional binding will occur for a particular
factor represented by a PWM. We define the functional
depth for a PWM score S as,

where Smin and Smax are the minimum and maximum
scores possible for the PWM.

Availability and requirements
Project name: STORM

Project home page: http://rulai.cshl.edu/storm

Operating system(s): Linux/Unix

Programming language: C++

Other requirements: The STORM and MODSTORM pro-
grams are available as part of the Comprehensive Regula-
tory Element Analysis and Discovery (CREAD) package,
see http://rulai.cshl.edu/cread/ for more information.

License: GNU GPL

functional depth =
−

−
S S

S S
min

max min
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