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Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this
process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are
efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes
splicing of an intron with a weak 39 splice-site. PUF60 has homology to U2AF65, a general splicing factor that facilitates 39

splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for
U2AF65 in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF65 in
cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF65 levels
can dictate alternative splicing patterns. Our results indicate that recognition of 39 splice sites involves different U2AF-like
molecules, and that modulation of these general splicing factors can have profound effects on splicing.
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INTRODUCTION
Accurate pre-mRNA splicing is essential for proper gene

expression. Introns must be spliced out of pre-mRNA and exons

ligated in order to make mature mRNA. Disease-causing

mutations that affect the splicing process are common, and testify

to the importance of splicing for normal cellular function. The

splicing process is made more complex by the fact that many pre-

mRNAs can be spliced in more than one way to give mature

transcripts coding for proteins with distinct functions. Such

alternative splicing greatly expands the coding capacity of the

human genome and contributes to the overall complexity of gene

expression [1]. Alternative splicing is often regulated in a tissue-

and developmentally-specific manner, and is also affected by

signaling pathways.

Intron removal is carried out by the spliceosome, a large

complex comprised of protein and RNA components. Among

these components are the U1, U2, U4, U5 and U6 small

ribonucleoprotein particles (snRNPs) which consist of a specific

small nuclear RNA (snRNA) and associated proteins. Assembly of

the spliceosome onto pre-mRNA is a dynamic process that

involves recognition of splice-site sequences at the ends of introns

(reviewed in [2]). For most introns, the conserved splice-site

sequences include a 59 splice-site element surrounding a GT

dinucleotide, and a 39 splice-site AG dinucleotide preceded by

a polypyrimidine tract and an upstream branchpoint sequence.

These splice-site elements are initially recognized by U1 snRNP,

which binds at the 59 splice site, and by SF1/mBBP, U2AF65 and

U2AF35, which bind cooperatively to the branchpoint sequence

[3,4], polypyrimidine tract [5,6] and 39 splice-site AG dinucleotide

[5,7,8,9], respectively.

A conserved family of splicing factors called SR proteins also

facilitates the earliest recognition of the 59 and 39 splice sites (for

review [2]). These first interactions between the spliceosome and

the pre-mRNA are important in identifying splice sites and

committing an intron to splicing. Once an intron has been initially

identified, U2 snRNP becomes stably associated with the pre-

mRNA. Recruitment of the U4/U6.U5 tri-snRNP to the

transcript initiates the formation of a mature spliceosome that is

poised to catalyze intron excision (for review, see [10]).

As a general rule, strong matches to the splice-site consensus

sequences are good predictors of efficient splicing. However, there

are many cases of introns with weak splice sites that are

constitutively spliced, and examples of alternative splicing in

which apparently weak splice sites are utlilzed more efficiently

than splice sites with stronger matches to the consensus sequence

[11,12]. Our current understanding of the determinants of exon

identity and intron splicing is limited. The well-defined consensus

sequences at the 59 and 39 splice sites do not contain sufficient

information to accurately identify bona fide splice sites [13],

suggesting that additional sequence features are involved in the

recruitment of the spliceosome to the correct location. Some of

these features include exonic and intronic enhancer and silencer

elements, which are recognized by distinct classes of RNA-binding

proteins [14].

Based on biochemical purification of the spliceosome, nearly

200 proteins are estimated to be involved in splicing (for review,

see [15]). However, only a fraction of these proteins currently have

established roles in splicing. Identification of factors that are

important for the recognition of weak splicing signals with poor

matches to the splicing consensus sequences is an important goal

towards understanding the mechanisms involved in splice-site

selection and splicing regulation and fidelity. Such factors may

play fundamental roles in tissue-specific or developmentally

regulated splicing events, which often result from the use of

apparently weak splice sites. In addition, studying the splicing of

introns with weak splice sites may facilitate the identification of
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splicing factors that are important for splicing in vivo, but may be

dispensable for detection of basal splicing of introns with strong

consensus splice sites, which have traditionally been used in most

mechanistic studies of splicing in vitro.

We were interested in identifying splicing factors required for

the splicing of weak splice sites. We developed an in vitro splicing

complementation assay in which splicing of a substrate with

a weakened 39 splice site is restored upon addition of a fraction of

HeLa cell nuclear extract. We identified PUF60 as a protein that

stimulated splicing in this assay. PUF60 was previously implicated

in splicing [15,16], though direct evidence for its role in the

reaction was lacking. We now provide direct evidence that PUF60

is a splicing factor involved in 39 splice-site recognition. We find

that for some substrates, PUF60 can activate splicing in the

absence of the related splicing factor U2AF65 and thus may

function in a similar capacity. We further demonstrate that PUF60

and U2AF65 can function cooperatively in splicing, and that

modulating their levels in cells affects specific alternative splicing

events. Our results suggest the existence of a splicing regulatory

pathway controlled by a class of general splicing factors that is

involved in the recognition of the 39 splice-site region.

RESULTS

Identification of PUF60 as a Splicing Factor
Pre-mRNA splicing in vitro can occur accurately in HeLa cell

nuclear extract. The cytoplasmic S100 fraction obtained during

the preparation of nuclear extract is also competent for splicing of

many substrates when complemented with one or more SR

proteins [17,18]. We identified a pre-mRNA transcript that, as

a result of mutations in the pyrimidine tract, requires additional

nuclear factors to achieve high levels of splicing in S100 extract.

This transcript is derived from the human b-globin gene, with

modified sequences between the branchpoint sequence and the 39

splice site (Figure 1A; [19]). In this case, the parental substrate

(WT) is spliced efficiently in HeLa nuclear extract, as well as in

HeLa S100 extract complemented with SR proteins, such as

recombinant SC35 (Figure 1B). When four pyrimidine residues

near the branchpoint sequence were substituted with guanines

(PyD) (Figure 1A), there was little difference in the splicing of the

two substrates in nuclear extract (Figure 1B). However, splicing of

the weakened intron substrate (PyD) was severely compromised in

S100 extract complemented with SC35 (Figure 1B). Deficient PyD

splicing could be rescued by the addition of a 20-40% ammonium

sulfate fraction of nuclear extract (Figure 1B). The ammonium

sulfate fraction enhanced splicing of the WT substrate as well,

though not to the same degree as it stimulated PyD. We refer to

this activity that can rescue splicing of the PyD substrate as

RESCUE (Required for Efficient Splicing Complementation in

Unproductive Extract).

The splicing factor U2AF65 was a possible candidate for

RESCUE activity because it recognizes the pyrimidine tract

during the splicing reaction [5]. However, western analysis showed

a substantial amount of U2AF65 in S100 extract (Figure 1E). We

also found that recombinant U2AF65/35 that complements splicing

in a U2AF depletion assay (Figure S1A) was not able to comple-

ment splicing in our S100 complementation assay (Figure S1B)

indicating that U2AF65/35 are not responsible for RESCUE

activity.

We purified RESCUE activity by sequential biochemical

fractionation (Figure 1C). Following each step of purification,

fractions were assayed for their activity in splicing of PyD pre-

mRNA in S100 extract supplemented with SC35. Active fractions

were pooled and purified further. As a first step, RESCUE activity

in the 20–40% ammonium-sulfate precipitate was subjected to

density-gradient centrifugation in cesium chloride (CsCl). The

active fractions from the CsCl gradient were loaded on a Poros

HE1 heparin column and RESCUE activity eluted at high salt

(data not shown). We next disrupted protein-protein interactions

in the active fractions by urea denaturation, and separated the

pooled fractions on a Poros HQ column in the presence of urea

(Figure 1C). Proteins associated with RESCUE activity bound to

the column and were eluted at low salt concentrations (Figure S2).

The most active fraction (Figure 1C, fraction 18) comprised

a limited number of polypeptides, as analyzed by SDS-PAGE

(Figure 1D). To identify the proteins, the entire fraction was

digested with trypsin and the resulting peptides were identified by

liquid chromatography tandem mass spectrometry (LC/MS/MS).

Peptides from two proteins were detected: PUF60 (also known as

FIR, RoBP1 and siah-bp1) and DDB1. DDB1 is a UV-damaged-

DNA binding protein involved in nucleotide excision repair; it is

structurally related to the U2-snRNP-associated protein SF3b130,

but otherwise has no obvious link to splicing [20].

PUF60 is related to U2AF65, which has an important role in 39

splice site recognition, and is thus a good candidate for RESCUE

activity. We confirmed the presence of PUF60 in the HQ fraction

with RESCUE activity by western blotting (Figure 1D). PUF60

migrates as a monomer and as an SDS-resistant dimer on SDS-

PAGE; the latter form was detected in addition to the monomer in

the heparin fraction (Figure 1D).

To confirm that PUF60 is the primary factor responsible for

RESCUE activity, we generated recombinant PUF60 in E. coli

(Figure 1E). The addition of rPUF60 to S100 extract with SC35

stimulated PyD splicing (Figure 1F) demonstrating that PUF60

activates PyD splicing in the RESCUE splicing assay. Western blot

analysis revealed that PUF60 is present predominantly in nuclear

extract, with substantially lower levels in S100 extract (Figure 1E),

which explains why the addition of PUF60 to the extract

stimulates splicing in our complementation assay. In contrast,

the level of U2AF65 in S100 extract is comparable to the level in

nuclear extract (Figure 1E).

PUF60 has been previously identified as a component of

purified spliceosomes (reviewed in [15] and is associated with the

17S U2 snRNP [21]. PUF60 was originally found in a highly

purified fraction of nuclear extract that contained both PUF60 and

the splicing factor SRp54. This fraction, but not purified

recombinant PUF60 alone, complemented splicing when com-

bined with U2AF65/35 in extract depleted of poly(U)-binding

proteins [16]. Because this previous report did not demonstrate

that recombinant PUF60 could complement splicing, which is the

definitive criterion for demonstrating a functional role for

a protein, it has been unclear whether PUF60, SRp54 or

additional unidentified factors were responsible for the splicing

activity of the purified fraction. Thus, our finding that PUF60 can

complement splicing in S100 extracts is the first formal

demonstration that human PUF60 is a functional splicing factor.

PUF60 Associates with Splicing Factors Involved in

Early Spliceosome Assembly
To better understand the role of PUF60 in splicing, we identified

PUF60-interacting proteins using a HeLa cell line with stable-

integration of PUF60 cDNA fused to tandem N-terminal FLAG

and V5 epitope tags (Figure 2A). Nuclear extract was prepared

from these cells and PUF60 was immunoprecipitated with anti-

FLAG antibody linked to agarose beads (Figure 2B). PUF60 and

co-immunoprecipitated proteins were eluted from the beads with

excess FLAG peptide, and were then separated by SDS-PAGE

PUF60 Regulates Splicing
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(Figure 2B). Prominent polypeptides were excised and identified by

mass spectrometry. To thoroughly characterize proteins that

specifically associate with PUF60, we performed a parallel

experiment in which immunoprecipitates from F-V5-PUF60

HeLa nuclear extract or from control HeLa nuclear extract were

digested with trypsin directly on the beads (Figure 2B). Released

Figure 1. Identification of PUF60 as a Splicing Activator (A) Schematic of the wild-type (WT) and mutant (PyD) splicing substrates [19]. Boxes
represent exons and lines are introns. Mutations are in lower case and the corresponding nucleotides in the wild-type substrate are underlined. Bold
A indicates the branchpoint. (B) In vitro splicing assays were carried out in HeLa nuclear extract (NE) or S100 extract complemented with recombinant
SC35, with or without a 20–40% ammonium sulfate (AS) fraction from HeLa NE. Quantitation is shown as the percent of the total RNA that is spliced.
(C) Scheme for purification of the complementing activity and quantitation of RESCUE activity in HQ column fractions spanning the peak of activity.
Splicing activity was normalized to the input material (H*). (see also Figure S2). H* refers to the HQ column input that was denatured with urea and
renatured. (D)(top) Silver-stained SDS-PAGE of HQ peak fractions. (bottom) Western blot analysis of heparin (H) and HQ fractions 14-21. PUF* refers to
an SDS-resistant dimer of the protein [16]. (E) Western blot analysis of S100 (lanes 1,4; 4 ml), NE (lanes 2,5; 4 ml), and recombinant PUF60 from E. coli
(lane 3) using a PUF60 (lane 1–3) or U2AF65-specific (lane 4,5) antibody. (F) In vitro splicing assay using the PyD substrate in reactions containing S100
extract with SC35 alone (lane 2; 3 ml) and complemented with PUF60 purified from E. coli (lanes 3–4; 1 and 2 ml).
doi:10.1371/journal.pone.0000538.g001
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peptide fragments were subjected to analysis by mass spectrom-

etry. Using these two methods, proteins specifically associated with

PUF60 were identified. The results from both experiments were

compiled, and only proteins identified in both experiments and

absent from control samples were classified as PUF60-associated

proteins with a high degree of confidence (Table 1).

Strikingly, most of the proteins that co-immunoprecipitated

with PUF60 are known splicing factors. Nine SR proteins, as well

as U1 and U2 snRNP-associated proteins make up the majority of

the proteins associated with PUF60 (Table 1). These splicing

factors function at early steps of the splicing reaction, during the

initial recognition and specification of splicing signals. Consistent

with the mass-spectrometry data, western analysis confirmed the

presence of several proteins identified in the PUF60 immunopre-

cipitates (Figure 2C).

Functional Redundancy and Synergy between

PUF60 and U2AF65/35

PUF60 has sequence and structural homology to U2AF65 [22]

suggesting that the two proteins may have related functions in

splicing. To investigate this possibility, we compared the ability of

PUF60 and U2AF65 to complement splicing in extract depleted of

both factors. We performed poly(U)-Sepharose chromatography of

nuclear extract, which effectively generates extract depleted of

these proteins (Figure S3A; [16,23]. The flow-through (NED)

removes more than 98% of poly(U)-binding factors, such as

PUF60, U2AF65, and U2AF35 (Figure S3B, S3C and S3D) and

does not support splicing of PyD or other substrates in vitro

(Figure 3). This depletion method does not alter the levels of other

nuclear splicing factors tested, such as SF2/ASF (Figure S3B).

To test the ability of U2AF and PUF60 to complement splicing

in the depleted extract, we expressed His-tagged PUF60 or His-

tagged U2AF35 in HEK-293E cells and purified the proteins by

nickel-agarose chromatography (Figure S3C and S3D). His-tagged

U2AF35 co-purifies with U2AF65 (Figure S3D), reflecting the

strong interaction of these two proteins [16]. Purified PUF60 was

unable to complement PyD splicing in the depleted extract

(Figure 3A) and U2AF65/35 provided only very marginal

complementation. However, when added in combination,

PUF60 and U2AF65/35 stimulated PyD splicing. Our results using

this depletion assay confirm our previous results from the S100-

extract complementation assay (Figure 1F) that PUF60 has a role

in PyD splicing, and suggest a mechanism for its activity that

involves U2AF65/35.

We next tested whether the requirement for PUF60 in splicing

and the cooperative action of PUF60 and U2AF65/35 are specific

for PyD, or whether this activity is more general. We tested the

natural b-globin intron 1, from which PyD was originally derived,

and found that the purified U2AF complex activated b-globin

splicing to a higher degree than PyD (Figure 3B). Similar to our

results with PyD, the addition of PUF60 and U2AF65/35 together

had a strong cooperative effect on splicing (Figure 3B). This result

supports our finding that the PyD substrate is more dependent on

PUF60 for splicing (Figure 1). U2AF65 is generally considered

essential for pre-mRNA splicing [24,25]. Surprisingly, in the

absence of the U2AF heterodimer, PUF60 complemented splicing

to some degree (Figure 3B). Overall, our results indicate the

PUF60 and U2AF65/35 function synergistically in splicing, but are

also able to functionally replace each other in the splicing of some,

but not all substrates.

To further investigate this U2AF-independent splicing phenom-

enon, as well as the synergistic activity of PUF60 and U2AF65/35 in

splicing, we tested additional substrates, including C12 [26], d-

crystallin [27] and ftz [28]. We found that splicing of these

substrates could be complemented by PUF60 in the depleted

extract (Figures 3C and 3D and S4). The complementing activities

of PUF60 and U2AF65/35 were comparable for the C12 substrate

(Figure 3C). In contrast, U2AF65/35 was more active than PUF60

in complementing d-crystallin (Figure 3D) and ftz splicing (Figure

S4). The amount of U2AF65/35 added to the reaction was

considerably lower than that of PUF60, because the specific

activity of recombinant PUF60 appears to be lower than that of

Figure 2. Identification of PUF60-associated Proteins. (A) Western blot analysis of nuclear extract (NE) prepared from control untransfected HeLa
cells (C, lane 1) or cells expressing the FLAG-V5-tagged PUF60 protein (F-V5-PUF, lane 2). Blots were probed with antibodies specific for PUF60 and U2
snRNP B’’. (B) Silver-stained 4–20% gradient SDS-PAGE of FLAG-PUF60 (PUF, lanes 1, 3) or control (C, lanes 2,4) immunoprecipitates, either bound to
the a-FLAG beads (lanes 1,2) or eluted from the beads with FLAG peptide (lanes 3,4). The heavy chain (*) and light chain (**) from the FLAG antibody
are indicated. (C) Western blot analysis of FLAG-PUF60 immunoprecipitates eluted with FLAG peptide.
doi:10.1371/journal.pone.0000538.g002

PUF60 Regulates Splicing

PLoS ONE | www.plosone.org 4 June 2007 | Issue 6 | e538



U2AF65/35. This difference may reflect the intrinsic activities of

the proteins in the splicing reaction, or it may be due to differences

in the specific activities of the recombinant protein preparations.

For example, the PUF60 recombinant protein may lack a co-

factor—analogous to the U2AF65/35 relationship—that could be

critical for maximum activity. In any case, our results indicate that

U2AF65/35 is not strictly required for splicing in vitro when PUF60

is present.

A striking synergistic effect of PUF60 and U2AF65/35 on splicing

was observed for all splicing substrates we tested. The addition of

increasing amounts of U2AF65/35 to extract containing a fixed

amount of PUF60, or vice-versa (Figures 3C and 3D and S4),

resulted in a.5-fold stronger activation of splicing relative to

reactions in which comparable amounts of PUF60 or U2AF65/35

were added to the extract in the absence of the other. The

expected level of splicing if the effect of these proteins on splicing is

additive was quantitated (Figures 3E and S4B, Sum) and was

substantially lower than the observed splicing when PUF60 and

U2AF65/35 were present together in the extract (Figures 3E and

S4B). These results demonstrate the cooperative activity of PUF60

and U2AF65/35 in splicing, and may also suggest differences in

substrate-specific requirements for these proteins.

Cooperative Binding of PUF60 and U2AF65/35 to RNA
To explore the nature of the cooperative activity of PUF60 and

U2AF65/35, we tested whether one protein influences the binding of

the other to a 39 splice site. We performed gel-shift experiments with

U2AF65/35 heterodimer purified from baculovirus-infected SF9 cells

and recombinant PUF60 purified from human HEK-293E cells

(Figure S5). A 34-nt RNA substrate derived from the 39 end of

adenovirus major late pre-mRNA (Figure 4A) was used as a binding

substrate. This RNA has been extensively characterized for binding

by U2AF65/35 and SF1/mBBP [3] and is therefore useful for

assessing the general contribution of PUF60 to binding in the 39

splice-site region. PUF60 and U2AF65/35 were incubated with the

substrate and complexes were separated by native gel electrophoresis

and detected by autoradiography and phosphorimage analysis. The

proteins in the shifted complexes were identified by transferring the

gels to a membrane, followed by western blot analysis using PUF60

and U2AF65 antibodies [29](Figure S6).

When added alone, PUF60 and the U2AF heterodimer each

bound the RNA substrate (Figure 4A). When PUF60 and U2AF65/

35 were incubated together with the RNA, PUF60 binding was

enhanced as much as four-fold compared to binding in the

absence of U2AF65/35 (Figure 4A, cf. lanes 3–5 with lanes 7–9 and

lane 3 with lanes 14–17). Interestingly, increasing amounts of

PUF60 binding to the RNA appeared to displace the U2AF

complex, as evidenced by the decrease in the U2AF:RNA

complex. Thus, U2AF65/35 strongly facilitates PUF60 binding

and in so doing may destabilize its own binding. Alternatively, the

presence of PUF60 may alter the binding of U2AF65 and result in

a less stable interaction with the RNA that does not withstand the

separation on the polyacrylamide gel. In any case, the cooperative

binding of PUF60 and U2AF65/35 suggests that the activities of

these proteins in splicing may arise from collaboration during their

initial binding to the RNA.

In order to help define the interaction between the 39 splice-site

region and PUF60 and the U2AF65/35 heterodimer and whether

these interactions change when the proteins are incubated

together, we performed footprinting experiments with the AdML

RNA substrate and purified proteins (Figure 5). Previous

footprinting analysis of this substrate with purified U2AF65

revealed that the protein protects the pyrimidine tract and also

the branchpoint sequence to some degree [3]. To test whether

both PUF60 and U2AF65/35 protect the pyrimidine tract, we

digested the RNA with RNase 1, which cleaves 39 of all four bases.

RNase1 did not cleave efficiently near the 59 end of the RNA, even

in the absence of protein. Nonetheless, we found that the U2AF65/

35 heterodimer and PUF60 both protected the pyrimidine tract

Table 1. Proteins associated with PUF60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accession # Protein Cal. Mass Peptides* log (e)*

SR proteins

SW:Q05519 SRp54 53542 25 2221

SW:QWXA9 SRrp86 71649 19 2165

SW:Q07955 SF2/ASF 27745 10 259

SW:Q13247 SRp55 39587 6 231

SW:Q13243 SRp40 31264 4 230

SW:Q16629 9G8 15763 5 226

SW:Q01130 SC35 25476 3 225

SW:Q13595 TRA-2 alpha 32689 2 217

SW:Q15815 TRA2-beta 33666 2 29

U1-associated

SW:P08621 U1 70K 51557 4 221

SW:P09012 U1A 31279 1 25

U2-associated

SW:O75533 SF3b155 145830 32 2239

SW:Q13435 SF3B145 97585 14 295

SW:Q15393 SF3B130 135577 5 239

SW:Q15459 SF3A120 88886 7 237

SW:Q15427 SF3b50 44386 4 237

SW:Q9Y3B4 SF3B14 14585 4 229

SW:Q12874 SF3A60 58849 2 217

SW:Q15393 SF3b130 135576 1 26

SW:P09661 U2 A’ 28415 1 21.4

Other splicing factors

SW:Q9UQ35 SRM300 299614 23 2171

SW:Q7L014 DDx46/prp5 117575 19 2122

SW:Q14498 HCC1 40541 7 251

SW:095218 ZN265 36318 5 227

SW:Q15287 RNPS1 34208 3 223

SW:P26368 U2AF65 53501 2 210

SW:Q9UMS4 Prp19 55180 2 23

RNA-related

SW:Q9Y383 LUC7L2 47506 8 253

SW:P38919 eIF4AIII/DDx48 46871 6 238

SW:Q9NQ29 LUC7L 38405 4 221

SW:O95232 CROP(LUC7a) 51466 3 213

SW:P35637 FUS 53426 2 210

SW:P05455 La 46837 2 26

SW:Q9Y580 RBM7 30503 1 27

SW:P10155 Ro 60KDa 60670 1 24

SW:Q14103 hnRNP D 38434 1 22

Others

NP_653205 NHN1 106378 7 245

*Results from experiment in which proteins are directly digested and sequenced
from beads.

doi:10.1371/journal.pone.0000538.t001..
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Figure 3. Cooperative Activity of PUF60 and U2AF65/35 in Splicing. (A) Complementation of PyD splicing in vitro in nuclear extract depleted of
PUF60 and U2AF subunits using poly(U)-Sepharose. PyD pre-mRNA spliced in mock-depleted nuclear extract (NE, lane 1), extract depleted of U2AF
subunits and PUF60 (DNE, lane 2), depleted extract complemented with U2AF65/35 purified from HEK-293E cells alone (lanes 3–6: 17, 33, 67, and
133 nM final concentration of U2AF65, respectively) or with 67 nM of U2AF65 plus recombinant PUF60 (lanes 7,8: 1.2 and 2.4 mM PUF60) or with
PUF60 alone (lanes 9,10: 1.2 and 2.4 mM). (B) Splicing of b-globin intron 1 in nuclear extract (NE, lanes 1, 8), or in poly(U)-depleted extract alone (DNE,
lanes 2,9). Depleted extract was complemented with purified U2AF65/35 (lanes 3–5: 17, 33, and 133 nM final concentration of U2AF65), with 670 nM of
U2AF65 plus recombinant PUF60 (lanes 6,7: 1.2 and 2.4 mM,) or with PUF60 alone (lanes 10,11: 1.2 and 2.4 mM). (C) C12 and (D) d-crystallin pre-mRNA
spliced in nuclear extract (NE, lanes 1), depleted extract (DNE, lanes 2) or depleted extract with addition of recombinant PUF60 (lanes 3–5: 1.2, 2.4, and
4.8 mM final concentration; lanes 6–8: 1.2 mM; lanes 12–14, 0.6, 1.2, and 2.4 mM) or purified U2AF65/35 (lanes 6–8: 33, 67, and 133 nM of U2AF65; lanes
9–11: 67, 133, and 200 nM ; lanes 12–14: 670 nM). (E) Quantitation of C12 (left) and d-crystallin (right) splicing. Splicing was calculated at three
concentrations of protein (see C and D). PUF60 corresponds to quantitation of lanes 3–5; PUF60+U2AF65 refers to lanes 6–8; U2AF refers to lanes 9–
11; and U2AF+PUF60 corresponds to lanes 12–14. The level of splicing expected if the PUF60 and U2AF activity is additive was calculated as the sum
of lanes 3+9, 4+10, and 5+11, respectively (Sum).
doi:10.1371/journal.pone.0000538.g003
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from cleavage (Figure 5A and 5B). We did not observe changes in

the protection pattern nor in the level of protection when the two

proteins were added in combination (lane 4). However, in order to

see efficient protection using this enzyme, a level of PUF60 and

U2AF65/35 was required that was out of the range for cooperative

interactions, as judged by the gel-shift experiments. Thus, we were

not able to assess the cooperative protection of the RNA by PUF60

and U2AF65/35 using RNase 1.

We also performed footprinting analysis with RNase T1, which

cleaves 39 of guanosines. We observed partial protection of the

guanosine at the 39 splice-site AG dinucleotide by PUF60 and

U2AF65/35 when incubated individually, as evidenced by the

decrease in cleavage product 2 (Figure 5C and 5D). When PUF60

and U2AF65/35 were added together to the reaction, the protection

pattern of the RNA was altered. An increase in protection of the

AG dinucleotide (product 2) as well as the guanosine in the

pyrimidine tract (product 3) suggests that the binding of the

proteins changes when both are present. These results suggest that

the cooperative binding seen in the gel shift assay may reflect

interactions at the pyrimidine tract that in turn stabilize binding to

the AG at the 39 splice site.

We also reproducibly observed U2AF65/35 protection of the

branchpoint sequence region in the absence of PUF60 (Figure 5C,

lane 4, products 4,5,6), as previously reported [3]. PUF60 had the

opposite effect on accessibility in this region, causing enhanced

cleavage in this region (Figure 5C and 5D, product 4, 5, 6). These

effects on the branchpoint sequence may reflect non-specific binding

of the proteins. Interestingly, these effects were not observed when

the proteins were added together, suggesting that the presence of

both proteins increases or stabilizes specific binding.

Modulation of Alternative Splicing by PUF60 and

U2AF65

We have shown that PUF60 and U2AF65/35 function coopera-

tively during splicing in vitro, and that the absence of either protein

does not eliminate splicing but severely compromises its efficiency.

From these results, we reasoned that splicing activity and

alternative splicing might be regulated in vivo by variations in the

level of these two proteins. We found that the levels of PUF60 and

U2AF65 do indeed vary between different cell-types. In particular,

the levels of PUF60 and U2AF65 in HeLa cells are 3-5 fold higher

Figure 4. Cooperative Binding of U2AF65/35 and PUF60 to the 39 splice site. (A) Electrophoretic mobility shift assay using a radiolabeled 34-nt RNA
derived from adenovirus major late (AdML) pre-mRNA, and recombinant PUF60 and U2AF65/35. Complexes are indicated on the left. (B) Quantitation
of PUF60 binding to AdML RNA represented as the fraction of total labeled RNA bound by the protein. (C) U2AF65 binding represented as the fraction
of total labeled RNA bound by the protein.
doi:10.1371/journal.pone.0000538.g004
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Figure 5. Footprinting analysis of PUF60 and U2AF65/35 binding (A) RNase 1 digestion. Labeled RNA was incubated with purified PUF60, U2AF65/35,
or both PUF60 and the U2AF heterodimer, digested with RNase and separated by denaturing PAGE. The concentration of PUF60 was 0.72 mM (lane 2),
or 0.36 mM (lane 4) and that of U2AF65 was 1.9 mM (lane 3), or 0.96 mM (lane 4). (B) Graphical representation of footprint data in (A). Relative
protection is normalized to digestion in the absence of protein (A, lanes 1, 6). The RNA sequence below the plot indicates the position of cleavage
(arrowhead). The pyrimidine tract is underlined. (C) RNase T1 digestion. The concentration of PUF60 was 0.36 mM (lanes 7, 9) and that of U2AF65 was
0.48 mM (lanes 8,9). The bands corresponding to the pyrimidine (Py) tract and branchpoint adenosine (A), and full-length RNA (FL) are indicated (see
also Berglund et al., 1998). RNase T1 cleavage sites are numbered. A lower exposure of the top of the RNase T1 gel allows visualization of cleavage
site 2. (D) Graphical representation of footprinting data in (C). Relative protection is normalized to digestion in the absence of protein (C, lanes 1, 6).
The RNA sequence below the plot indicates the position of cleavage (arrowhead). The pyrimidine tract is underlined.
doi:10.1371/journal.pone.0000538.g005
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than in the neuronal-like WERI-RB-1 cells (Figure S7). These

results indicate that the levels of the proteins are not constant and

may be controlled in a tissue-specific manner, which may

contribute to differences in alternative splicing between different

cells.

We investigated whether alternative splicing can indeed be

modulated by changing U2AF65 and PUF60 levels in cells. We

used an RNAi approach to deplete PUF60 levels in cells. We first

created a HeLa cell line (PUFrm) with stable integration of

a PUF60 cDNA with silent mutations in the target region for an

Figure 6. Changes in PUF60 and U2AF65/35 levels regulate alternative splicing in cells. (A) Western blot analysis of HeLa cells with stable expression
of empty vector (HeLa) or PUF60 cDNA with silent mutations that protect transcripts from siRNA-mediated knockdown (HeLa PUFrm). Cells were
treated with PUF60 siRNA (+) or mock-treated (2). Blots were probed with antibodies specific for PUF60, hnRNP A1, and U2 B’’. (B) Western blot
analysis of HeLa cells treated with siRNA specific for PUF60 (lane 2), a U2AF65-specific siRNA (lanes 3 and 4) or mock-treated (lane 1). Antibodies
against U2AF65, PUF60, or a-tubulin were used. (C) APP and (D) BIN1 alternative splicing analyzed by RT-PCR with [a-32P]dCTP of endogenous
transcripts from stable cell lines mock-treated (lanes 1,3) or treated with PUF60 siRNA (lanes 2,4)(from (A)). (E) APP and (F) BIN1 alternative splicing
analyzed by RT-PCR with [a-32P]-dCTP of endogenous transcripts from HeLa cells mock-treated (2) or treated with PUF60 (P), U2AF65 (U) siRNAs, or
both (P+U). RT-PCR analysis of APP and BIN1 from untreated Weri-Rb1 (W) cells demonstrates neural splicing patterns.
doi:10.1371/journal.pone.0000538.g006
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siRNA, and a control cell line with stable integration of the vector

alone. These cell lines were treated with the PUF60 siRNA. As

expected, PUF60 levels were reduced in the vector-control cell line

(Figure 6A). Because PUF60rm is not targeted by the siRNA, only

a slight reduction of PUF60, due to the reduction of endogenous

PUF60, was seen in the PUFrm cell line (Figure 6A).

PUF60 was previously identified in a yeast three-hybrid assay as

a factor that interacts with an intronic splicing enhancer located 36

nucleotides upstream of the 39 splice-site region of the amyloid

precursor protein (APP) transcript; this enhancer promotes

inclusion of the alternatively spliced exon 8 of APP transcript

[30]. APP alternative splicing is also regulated in a tissue-specific

manner: neuronal tissues favor exon 7 and 8 skipping (isoform 69).

whereas non-neuronal tissues exhibit nearly complete inclusion of

exon 7 and some exon 8 skipping (isoforms 6789 and

679)(reviewed in [31]. To determine whether PUF60 can

modulate APP alternative splicing, we performed RT-PCR to

analyze alternative splicing of endogenous APP transcripts in the

cells depleted of PUF60. We observed a decrease in transcripts

that include exon 8, and an increase in transcripts that skip exons 7

and 8, relative to APP transcripts from the control cells (Figure 6C).

No change in alternative splicing was observed in the knockdown

of PUF60 in the PUFrm cells (Figure 6C), indicating that the

change in APP alternative splicing was a direct and specific result

of PUF60 depletion. These results are consistent with the

aforementioned report that PUF60 interacts with a splicing

enhancer that is important for exon 8 splicing [19]. Skipping of

APP exons 7 and 8 is also the predominant isoform in WERI cells

(Figure 6E), which have lower levels of PUF60 than HeLa cells

(Figure S7). These findings may indicate a correlation between

skipping of these exons and PUF60 levels in brain.

We next tested for changes in additional alternative splicing

events following depletion of PUF60 from cells. Alternative

splicing of the tumor suppressor BIN1 is similar to that of APP

in that there are multiple alternatively spliced exons and a distinct

splicing pattern is observed in neuronally-derived samples [32].

Changes in the level of BIN1 isoforms have been linked to tumor

progression, which can be induced by modulation of the

expression levels of splicing factors [32,33]. We found that

PUF60 knockdown resulted in a reduction of BIN1 isoforms that

include exon 12A (Figure 6D). This splicing pattern is similar to

that observed in WERI cells (Figure 6F). Thus, knockdown of

PUF60 in HeLa cells results in a shift toward a neuronal-type

splicing pattern, similar to the shift in splicing observed in APP

transcripts following PUF60 depletion.

If different introns have different requirements for PUF60 and

U2AF65, then depleting U2AF65 in cells might be expected to have

different effects on alternative splicing than PUF60 depletion. To

test this idea, a U2AF65-specific siRNA was used to deplete the

protein from HeLa S3 cells (Figure 6B). Consistent with above

results, PUF60 depletion caused an increase in exon 7 and exon 8

skipping (Figure 6E). In contrast, U2AF65 depletion increased

exon 8 skipping, as evidenced by an increase in isoform 679

(Figure 6E). U2AF65 knockdown also altered BIN1 splicing: unlike

PUF60 depletion, which favored exon 12A skipping (Figure 6F),

U2AF65 depletion promoted exon 12A inclusion (Figure 6F).

These results suggest that the splicing of different introns is

differentially affected by changes in the levels of U2AF65 and

PUF60. Knock-down of PUF60 and U2AF65 together resulted in

a change in APP and BIN1 splicing similar to the pattern seen with

U2AF65 knockdown alone (Figure 6E and 6F), suggesting that the

U2AF65 effect may be dominant over the PUF60 effect on splicing.

We conclude from these results that modulation of the activity or

levels of PUF60 and U2AF65 may contibute to the regulation of

alternative splicing.

We tested the effect of PUF60 and U2AF65 depletion on the

splicing of several additional alternatively spliced exons, and

observed a spectrum of different responses. A single nucleotide

polymorphism in the pyrimidine tract of UBQLN1 intron 7 is

associated with partial skipping of exon 8 and has recently been

linked to an increased risk of Alzheimer’s disease [34]. We found

that exon 8 splicing was insensitive to changes in PUF60 levels in

HeLa cells (Figure 7A). However, depletion of U2AF65 led to

a striking increase in exon 8 skipping. We also tested splicing of

SMN2 exon 7, which is a well-studied splicing event that is

influenced by a number of splicing factors (reviewed in [35]). We

found that knockdown of either PUF60 or U2AF65 led to

a decrease in exon 7 skipping (Figure 7B). Finally, we tested

splicing of MAPT exon 10. Human mutations that alter MAPT

exon 10 splicing are linked to frontotemporal dementia with

Parkinsonism linked to Chromosome 17 (FTDP-17), and many

splicing factors have been documented to be involved in the

regulation of this splicing event (reviewed in [36]). We found that

alternative splicing of exon 10 was not significantly affected by

Figure 7. Complex modulation of alternative splicing by PUF60 and U2AF65. (A) UBQLN1 exon 8 splicing, (B) SMN2 exon 7 splicing, and (C) MAPT
exon 10 splicing analyzed by RT-PCR in the presence of [a-32P]-dCTP of endogenous transcripts from untreated (2) HeLa cells, HeLa cells treated with
a PUF60-specific siRNA (P), a U2AF65 siRNA (U), or both siRNAs (P+U). Transcripts including the alternative spliced exon (+) or skipping the exon (D) are
labeled.
doi:10.1371/journal.pone.0000538.g007
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knockdown of PUF60 or U2AF65 in HeLa cells (Figure 7).

Together, our results indicate that changes in the levels of PUF60

and U2AF65 in cells do not alter splicing of all alternative exons.

Instead, changes in the quantity of these proteins appear to

selectively modulate alternative splicing of a subset of exons.

DISCUSSION
Introns with splice-site sequences with poor matches to the

consensus motifs are common in pre-mRNAs. Despite having

weak splicing signals, such introns can be excised efficiently in vivo.

The mechanisms responsible for the recognition and selection of

authentic splice sites, rather than cryptic sites or alternative

splicing pathways, are not clear. In particular, the highly specific

recognition of 39 splice sites is puzzling. The consensus sequence of

the 39 splice site is relatively simple, apparently requiring little

more than an AG dinucleotide preceded by a region moderately

enriched in pyrimidines and a degenerate branchpoint sequence.

Clearly, much more is involved in defining a 39 splice site, as this

combination of sequence elements is plentiful in genomic

sequences and yet 39 splice-site selection is highly specific and

subject to inactivation by single point mutations. It is apparent that

our current understanding of the 39 splice site is limited, and has

likely overlooked components that may be critical for the efficient

and specific recognition of sites that have poor matches to the

degenerate 39 splice-site consensus.

To gain insight into the mechanism of 39 splice-site recognition,

we investigated the factor requirements for splicing of an intron with

a weak 39 splice site/pyrimidine tract, and identified PUF60 as

a critical protein for splicing (Figure 1). We showed that PUF60

stimulates splicing, and is in a complex with splicing factors involved

in the early steps of spliceosome assembly (Figure 2). Mechanistically,

PUF60 collaborated in a cooperative manner with U2AF65/35 in

both RNA binding (Figures 4 and 5) and splicing activation

(Figure 3). Surprisingly, however, neither protein was essential for

splicing, provided that the other one was present indicating some

level of functional redundancy between these structurally related

proteins. In addition, modulation of the levels of U2AF65 and PUF60

in cells changed alternative splicing patterns (Figures 6 and 7),

demonstrating that PUF60 and U2AF65 can modulate the efficiency

of 39 splice-site selection in a splice-site-dependent manner, and

thereby regulate alternative splicing.

PUF60: a Multi-tasking Protein
PUF60 has long been considered a putative splicing factor due to

its presence in a number of purified spliceosomes (reviewed in

[15]), its similarity to U2AF65 [22], as well as its presence in

a partially purified fraction of nuclear extract with splicing activity

in vitro [16]. In the latter study, PUF60 was shown to bind to

poly(U) RNA and was the predominant protein along with SRp54

in a partially purified fraction of nuclear extract that complemen-

ted splicing of extract depleted of poly(U) binding factors.

However, none of the functional assays done at that time used

recombinant PUF60. Thus, despite the suggestive evidence that

PUF60 was a splicing factor, rigorous proof of its function in

splicing was previously lacking. To demonstrate the activity of

PUF60 in splicing, we have used an S100 extract complementa-

tion assay, as well as the previous assay involving complementation

of poly(U)-depleted extracts. For the latter assay, we used different

substrates than Page-McCaw et al. [16], as well as recombinant

PUF60 protein purified from mammalian 293 cells for our

complementation; thus, it is possible that our PUF60 protein is

more active and/or our splicing substrates may be more efficient

or responsive to PUF60 activity.

PUF60 has other documented roles in the cell, and appears to

be a protein with particularly diverse functions. PUF60 is also

known as FBP-interacting repressor (FIR), a regulator of Myc gene

expression [37]. In this role, PUF60/FIR represses Myc

transcription in a process that involves binding between FIR and

FUSE-binding protein (FBP), which binds the Myc promoter

region. FIR/PUF60 itself was not found to bind the DNA, but

instead enhanced FBP binding. We did not detect an association

between FBP and PUF60 by western (data not shown) or by mass-

spectrometry of PUF60 immunoprecipitations. However, this

result does not preclude a relationship between these two proteins

under other conditions. A role for PUF60 in transcription as well

as splicing is intriguing, as this implies that PUF60 could

contribute to the coupling between these two processes (reviewed

in [38]).

Finally, PUF60 is also known as RoBPI (Ro RNA binding

protein) and interacts with Ro ribonucleoproteins (RNPs) [39]. Ro

RNPs have largely unknown functions, but are currently thought

to play a role in quality control of small RNAs (reviewed in [40]).

Cooperation between PUF60 and U2AF65/35 has

a General Role in Splicing
The PyD splicing substrate with a weak pyrimidine tract was used

to initially identify PUF60 as a splicing factor. Previous analysis of

this substrate revealed that it requires both U2AF65 and U2AF35

for splicing, whereas splicing of the wild-type parental substrate is

not dependent on U2AF35 ([41], Hastings&Krainer, unpublished

results). U2AF35 recognizes the 39 splice-site AG dinucleotide and

stabilizes binding of U2AF65 to the pyrimidine tract [5,7,8,9]. This

role for U2AF35 may be particularly important in substrates with

weak pyrimidine tracts that are not bound efficiently by U2AF65.

Similarly, PUF60 may be required in addition to U2AF65 and

U2AF35 to facilitate splice-site recognition. In these instances, in

which splicing is inefficient, the synergistic activity of these proteins

may be critical for splice-site identification.

We propose that 39 splice-site selection efficiency is dictated in

part by the ability of the site to be recognized by U2AF65/35 and

PUF60. Splicing efficiency, as well as alternative splicing patterns,

could thereby be dictated by the availability, modifications, or

expression levels of these proteins. One possible function of the

proteins may be to displace inhibitory factors from the pyrimidine

tract. Indeed it has been reported that modulation of the levels of

U2AF65 and the inhibitory protein PTB (polypyrimidine-tract-

binding protein) can influence alternative 39 splice-site selection

[42]).

Mechanistic Considerations for PUF60 in Splicing
Cooperation between PUF60 and U2AF65/35 was observed for all

the splicing substrates tested, suggesting that this activity is an

integral part of the splicing process. Synergy between proteins in

splicing may reflect cooperative binding to a functional element(s),

or multiple, simultaneous interactions between the activators and

other components of the splicing machinery (reviewed in [43]).

Indeed, we find that having both PUF60 and U2AF65/35 present

not only stimulates splicing in vitro in a cooperative manner, but

also influences their binding to the 39 splice-site region (Figures 4

and 5). Our gel shift experiments suggest that PUF60 and

U2AF65/35 may bind sequentially, rather than simultaneously to

the RNA. One possible mechanism is that U2AF65/35 binds

initially and recruits PUF60, which subsequently or concomitantly

displaces U2AF from the RNA. It is also possible that U2AF is not

fully displaced, but that its interaction with the 39 splice-site is

weakened in the presence of PUF60. This change in affinity could
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reflect an important transition in the spliceosomal complex as

splicing proceeds. Although our analysis of the PUF60 complex

confirmed the presence of U2AF65, only two peptides were found

by mass spectrometry (Table 1), suggesting that interactions

between the proteins may be relatively transient.

Spliceosome assembly in the 39 splice-site region of the intron is

very dynamic. Early in the process, interactions between SF1 and

the U2AF heterodimer allow for cooperative RNA binding that is

important for initial branchpoint sequence recognition [3]. An

interaction between SF3b155 and U2AF65 replaces the U2AF65-

SF1 interaction and is important for stable U2 snRNP binding to

the branchpoint sequence [44]. U2AF65/35 binding to the RNA

also becomes destabilized during this process [45]. In our PUF60

complex (Table 1) we identified SF3b155 but not SF1. One

possible scenario is that SF1 binds cooperatively with U2AF65,

which then recruits PUF60. The arrival of PUF60 could recruit

SF3b155 and initiate the replacement of U2AF-SF1 with

SF3b155, as well as the stable U2 snRNP association, accompa-

nied by destabilization of U2AF65/35 binding. Many alternatives

can also be envisioned, including the possibility that PUF60

functionally overlaps with SF1 in the recruitment of U2AF65 to the

RNA. Such a mechanism could explain why SF1 does not appear

to be essential for splicing in cells [46]. More detailed experiments

aimed at understanding the mechanistic interplay of PUF60 and

U2AF65 are required to better define the interactions of these

proteins and the precise role of PUF60 in 39 splice site selection.

The isolated PUF60 complex (Figure 2 and Table 1) offers some

clues to the role of PUF60 in splicing. This complex is composed

mainly of splicing factors with functions in early spliceosome

assembly, including SR proteins and U1 and U2 snRNP

components, as well as a putative human homolog of PRP5, an

RNA-dependent ATPase. Interestingly, yeast PRP5 forms a bridge

between U1 and U2 snRNPs during pre-spliceosome assembly, an

association that appears to be important for U2 snRNP interaction

with the pre-mRNA [47]. The presence of these particular

components in the PUF60 complex further suggests that PUF60 is

involved in early spliceosome assembly, perhaps by helping to

recruit or stabilize U2 snRNP binding. Collectively, our results

suggest that PUF60 associates with a subset of splicing factors that

likely reflect its function in splicing during early events of the

reaction.

PUF60 and U2AF65 as a Functional Class of Splicing

Factors
One model for the mechanism of PUF60 in splicing supported by

our results is that PUF60 and U2AF65 have distinct functions in

splicing, but these functions may be partially interchangeable or

conditionally dispensable. Although it has been generally accepted

that U2AF65 is required for pre-mRNA splicing in metazoans ([23]

and reviewed in [22]), we demonstrate that splicing in vitro can

occur in the absence of U2AF65/35 (Figure 3). Under these

conditions, PUF60 is required in the extract to sustain splicing. At

the same time, these two proteins act cooperatively to stimulate

splicing at a level more than 5-fold greater than expected if the

activities of PUF60 and U2AF65 were independent of each other.

Thus, although splicing can occur in the absence of either protein,

it is much more efficient when both are present.

Splicing was previously shown to occur in the absence of

U2AF65 under certain experimental conditions. One report

provides evidence that when nuclear extract is prepared from

cells infected with adenovirus, in vitro splicing of some substrates is

dependent on the presence of U2AF65 [48]; however, splicing of

other substrates can occur in the absence of U2AF65. Another

study suggesting the dispensability of U2AF65 reported that in vitro

splicing can be restored in U2AF-depleted extract by the addition

of an excess of the SR protein SC35 [49].

Our results raise the possibility that PUF60 and U2AF65 may

belong to a family of factors that can modulate splicing based on

substrate-specific, early recognition of distinct 39 splice sites.

Another protein, HCC1, which is structurally related to PUF60

and U2AF65 [50] may be another factor involved in this mode of

regulation. HCC1 has been shown to interact with splicing factors

such as SRp54 [51] and SRrp53 [52] and is found in the

spliceosome (reviewed in [15]). Related to the notion that these

proteins may represent a class of regulatory factors, a recent RNAi

screen in Drosophila aimed at identifying splicing regulators found

that knockout of hfp, the PUF60 ortholog, influences alternative

splicing of a partially overlapping set of substrates, compared to

knockout of HCC1 and U2AF50, the U2AF65 ortholog [53].

Regulation of Alternative Splicing by PUF60 and

U2AF65

If PUF60 and U2AF65 can indeed modulate splicing based on

differential splice-site strengths and/or different requirements for

their activities in the splicing of particular introns, then regulation

of individual pathways via control of PUF60 and U2AF65

expression levels, localization, or activities could play an important

role in alternative splicing and tissue-specific splicing. Indeed, we

have identified several alternative splicing events that are altered

by such fluctuations in cells (Figures 6 and 7).

Our observation that PUF60 depletion from HeLa cells shifts

APP and BIN1 processing to favor brain-specific splicing (Figure 6)

suggests that PUF60 may be one factor that helps determine non-

neuronal splicing patterns, and the relatively low levels of PUF60

in neuronal cell lines may be partially responsible for the observed

skipping of exon exons 7 and 8 in these cells. More extensive

experiments testing the effect of PUF60 over-expression in

neuronally-derived cells are required to confirm this activity. In

this first documented role of PUF60 in alternative splicing, the

protein appears to influence splicing of some regulated exons.

Interestingly, U2AF65 had different effects on APP and BIN1

splicing compared to PUF60.

The regulation of splicing by PUF60 and U2AF65 appears to be

complex, and at this point not readily predictable. We have

identified splicing events that are only altered by U2AF65, others

that are altered in a similar fashion by both proteins, and still other

transcripts that are apparently unaffected by the depletion of either

protein. There are no obvious sequence patterns in the 39 splice

sites of these transcripts that correlate with PUF60 or U2AF65

sensitivity. Identifying such features will be an important goal in

understanding the mechanism of regulation by these splicing

factors.

For some transcripts, such as BIN1 and SMN2, the depletion of

U2AF65 (BIN1) or both U2AF65 and PUF60 (SMN2) results in an

increase in exon inclusion. These results argue that as yet

unknown features of a splice site dictate its dependence on one

or the other protein. For example, in the case of SMN2, the

predominant skipping of exon 7 has been attributed to the

disruption of a splicing enhancer in exon 7 [54]. This splicing

enhancer is intact in the SMN1 gene—a paralog of SMN2—whose

transcripts efficiently include exon 7. Exonic splicing enhancers

recruit U2AF65 to upstream 39 splice sites [55,56]. Thus, SMN2

exon 7 skipping may be a direct consequence of inefficient U2AF65

binding. It is possible that the depletion of U2AF65 weakens the

recognition of the exon 8 39 splice site, but has little effect on exon

7 splicing, which is already compromised in its ability to recruit
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U2AF65. Thus, the strength of the exon 7 and exon 8 39 splice sites

may be equalized by U2AF65 or PUF60 depletion, and thus these

sites become more competitive for pairing with the 59 splice site of

exon 6. The outcome of this shift in splice-site recognition would

predict an increase in exon 7 inclusion, as observed in Figure 7.

Indeed, masking the exon 8 39 splice site with an antisense

oligonucleotide results in more efficient exon 7 inclusion [57].

Further evidence of a role of PUF60 in alternative splicing in vivo

comes from hypomorphic mutants of the Drosophila ortholog of

PUF60, Half pint (Hfp), which exhibit alterations in developmentally

regulated alternative splicing [58]. Knockout of Hfp [58] or the

PUF60 ortholog in C. elegans [59] is embryonic lethal, indicating an

essential role for the protein in invertebrate development.

Models for Splicing Regulation by PUF60 and

U2AF65

The knockdown of PUF60 and U2AF65 in cells results in changes

in certain alternative splicing patterns. In cells in which PUF60

and/or U2AF65 levels become limiting, two possible scenarios can

be envisioned for the mechanism of splicing regulation. First, the

two proteins may substitute for each other in the splicing reaction,

similar to our observations in vitro. This could mean that one can

take over the function of the other, or that the activity of one can

compensate for loss of the activity of other. In either case,

recognition of individual splice sites may be affected differentially

by the loss of one or the other protein, depending on the relative

strength of a splice site’s interaction with, or dependence on,

PUF60 or U2AF65. This model involving differential dependence

of individual 39 splice sites on PUF60 and U2AF65 predicts an

alteration in splicing patterns when one of the proteins becomes

limiting. Alternatively, the lower levels of PUF60 and U2AF65 may

result in a limited number of fully functional spliceosomes. Under

such limiting conditions, stronger splice sites are predicted to out-

compete weaker ones for binding by splicing factors, and thereby

alter splicing patterns. Differential recognition may be based on

the strength of interaction of the binding sites with splicing

components, or perhaps on the presence of specific sequences that

recruit PUF60 or U2AF65 to the intron. Overall, our results

suggest that 39 splice-site strength may be defined in part by the

relative dependence on the cooperativity between PUF60 and

U2AF for recognition.

MATERIALS AND METHODS

Plasmids
To prepare pTT3-His PUFS and pTT3-HisPUFL, pGAD-GH-

RoBPI-47,3 and pGAD-GH-RoBPI-144,2 (kindly provided by G.

Boire, Université de Sherbrooke) were used as templates for PCR

with the primers PUF60Hisstart and PUFresmutD to generate

PUF60S and PUF60L (isoforms that lack or include alternative

exon 5, respectively). To prepare pTT3-HisU2AF35, PET19b-

U2AF35 (kindly provided by R.-M. Xu, New York University) was

used as a template for PCR with the primers U2AF35HISR and

U2AF35STOPL. Amplification products were digested with

HindIII and BamH I and ligated into pTT3 [60].

pGAD-GH-RoBPI-47,3 was used as a template for PCR with

the primers PUF60NdeR and PUF60BamL to generate a PUFS

fragment, which was digested with Nde I and BamH I and ligated

into pET9c vector (Novagen) to generate pET9c-PUF60S for

expression in E. coli.

pMARX-PUF60rm was made by overlap-extension PCR using

pGAD-GH-RoBPI-47,3 as a template and primers PUF60res-

mutA and PUF60resmutB and primers PUF60resmutC and

PUF60resmutD. PCR-amplified products obtained with primers

A and B were combined with product from reactions with primers

C and D and amplified with primers A and D. Resulting DNA was

digested with Hind III and BamH I and ligated into pTT3. This

template was used as a template in PCR with primers

BamPUFstartR and XhoPUFstop. The amplified product was

digested with BamH I and Xho I and ligated into pMarxIVpuro

(kindly provided by Greg Hannon, Cold Spring Harbor Lab).

To construct pBabe-F-V5-PUF60, the Bgl II restriction site in

PUF60L cDNA was mutated by overlap-extension PCR using

pTT3-HisPUFL as a template and the primers forwardA and

reverseA. The product was amplified by PCR using the primers

forwardB and reverseB and cloned in the BamH I and EcoR I

restriction sites of a modified pBluescript vector carrying at the N-

terminus the sequence coding for FLAG and V5 antigen (E. A.

and A.R.K., unpublished). The resulting vector was digested with

Bgl II-EcoR I and the F-V5-PUF60 fragment was subcloned into

BamH I-EcoR I-digested pBabe Puro vector.

The sequences of all primers used for PCR amplification are

shown in Table S1.

Templates for in vitro splicing were bWT and bPyD (kindly

provided by R.Reed, Harvard Medical School) linearized with

BamH I and transcribed with SP6 RNA polymerase; b-globin

linearized with BamH I and transcribed with SP6 polymerase

[61]; C12 (kindly provided by T. Nilsen, Case Western Reserve

University) linearized with Bgl II and transcribed with T3 RNA

polymerase; ftz (kindly provided by R. Reed, Harvard Medical

School) linearized with EcoRI and transcribed with T7 RNA

polymerase, and d-crystallin linearized with SmaI and transcribed

with Sp6 RNA polymerase.

RT-PCR
RNA was collected using Trizol Reagent (Invitrogen). Reverse

transcription was performed using a First-strand cDNA synthesis

kit (Amersham) with oligo dT primer. PCR with AmpliTaq Gold

(Roche) was carried out for 30 amplification cycles (95uC for 30 s,

58–60uC for 60 s, and 72uC for 60 s) in reactions containing

[a-32P]dCTP. Primers for RT-PCR are provided in Table S1.

PCR analysis of SMN2 exon 7 splicing was performed as

previously described [54]. Products were separated on 6% native

polyacrylamide gels. Quantitation was based on phosphorimage

analysis (Fujix BAS2000 or Fujifilm FLA-5100).

Cell fractionation, in vitro transcription, and splicing
Frozen HeLa cells were prepared as described [17] and

resuspended in an equal volume of buffer A (10 mM Hepes-

KOH pH 8, 10 mM KCl, 1.5 mM MgCl2, 1mM DTT, 0.5mM

PMSF). Cells were lysed using a Dounce homogenizer. Nuclei

were recovered and resuspended in an equal volume of buffer C

(20 mM Hepes-KOH pH 8, 0.6 M KCl, 1.5 mM MgCl2,

0.2 mM EDTA, 25% (v/v) glycerol, 1 mM DTT, 0.5 mM PMSF)

and lysed in a Dounce homogenizer, followed by rocking for

30 min at 4uC. The supernatant following centrifugation was

dialyzed against buffer D (20 mM Hepes, 100 mM KCl, 0.2 mM

EDTA, 0.5 mM PMSF, 1mM DTT, 20% (v/v) glycerol). This

nuclear extract was diluted 3-fold with buffer E (20 mM Hepes-

KOH pH 8, 0.2 mM EDTA, 1 mM DTT) and mixed with buffer

E-AS (saturated with ammonium sulfate) to obtain a final

concentration of 20%-saturated ammonium sulfate. The mixture

was rotated for 60 min at 4uC and centrifuged. Dry ammonium

sulfate (0.11 g/ml) was added to the supernatant and dissolved by

rotation at 4uC for 45 min and centrifuged. The pellet was

resuspended in buffer D and dialyzed into buffer D to yield the

20–40% AS fraction.
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CsCl gradient centrifugation was carried out by addition of dry

CsCl (1 g/ml) to the 20–40% AS fraction and handled as

described [62]. Gradient fractions were dialyzed into buffer D.

Active fractions were pooled and loaded onto a 1610 cm Poros 20

Heparin column on an AKTA Purifier (Amersham Pharmacia).

Bound proteins were eluted by stepwise washes of buffer D-1M

NaCl, and buffer D-2M NaCl. The 2M eluate was dialyzed

against buffer D, denatured by the addition of solid urea to a final

concentration of 6M and loaded onto a 165 cm Poros 20 HQ

column equilibrated in buffer D-6M urea. Proteins were eluted

with a linear gradient from buffer D-0.1 M to -2 M NaCl with 6M

urea. Fractions were dialyzed against buffer D-0.1 M KCl.

Fraction 18 from the Poros HQ column was digested with

trypsin and peptides were analysed by liquid chromatography-

MS/MS using 75-mm615-cm C18 picofrit columns (New

Objectives) coupled to an LTQ mass spectrometer and peptides

were eluted using a 10–85% MeOH gradient in 0.5% acetic acid.

Peptide fragmentation spectra were extracted using the READW

program and searched using X!Tandem.

In vitro transcription and splicing reactions were carried out as

described [63]. Nuclear extract were prepared as described [64].

PUF60 and U2AF65/35 were depleted from HeLa nuclear extract

by poly(U)-Sepharose chromatography as previously described [5].

Products were separated on denaturing polyacrylamide gels.

Quantitation was based on phosphorimage analysis (Fujix

BAS2000 or Fujifilm FLA-5100).

Western blot analysis
Western blotting was performed using rabbit polyclonal antibodies

specific for PUF60 (kindly provided by G. Boire, Université de

Sherbrooke), or U2AF35 (kindly provided by B. Graveley, University

of Connecticut Health Center), and SRrp86 (kindly provided by J.

Patton, Vanderbilt University), and mouse monoclonal antibodies

specific for human U2-B’’ snRNP protein (mAb 4G3), PUF60

(M.L.H. and A.R.K. unpublished data), U2AF65 (A.R.K., un-

published), SRp55 (L. Manche and A.R.K., unpublished data), SF2/

ASF (mAb96), hnRNP A1 (mAb A1/55, L. Manche and A.R.K.,

unpublished), V5 (Invitrogen), and a-tubulin (Sigma). Quantitation

was performed using Alexafluor 532 anti-mouse or Alexafluor 488

anti-rabbit secondary antibodies (Molecular Probes) followed by

analysis on a Fujifilm Fluor Imager FLA-5100.

Tissue culture and transfection
PUF60rm cell lines were generated by retroviral transduction with

pMarx-PUF60rm or vector alone as described [65]. The HeLa S3

cell line expressing F-V5-PUF60L was generated by viral infection

with pBabe-F-V5-PUF60L as described [66]. A clonal HeLa S3

cell line stably expressing the tagged protein at a high level was

selected by immunofluorescence using the anti-V5 antibody

(Invitrogen) and expanded to prepare nuclear extract [64].

RNA interference
105 untransfected HeLa cells or HeLa cells expressing either pMarx

or pMarx-PUF60rm were seeded into 6-well plates 24 h before

transfection of siRNA with Oligofectamine (Invitrogen). The siRNAs

used were: PUF60 r(GCAGAUGAACUCGGUGAUG)dTdT

(sense strand, Dharmacon) and U2AF65 (U2AF2: r(GCAA-

GUACGGGCUUGUCAA)dTdT (sense strand, Qiagen). After

72 h cells were harvested for RNA isolation and western blotting.

Recombinant proteins
E. coli-derived recombinant PUF60 was prepared from BL21 cells

expressing pET9c-PUF60S. Cell pellets were sonicated in buffer D

and, following centrifugation, MgCl2 (15 mM final concentration)

was added to the supernatant. Proteins were precipitated on ice for

10 min and centrifuged. The pellet was resuspended in buffer D,

sonicated, and treated to another round of precipitation as above.

The final pellet was resuspended in buffer D and loaded on

a heparin column with 100 mM NaCl. PUF60 was present in the

flow-through, which was dialyzed overnight in buffer D with 5%

(v/v) glycerol.

Mammalian-cell-derived PUF60 and U2AF65/35 were expressed

in 293E cells transiently transfected with pTT3-HisPUFS or

pTT3-HisU2AF35 in a procedure adapted from a published

method [60]. For purification, cell pellets were resuspended in lysis

buffer (50 mM Tris-HCl, pH 8, 1% NP-40, 5 mM imidazole,

5 mM NaF, 5 mM b-glycerophosphate, 1 mM DTT), sonicated

and centrifuged. Supernatant was added to a 0.5 ml Ni-NTA

agarose (Qiagen), and rotated at 4uC for 1 h. The slurry was

packed on a column and the beads were washed with 50 mM Tris,

0.5 M NaCl, 5 mM imidazole. Bound protein was eluted with

50 mM Tris, 500 mM NaCl, 0.5 M imidazole, and dialyzed into

buffer D. Protein concentrations were estimated by comparing

protein preparations to serial dilutions of a bovine serum albumin

(BSA) standard in SDS-PAGE gels stained with Coomassie

Brilliant Blue R (Sigma). The purified U2AF heterodimer has

a U2AF35 to U2AF65 stoichiometry of ,3.5:1.

Baculovirus-derived recombinant human SC35 and U2AF65/35

were purified from infected SF9 cells as described previously

([56,63], respectively). The purified U2AF heterodimer has

a U2AF35 to U2AF65 stoichiometry of ,1:1

Immunoprecipitation
Nuclear extract prepared from the HeLa S3 cell line expressing F-

V5-PUF60L or from standard HeLa S3 cells were dialyzed into IP

buffer (20 mM Hepes, pH 8, 150 mM KCl, 1.5 mM MgCl2,

0.5 mM PMSF, 5% (v/v) glycerol), centrifuged to remove

insoluble material, and incubated with rotation for 1 h at 4uC
with ANTI-FLAG M2 Affinity Gel (Sigma) which had been

washed three times with IP buffer containing 0.05% (v/v) Triton

X-100. 1 ml of nuclear extract was added to 20 ml of beads.

Following incubation, the beads were washed once with IP buffer

except with 250 mM KCl, 0.05% (v/v) Triton X-100 and 200 ng/

ml of RNase A, twice with the same buffer without RNase A, and

twice with IP buffer with 100 mM KCl. Beads with bound protein

were either directly digested with trypsin and analyzed by LCQ

MS/MS or were eluted in IP buffer with 100 mM KCl and

100 ng/ml Flag peptide (Sigma). Eluted proteins were separated

on an SDS-PAGE gradient gel, and major peptides were excised,

digested with trypsin, and identified by LC-MS/MS as above.

Gel-shift assay
Proteins were incubated with radiolabeled RNA (,0.2 nM final

concentration) in binding buffer [25 mM Tris (pH 7.5), 25 mM

NaCl, 1 mM EDTA] with 0.1 mg/ml tRNA and 0.5 mg/ml BSA

for 60 min at room temperature. RNA and RNA-protein

complexes were separated in 0.5 TBE 6% native polyacrylamide

gels run at 100V in the cold room. Binding was quantitated by

calculating the fraction of bound RNA (specific protein-RNA

complex) relative to all other unbound or bound RNA.

Footprint analysis
Reactions were assembled identical to those in gel-shift assays,

except that RNasin (Promega) was included at a final concentra-

tion of 1 U/ml. After a 30-min incubation, tRNA (2.6 mg/ml

final concentration) and either RNase T1 (Ambion, final
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concentration of 0.06 U/ml) or RNase 1 (Ambion, final concen-

tration of 0.6 U/ml) was added to the reaction and incubated for

5 min at room temperature followed by phenol extraction and

ethanol precipitation. Products were separated on a 20% de-

naturing polyacrylamide gel.

SUPPORTING INFORMATION

Figure S1 Figure S1. Analysis of U2AF65 for RESCUE activity.

(A) Recombinant U2AF65/35 complements splicing in depleted

extracts. In vitro splicing assay using the b-globin WT construct in

reactions containing nuclear extract (NE) or extract depleted of

U2AF65/35 (DNE, lane 2), or depleted extracts with recombinant

U2AF65/35 (lane 3) from baculovirus or U2AF65 from E. coli (lane

4). (B) In vitro splicing assay using the PyDsubstrate in reactions

containing nuclear extract (lane 1) S100 extract alone (lane 2) or

with SR proteins (lane 3) or S100 extract with SR proteins and

recombinant baculovirus U2AF65/35 (lanes 4–5), or U2AF65

purified from E. coli (lane 6). Unspliced pre-mRNA and spliced

mRNA are indicated.

Found at: doi:10.1371/journal.pone.0000538.s001 (0.83 MB TIF)

Figure S2 Figure S2. Purification of RESCUE activity by HQ

chromatography. (A) Column profile. Fractions with RESCUE

activity from the Poros 20 heparin chromatography step were loaded

onto a Poros 20 HQ column in low salt under denaturing conditions,

and the proteins were eluted by a salt gradient. The A280 (blue),

A260 (red), and conductivity (brown) and gradient (green) tracings

are shown. The peak splicing activity as detected by in vitro splicing

is indicated. (B) In vitro splicing of PyD pre-mRNA. Fractions from

the gradient and flow-through were assayed in reactions containing

nuclear extract (NE), S100 extract (S), or S100 extract and SC35

without (-) or with gradient fractions. H refers to the active fraction

from the heparin column. H* refers to the active heparin fraction

after denaturation and renaturation with urea, analogous to the

treatment of the HQ fractions.

Found at: doi:10.1371/journal.pone.0000538.s002 (6.80 MB TIF)

Figure S3 Figure S3. Analysis of PUF60 and U2AF65/35

depletion from HeLa nuclear extract. (A) Scheme for the

fractionation of nuclear extract using poly(U)-Sepharose resin.

(B) Western blot analysis of fractions. D refers to the depleted

nuclear extract (column flow-through), W refers to the 2M NaCl

wash, E represents the 2M guanidinium-HCl eluate, and PUF

refers to recombinant PUF60 (lane 5, ,6 pmol). (C) Analysis of

extract depletion and relative levels of recombinant PUF60 and

(D) U2AF65/35 used for complementation in Fig. 3. Western blot

analysis of serial dilution of nuclear extract (lanes 1–6) compared

to depleted extract (D, lane 7). The PUF60 blot shows His-tagged

PUF60 (,3.6 pmol) purified from HEK-293E cells (lane 8).

Approximately 60% of the protein forms an SDS-resistant dimer

(*). The monomer corresponds to about 1.4 pmol/ml. Quantitation

of the signals indicates that 3.4 pmol of PUF60 corresponds to

,80% of the PUF60 in nuclear extract. The U2AF65/35 purified

protein preparation from HEK-293E cells expressing His-tagged

U2AF35 was analyzed by western (,4.2 pmol U2AF35 and ,1.2

pmol U2AF65, as estimated by comparison to bovine serum

albumin standard) and compared to the standard curve for nuclear

extract (lanes 1–6). The purified U2AF65 and U2AF35 from HEK-

293E cells correspond to approximately 9 and 17% of the

concentration of U2AF65 and U2AF35 in nuclear extract,

respectively. Blots were probed with antibodies specific to the

indicated protein. (E) Complementation of in vitro splicing of PyD

pre-mRNA in nuclear extract depleted of PUF60 and U2AF

subunits. PyD pre-mRNA spliced in nuclear extract (NE, lane 1),

depleted extract with the PUF60-containing 2M NaCl wash only

(lane 2), or complemented also with human recombinant U2AF65/

35 purified from baculovirus-infected SF9 cells.

Found at: doi:10.1371/journal.pone.0000538.s003 (1.32 MB TIF)

Figure S4 Figure S4. Cooperative activity of PUF60 and

U2AF65/35 in ftz splicing in vitro. (A) ftz pre-mRNA spliced in

nuclear extract (NE, lane 1), extract depleted of U2AF subunits

and PUF60 (DNE, lane 2), depleted extract complemented with

recombinant HEK-293E-expressed PUF60 alone (lanes 3–5: 1.2,

2.4, 4.8 mM final concentration, respectively), or PUF60 (1.2

{lower case}M final concentration) with recombinant U2AF65/35

purified from HEK-293E cells (lane 6–8: 33, 67, 133 nM final

concentration of U2AF65, respectively), or with U2AF65/35 alone

(lanes 9–11: 67, 133, 200 nM of of U2AF65). (B) Quantitation of

ftz splicing with the three concentrations of proteins shown in (A).

The level of splicing expected if the PUF60 and U2AF activity is

additive was calculated as the sum of lanes 3+9, 4+10, and 5+11,

respectively (Sum).

Found at: doi:10.1371/journal.pone.0000538.s004 (0.82 MB TIF)

Figure S5 Figure S5. Recombinant PUF60 and U2AF65/35.

Coomassie-blue-stained SDS gel of recombinant PUF60 purified

from HEK-293E cells (,0.2 mg, lane 1), and recombinant

U2AF65/35 heterodimer purified from baculovirus-infected SF9

cells (lane 2; 0.25 and 0.12 mg, respectively). Bovine serum

albumin (BSA) was included to confirm the protein concentration

(lanes 3–6; 0.05, 0.1, 0.2 and 0.4 mg, respectively).

Found at: doi:10.1371/journal.pone.0000538.s005 (0.21 MB TIF)

Figure S6 Figure S6. Shift-western blot analysis. (A) Gel-shift

analysis of the 32 P-labeled AdML 39 splice-site fragment

incubated alone (-, lane 1) or in the presence of PUF60 (lanes 2–

7, 10–13) and/or U2AF65 (lanes 5–12). Reactions were separated

on a 6% native polyacrylamide gel and electrophoretically

transferred to sandwiched nitrocellulose and nylon membranes.

The nitrocellulose membrane binds the protein and the RNA is

transferred to the nylon membrane which is shown. (B) Western

blot analysis of nitrocellulose membranes prepared as described

above using an antibody against U2AF65. (C) Gel-shift analysis of

the 32 P-labeled AdML 39 splice-site fragment incubated alone (-,

lane 1) or in the presence of PUF60 (lanes 2–7, 12–15) and/or

U2AF65 (lanes 5–15). Reactions were treated as described above

and nylon membrane with immobilized RNA is shown. (D)

Western blot analysis of the gel in (C) using a PUF60-specific

antibody.

Found at: doi:10.1371/journal.pone.0000538.s006 (5.60 MB TIF)

Figure S7 Figure S7. Cell-type-specific APP and BIN1 splicing

and PUF60 and U2AF65 expression. (A) Western blot analysis of

whole-cell extracts (,2.5, 5, and 106104 cell equivalents, lanes 1–

3 and 4–6, respectively) from WERI (lane 1–3) and HeLa cells

(lane 4–6) separated by 12% SDS-PAGE. Blots were probed with

antibodies specific to PUF60 and a-tubulin (top) or to U2AF65 and

a-tubulin (middle). (B) Quantitation of PUF60 and U2AF65

protein levels. Blots were probed with a fluorescent secondary

antibody and fluorescence was quantitated on a Fujifilm FLA-

5100. The measurements showed a direct linear relationship

between increasing amounts of input sample and fluorescence.

Error bars represent the S.E.M of the three measurements from

the blot shown in A.

Found at: doi:10.1371/journal.pone.0000538.s007 (0.40 MB TIF)

Table S1 Table S1: Sequences of primers used in PCR

reactions.

Found at: doi:10.1371/journal.pone.0000538.s008 (0.05 MB

DOC)
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