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Abstract

MicroRNAs (miRNAs) in body fluids are candidate diagnostics for a variety of conditions and diseases, including breast
cancer. One premise for using extracellular miRNAs to diagnose disease is the notion that the abundance of the miRNAs in
body fluids reflects their abundance in the abnormal cells causing the disease. As a result, the search for such diagnostics in
body fluids has focused on miRNAs that are abundant in the cells of origin. Here we report that released miRNAs do not
necessarily reflect the abundance of miRNA in the cell of origin. We find that release of miRNAs from cells into blood, milk
and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. In particular, the bulk
of miR-451 and miR-1246 produced by malignant mammary epithelial cells was released, but the majority of these miRNAs
produced by non-malignant mammary epithelial cells was retained. Our findings suggest the existence of a cellular
selection mechanism for miRNA release and indicate that the extracellular and cellular miRNA profiles differ. This selective
release of miRNAs is an important consideration for the identification of circulating miRNAs as biomarkers of disease.
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Introduction

MicroRNAs (miRNAs) are small RNA molecules that are defined

by structure, regulatory functions, and mode of biogenesis. In a

canonical pathway, miRNAs are produced as primary miRNA

transcripts (pri-miRNA), which are processed by the Microproces-

sor complex that includes Drosha into pre-miRNA molecules. Pre-

miRNAs are exported from the nucleus, and further processed by

Dicer to yield mature miRNAs that associate with the RNA-

Induced Silencing Complex, RISC and target mRNA. Changes in

the abundance of miRNAs have been documented in various

diseases including malignancies such as breast cancer. The cellular

miRNA composition has been explored for diagnosis and prognosis

of breast cancer and other diseases [1,2,3,4,5,6,7,8,9,10]. Because

upregulated miRNAs of lymphoma, prostate, lung and breast

cancers have also been detected in blood plasma and serum

[11,12,13,14], circulating miRNAs are currently evaluated as

surrogate biomarkers for breast cancer [14,15,16,17], other cancers

[13,18,19,20], diseases or conditions [21].

Cells in culture and in the body release a variety of nucleic acids

into the environment, including cellular and viral mRNAs and

miRNAs. At least some of these RNAs have been found to be

encapsulated in micro- and nano-vesicles released from cells

[22,23,24,25,26,27,28]. One such vesicle is the exosome, which

originates from multivesicular bodies (MVB), and is released by

cells in the body and in culture [23,24,25,27,29]. For ovarian and

lung cancer and glioblastoma, circulating miRNAs have been

found present in exosome-like vesicles [19,20,30].

While mechanisms that control the release of viral RNA have been

studied extensively, the mechanism of miRNA release is not clearly

understood. Recent data suggest that miRNA release may occur

through a ceramide-dependent secretory machinery [31]. In

addition, mature miRNAs have been reported to be released from

cells in exosomes as a consequence of the MVB’s role in loading

miRNAs to their complementary target mRNA in the RNA-Induced

Silencing Complex, RISC [32]. However, immature miRNAs are

also released [29] and apoptotic bodies are thought to contain

miRNA [33], suggesting alternative mechanisms of miRNA release.

Blood contains vesicular miRNA of many cells, which may

make it necessary to enrich organ, tissue, or cell-type-specific

exosomes using surface markers for proper quantitation

[19,20,34]. However, in addition to releasing miRNAs into blood,

mammary epithelia produce and condition specialized body fluids,

including mammary fluid in the resting gland, and milk during
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lactation. Thus, mammary fluids might provide an alternate body

fluid to measure diagnostic miRNAs of extracellular human

mammary epithelial cell (HMEC) for breast disease.

For identification of circulating diagnostic miRNAs, most

approaches thus far have focused on quantifying circulating

miRNAs that are overexpressed or lost in the cancer cell of origin

[13,18,30,35]. However, only some of the highly abundant cellular

miRNAs have been found in higher concentrations in circulation,

suggesting that only a subset of cellular miRNAs are released into

the environment [29]. These findings prompted us to test whether

cells release different miRNAs than they retain. We found that

nearly 30% of the released miRNAs in vitro and in vivo do not reflect

the cellular profile, suggesting that some miRNAs are retained or

released selectively. Some selectively released miRNAs were

enriched in body fluids conditioned by mammary cells, including

mammary fluids, blood and milk. This subset of miRNAs may have

value in breast cancer diagnosis and biology. Our results stress that

miRNAs are released selectively, and that extracellular miRNAs

should be considered independent of cellular miRNAs abundance

when considering diagnostic markers of disease.

Results

Mammary epithelial cells release exosomal vesicles with a
distinct small RNA profile

To compare intracellular and extracellular miRNA populations,

we analyzed the breast cancer cell line MCF7, which releases

exosomes [36]. We focused on RNA contained in vesicles, because

such vesicles are released from cells in vitro, as well as into blood,

urine, saliva and other body fluids [14,15,19,20,23,24,25,27,30,37].

We enriched for vesicles by centrifugation at 70,000 g from media

conditioned by MCF7 cells (Figure 1). This preparation (P70)

included cup-shaped vesicles of about 100 nm (Figure 1A), which

is consistent with exosomes; and was enriched in CD81, a marker

protein of exosomes (Figure 1B).

To assess if other human mammary epithelial cells release

exosomes, we quantified the abundance of CD81 and CD63, an

endosomal marker protein, in P70 preparations of breast cancer

cell lines MDA-MB-231, BT-20, and the nontumorigenic

mammary epithelial cell line MCF 10A. We found that P70

preparations of all cell lines contained CD63 and CD81 at similar

Figure 1. Differential Cellular Release and Retention of Small RNAs. Medium conditioned by MCF7 cells for 5 days was enriched for exosomes by
a filtration and ultracentrifugation protocol producing a P70 preparation. A The P70 was subjected to negative-staining EM. B The abundance of
tetraspanin CD81, an exosome-marker was assessed in the filtered conditioned medium, the P70 pellet obtained by ultracentrifugation, and the
supernatant (S70) using slot-blot (inset, n = 2). C The surface antigens CD81, CD63 and Mucin-1 were detected in the P70 fraction of the mammary
epithelial cells using slot-blot. The absolute amount of bound antibody was quantified using standard-curves of antibody dilutions, and expressed as a
percent of total antigenicity for the P70 of each cell line. The data of two replicate experiments for the indicated cell lines are shown. D Radiolabeled small
RNAs isolated from MCF7 cells (c) and the extracellular preparation P70 (x) were separated by PAGE on a 12% denaturing gel. Star: Extracellular enriched
RNA; Circle: Some extracellular RNAs identified by sequencing (see text and Tables S1 and S2). E Quantitation of labeled RNA species of D. The thin line
indicates abundance of cellular small RNAs, whereas the thick line indicates the abundance of the extracellular miRNAs.
doi:10.1371/journal.pone.0013515.g001
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proportions as MCF7 cells (Figure 1C), suggesting that mammary

epithelial cells in general release similar vesicles.

We also tested for the presence of the epithelial-cell marker

Mucin-1 and other antigens on vesicles released from mammary

epithelial cells (Figures 1C). We found several proteins with roles

in mammary biology present in similar abundance, leading us to

conclude that vesicles of mammary epithelial cells share antigenic

properties.

To compare the cellular to the extracellular small RNA population,

we collected total RNA of MCF7 cells or media conditioned by these

cells after 5-days of culturing. We then radiolabeled small RNAs

enriched from MCF7 cells (c) and P70 (x) and analyzed their

migration by polyacrylamide gel electrophoresis (PAGE) and

autoradiography (Figures 1D and 1E).

We found that the majority of small RNAs migrated differently

in extracellular than intracellular preparations, indicating that the

released and retained RNA populations were not the same.

Furthermore, the extracellular fraction included some RNA

species that were less abundant in the cell. For example, in one

band that is highly enriched in the P70, we identified by

sequencing, RNAs that are cleavage products of 5.8S rRNA and

a U1 small nuclear RNA (Figure 1E, and Table S1A and S1B),

whereas common RNAs of a region with a similar banding pattern

in cellular and extracellular preparations contained 28S rRNA

fragments (Table S2). Therefore the extracellular RNA popula-

tion is enriched in some RNA species underrepresented in the cell.

Extracellular and cellular miRNA populations are different
Because of the suggested roles of extracellular miRNAs in

signaling and diagnosis [27], we investigated whether the

intracellular and extracellular miRNA composition are the same.

To answer this question, we performed microRNA microarray

analyses of MCF7 cellular (c) and extracellular (x) RNAs

(Figure 2A), and found that about 66% of the released miRNAs

are at an abundance that closely reflects the cellular miRNA

abundance (Figures 2B and 2C). This finding is in agreement

with a model wherein most, but not all miRNAs are released

passively by mass action.

To confirm the miRNA composition determined by microarray

hybridization, we measured the cellular and extracellular mature

miRNA populations by quantitative PCR approaches after

reverse-transcription of miRNAs (qRT-PCR). We used two

approaches that are specific for mature human miRNAs: 39

linkering as modified from [38], and stem-loop primers [39]

(Tables S3 and S4). We first focused on miRNAs that were

reported to be involved in mammary and cancer biology or cancer

diagnostics [1,6,7,15,40,41,42,43,44,45,46] (Figure 2D and E).

We verified the identity of many species by sequencing (Table
S5). The quantified miRNAs were normalized to a synthetic RNA

(INT-RNA) to control for RNA recovery (Table S4 and Materials

and Methods).

Absolute quantitation of miRNAs allowed us to determine that

only a small portion of the cellular pool of most miRNA species is

released. In particular, only about 2% of the most abundant

miRNA, miR-720 was released into the environment within 5 days

of culturing (Figure 2D, and data not shown). Importantly, we

confirmed that many miRNAs were represented at comparable

proportions in the cellular and extracellular population (e.g. miR-

638), whereas several other miRNA species were overrepresented

either of these populations (e.g. miR-451 and miR-107)

(Figure 2D). These data suggest that cells have a mechanism in

place to select some miRNAs for cellular release or retention.

Therefore, we investigated the selective nature of miRNA release

further.

miR-16 is a surrogate marker of bulk exosome release
Because the transformation status of a cell regulates exosome

secretion [47], and thus possibly exosomal miRNA release, we

sought to identify a miRNA that faithfully reflects exosomal

abundance in order to quantify selective miRNA release into

vesicles. For example, miR-103 and its paralog miR-107 have high

and consistent expression in both cancerous and normal

mammary tissues, and thus have been used for normalizing

miRNA studies comparing mammary cells [42]. However, these

miRNAs were grossly underrepresented in the extracellular

fraction (Figures 2 A and B), highlighting the observation that

at least some miRNAs with diagnostic value in cells are not

represented in the released population. We therefore considered

other miRNAs for normalization. Using the more sensitive stem-

loop primer PCR approach [39], we focused on several miRNAs,

including the most abundantly released miRNA of MCF7 cells,

miR-720; miR-21; miR-16; and microRNAs that were enriched

extracellularly, including miR-451, miR-1275 (Figure 3A). We

measured the cellular to extracellular ratio of these miRNAs in a

set of HMECs including cell lines BT-20, MCF 10A, MCF7,

MDA-MB-231, and SK-BR-3. We found that HMECs irrespec-

tive of malignancy, released a constant amount of miR-21

reflective of cellular abundance, a miRNA that is upregulated in

many breast cancers [6,7,8], and miR-16 (Figure 3A). The most

consistently released miRNA was miR-16 of which for each

released molecule, 160–400 molecules were retained.

We tested whether exosome release correlated with miR-16

release, and found that the abundance of extracellular miR-16

correlated with the amount of microvesicular marker protein

CD81 released from cells (Figure 3B). This observation suggested

that miR-16 is not subject to a selection mechanism beyond

packaging into exosomes.

The consistency of release, and the fact that miRNA-16 is

known to have relatively high and stable expression in both

normal and transformed breast tissue [48], led us to conclude that

extracellular miR-16 is a surrogate marker for the abundance of

vesicular miRNAs. Using miR-16 as an internal standard, we

addressed the observed differences in the release rate of specific

miRNAs.

Extracellular miRNA accumulation is linear
We measured properties of extracellular miRNAs, including

their release rate and stability. To do so, we focused on miR-16,

miR-1246, miR-451 and miR-720. We found that individual

miRNAs were released at different rates. MiR-16 accumulated the

slowest, with less than a doubling of the extracellular miRNA

concentration per day. In contrast, the extracellular accumulation

of miR-1246 more than doubled per day (Figure 3C). These rates

were also different among cell lines. For example the rate of

accumulation of miR-720 was about 17 times higher in MCF7

cells than MCF 10A cells (Figure 3C). However, we found that

the concentrations of these miRNAs dropped no more than 2-fold

upon storage of P70 for up to 3 days, the maximum time we

measured (data not shown), suggesting that stability alone cannot

account for the differences in extracellular miRNA levels. These

findings fit with a model wherein miRNAs are released at a

constant and miRNA-species specific rate.

Some diagnostic miRNAs are selectively retained by cells
Our array analyses indicated that 13% of the MCF7 miRNA

species were selectively retained by the cell. This category included

miR-141, which was nearly undetectable in the released

population (Figures 2A and 2B), and which has roles in

carcinogenesis [49]. In contrast, miR-141 is abundantly released

Selective Release of MicroRNAs
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from other malignancies, including ovarian [50] and prostate

cancer cells [13,19]. Therefore, retention of some miRNAs is cell-

type specific.

To test whether the retention of other miRNAs was cell-type

and miRNA specific, we quantified the release of miR-27b, miR-

30c, and miR-23a from several cell lines using qRT-PCR. We

found that for these miRNA species, for each 100 molecules

produced, 0.5–20 molecules were released by most but not all

breast cancer cell lines tested (Figures 2A, 2D 3A and Figure 4).

This suggests, that in general, the retention of specific miRNAs is a

common phenomenon for breast cancer cells.

We tested if miRNAs with established roles in mammary

biology were also selectively retained by cells. We tested let-7c,

with roles in Myc regulation (reviewed in [45]) and in HMEC

progenitor cells [51]; miR-99a, which clusters with let-7c, and

resides in a commonly deleted chromosome region of lung [52]

and primary breast cancer [53]; miR-196a1, which is overex-

pressed in breast cancer cells [54], miR-210, a hypoxia sensor with

prognostic value in breast cancer [1,54,55]; miR-200b, a regulator

of epithelial-mesenchymal transition (EMT), [41,56,57]; and

several miRNAs associated with metastasis, miR-148a [58],

miR-335[5], miR-373 and miR-520c [3]). We found all of these

miRNAs in the MCF7 cellular component, yet we detected none

(Figure S1A) or very few (Figure S1B) of these miRNAs in the

extracellular population. Another miRNA, miR-1275, ranged

from 5-fold higher retention in MDA-MB-231 cells to 3-fold

enrichment in the spent media of MCF 10A, BT-20, and SK-BR-3

cells (Figures 2D, Figure 3, and Figures 4A and 4B).

Therefore miR-1275 release did not correlate with the transfor-

mation status of its cell of origin. Our findings that some miRNAs

Figure 2. Some MicroRNAs are Released Disproportionately. Duplicate microRNA microarrays were hybridized with 1 mg of total cellular or
1 mg of extracellular miRNA from MCF7 cells. Results are plotted as A relative fluorescent intensities of extracellular (x, upper panel) and cellular (c,
lower panel) miRNAs, or B ratio of extracellular to cellular miRNAs. The horizontal lines in B indicate the threshold of 2 fold-changes, whereas the red
and the green marked populations indicate a greater than 4-fold enrichment in the released extracellular (A, upper panel, x), or in the cells (A, lower
panel, c) respectively. C Scatter plot of average reads of the miRNAs quantitated by array. Only miRNAs with a fluorescent value of greater than 500 in
the cellular or extracellular population are shown (see Materials and Methods). The numbers next to dots indicate the miRNA the dot represents. D
MCF7 cells were cultured for 5 days, and the total amount of specific cellular and extracellular miRNAs were measured by quantitative linker-ligation
mediated RT-PCR, and the miRNA ratios were plotted. The average of 3 independent experiments is shown. E Native PAGE of products at end-point
of quantitative RT-PCR. The major PCR-products between 32–48 ntds correspond to the mature miRNA (miRNA) as expected by size and determined
by sequencing (Table S5). The bands with a migration of less then 25 ntds are the PCR primers (primers) used in the reaction. Bands that retained in
the well are amplification-independent reaction components (reaction components). Hsa-miR-923 has since been reclassified as a specific rRNA
fragment.
doi:10.1371/journal.pone.0013515.g002
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were underrepresented in the extracellular population might

explain reports in which increased plasma and serum levels of

some cancer-associated miRNAs, including oncogenic miR-155,

or miR-21 [1,54], could not be found in all breast cancer patients

[15,17]. Furthermore, this finding raises the possibility that cells

have mechanisms in place that retain miRNAs with roles in

carcinoma growth [59], cell differentiation [43,60,61] and

metabolism [62].

Selective release of immature miRNAs
Some [32,63], but probably not all [29] miRNAs are released as

a consequence of MVB’s function in loading miRNAs to their

target complementary mRNA by the RISC complex. Therefore,

we tested if immature miRNAs, which are not expected to

associate with RISC are also selectively released into the

extracellular space. We assessed several pre-miRNA species,

including precursors of preferentially released mature miRNAs

(miR-1246, miR-1275, mir-451, miR-638), selectively retained

miRNAs (let-7c, let-7f, let-7g, miR-100, miR-23a, miR-27, miR-

30c)), and precursors of miRNAs with biological and diagnostic

value in breast cancer (miR-155, miR-16, miR-21, miR-200c,

miR-221, miR-222) [64,65]. We quantified the released to

retained ratio using primers described in the section Materials

and Methods and in Table S6. Interestingly, precursors of mature

miRNAs that are preferentially released into the extracellular

space, including mir-451, miR-1275, miR-1246 were present only

in the cellular compartment (Figure 5A), confirming that the

measured extracellular miRNA is of the mature form only.

However, precursors of mature miRNAs that were nearly

exclusively detected in the cell, such as let-7c and miR-100, were

also detected only in the cells. Furthermore, immature oncomiR

miR-155, of which we could not detect the mature form

(Figure 2A, and data not shown) was also sequestered in cells

(Figure 5A). All other miRNAs were detected both in the cellular

as well as in the extracellular compartment (Figure 5B).

Furthermore, we detected no correlation between miRNA clusters

and the extent of release of their corresponding mature miRNAs

(Figure S2), suggesting that the release of mature and immature

miRNAs is regulated separately.

Quantitation of some miRNAs indicated that in every case

tested, more pre-miRNA molecules were retained than released

(Figure 5C). Recently two pre-miRNAs were also shown to be

released from human mesenchymal stem cells [29], suggesting that

the release of pre-miRNAs is not limited to MCF7 cells. In an

attempt to explain differences in release rates of immature

miRNAs, we sequenced some pre-miRNAs to test for modifica-

tions including RNA editing [66], yet found none (Table S7).

Therefore, selection mechanisms also exist for the release of pre-

miRNAs, however the nature of this process remains to be

established.

A caveat of the quantitation approach used in these studies, is

that it does not distinguish primary-miRNA transcripts (pri-

miRNAs) from pre-miRNAs [39]. To clarify, we probed for the

presence of sequences 59 of the Drosha processing sites [67]

(Figure 5D). We focused on 6 miRNAs, miR-200c, let-7c, miR-

221, miR-21, miR-23, miR-27 that were released to different

extents (Figure 2D). We found that the transcripts of 5 of these 6

miRNAs did not extend 59 of the Drosha-cut site (Figure 5D, and

data not shown), confirming that we measured bona fide pre-

miRNAs for these species, and that these miRNAs are released as

pre- but not as pri-miRNAs.

However, the transcript containing miR-200c extended 59 of

the stem-loop, as determined by PCR and sequencing (Figure 5D
and Table S7). We tested for pri-miRNA editing, which may

explain lack of processing [68,69] or release, yet found none in the

cellular or extracellular population (Table S7). These findings

suggest that in addition to releasing mature and pre-miRNAs, cells

also released miRNA transcripts that were not properly processed

either by Drosha or Dicer, including a miRNA locus relevant to

breast- and other cancers [40,70]. The finding of both pre-

miRNAs and longer transcripts supports the notion that miRNA

transcripts are released in ways in addition to, and independent of

those described as a consequence of RISC loading.

Breast cancer cells release most of their miR-451 and
miR-1246 molecules

Some miRNA species were 4 to 34-fold enriched in the

extracellular population (Figure 2). Interestingly, the absolute

concentration of several such species was greater in the

extracellular than the intracellular space (Figures 2A, 2B and
3A). We considered whether this enriched population was merely

overrepresented in the environment, because they constituted the

Figure 3. Extracellular miR-16 Levels Correlate with Nanovesicle Abundance. A Plot of extracellular to intracellular levels of miRNAs
quantitated by qRT-PCR using stem-loop primers of cells lines BT-20, MCF 10A, MCF7, MDA-MB-231 and SK-BR-3. MiRNA levels were calculated using
standard curves, and corrected for recovery by normalization to a spiked synthetic RNA (INT-RNA) introduced at the time of RNA-extraction (Materials
and Methods and Table S4). Error bars indicate the measure of one standard deviation of 3 independent experiments. B Relative levels of miR-16 and
absolute levels of CD81 were measured in P70 fractions of seven independent experiments and plotted. The line indicates a best-fit power curve
(r2 = 0.95). C The P70 was collected daily from media conditioned by MCF7 cells (solid symbols), or from MCF 10A cells (open symbol) cultures and
miRNAs were quantified in triplicate. The release rates were linear; r2 = 0.79 for miR-1246 (inset), r2 = 0.98 for miR-16, r2 = 0.85 for miR-451; and r2 = 0.87
for miR-720 of MCF7 cells.
doi:10.1371/journal.pone.0013515.g003
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most abundant cellular miRNA component. However, none of the

most abundant cellular miRNAs clustered into this category

(Figure 2B, lower panel). Therefore, properties other than

cellular miRNA abundance were responsible for the extent of

release of this miRNA subpopulation.

One of the most disproportionately released miRNAs was miR-

451, of which more than 90% of the total mature microRNA

population was exported into the extracellular space (Figures 2,
3, 4). MiR-451 is interesting, because it has been associated with

development, maintenance [71,72], and polarity [73] of epithelial

cells. In cancer, miR-451 has been reported to down-regulate

macrophage migration inhibitory factor, MIF [74], and multi-drug

resistance 1, MDR1 [75], and consequently rendering MCF7 cells

more sensitive to the chemotherapeutic agent doxorubicin [76].

We tested if preferential release of miR-1246 and miR-451 was

common in breast cancer cell lines, using miR-16 as an internal

control. We found that miR-451 and miR-1246 were selectively

released from four breast cancer cell lines tested, whereas the

release of these miRNAs from nontumorigenic MCF10A cells and

unrelated normal fibroblast cell line IMR90 was much lower

(Figure 4). In addition, the release rate of miR-451 was uniform

for MCF7 cells (Figure 3C), and accumulation of miR-451 was

relatively constant among the four cancer cell lines tested

(Figure 4A–4C). These data indicate that the release of the

majority of miR-451 into the medium is cell-type specific, and

perhaps more common in breast cancer cells. These results fit with

other studies in which miR-451 was barely detected in MCF7 cells

[76,77]. More importantly, the excessive release of miR-451 might

also provide a mechanism to explain how miR-451 accumulates

interstitially in breast cancer tumors [77]. Most notably, these data

suggest that cells produce some miRNA molecules of which more

are released into the environment than are retained.

We assessed if xenografted MCF7 and MDA-MB-231 cells also

release miRNAs into the murine blood circulation (Figure S3).

To do so, we normalized the measured miRNA levels to miR-22, a

miRNA that we did not find to be released from breast cancer

cells, but which was present in mouse blood. We found that

xenografting either cell line resulted in an increase in plasma levels

of miR-451, miR-720, miR-99a (Figure 6A). In addition, plasma

of mice injected with MCF7 cells, but not plasma of uninjected

littermates had detectable amounts of miR-1246 (Figure S3).

Therefore we conclude that breast cancer cell lines release

signature miR-451 and miR-1246 into the blood.

Ductal fluids contain extracellular miRNA signatures of
mammary epithelia

To test whether mammary epithelial cells also release the

identified signature miRNAs miR-451, miR-1246, miR-720, and

miR-16 in the human body, we focused on fluids that are heavily

conditioned by these cells; human milk, which has been reported

to contain exosomes [78] and miRNAs [79], and ductal lavages.

Figure 4. miR-451 and miR-1246 are Selectively Released from Cells. A The ratio of released to retained miRNAs standardized to released
and retained levels of miR-16 respectively, was quantified from the indicated cell lines using the linker-ligation qRT-PCR approach. B Native PAGE of
products at end-point of quantitative RT-PCR of indicated miRNAs using the stem-loop primer approach, and quantified in C. The major PCR-
products, indicated by arrows, correspond to the mature miRNA as expected by size (53 ntds for miR-1246, 53 ntds for miR-23a, and 56 ntds for miR-
451) and determined by sequencing (Table S5). The bands with a migration of less then 15 ntds are the PCR primers used in the reaction. The
stained material in the well is amplification-independent material of the reaction kit. The minor bands larger than 60 ntds represent artifactual
products amplified at low template concentration (Figure S5). All miRNAs were quantified from at least 3 cell and media collections, except for miR-
23a, which was measured only twice. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0013515.g004

Selective Release of MicroRNAs
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We found that lavages contained several miRNAs that we found to

be abundantly released from HMECs into culture media

(Figure 6B). Of these, the concentrations of miR-1246, miR-

451 and miR-720, normalized to miR-16 in the tested lavages and

milk were highly reminiscent of the extracellular miRNA

signature, but dissimilar to the intracellular HMEC miRNA

signatures (Figures 6B). Therefore, we conclude that both

mammary fluids contain extracellular miRNA species originating

from mammary epithelial cells in a specific conserved ratio.

We also detected differences in the miRNA signatures between

milk and lavages. For example, we detected a linear, constant ratio of

miR-16-normalized miR-451 to miR-1246 in both milk and lavages,

suggesting coordinated release of these two miRNAs. However, the

ratios of miR-451 and miR-1246 to miR-16 was much higher in the

lavages than the milk, suggesting an overall greater release of these

two miRNAs in the lavages compared to the milk (Figure 6B).
Perhaps, this difference reflects fluid origin. However, the ductal

lavages originate from donors that had epithelial atypia (lavages B

and C), and atypical ductal hyperplasia (ADH) on biopsy (lavage A,

[80]), whereas the milk was from normal donors. This difference

raises the possibility that increased miR-451 and miR-1246

concentrations are indicative of the presence of abnormal cells in

the mammary gland. In addition, the lavages of the patient with

ADH differed in the relative abundance of other miRNAs when

compared to the lavages with less severe epithelial atypia (Figure 6C),

perhaps indicating that different cellular changes induce different

modifications in the miRNA composition of ductal lavages.

Discussion

We report here that cells preferentially release and retain

miRNA subpopulations. These results are important when

considering circulating miRNAs for diagnosis, and in assessing

the biological significance of released miRNAs. For example, the

finding that transformed and malignant mammary epithelial cells

release most of their miR-451 into the environment has several

Figure 5. Immature miRNAs are Released at miRNA-Species Specific Rates. A and B, pre-miRNAs of MCF7 cells (c), and miRNAs released
from these cells (x) were amplified by rt-PCR and subjected to native PAGE. All the main bands correspond to the expected size of the amplification
products of immature miRNAs (arrowheads). Some of the amplification products were confirmed by sequencing (Table S7). C Those miRNAs that
yielded single bands in 3 independent experiments were quantified by qRT-PCR. D Presence of upstream RNA sequences, corresponding to pri-
miRNA sequences (Pri-s and Pri-l), and RNA corresponding to pre-miRNAs (Pre) were assed by PCR. The identity of the major products was confirmed
by sequencing (Table S7). Ntds: nucleotide size of sizing marker.
doi:10.1371/journal.pone.0013515.g005
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implications. Interestingly, miR-451 abundance has been reported

to correlate with breast cancer in tissue sections. However, miR-

451 was low in mammary epithelia, but enriched interstitially [77].

Therefore, miR-451 abundance was attributed to alternate origins,

and hence the usefulness of miR-451 in diagnosis was rejected.

Yet, miR-451 may have roles in breast- and other cancers

[46,74,81], and maps to an amplicon that includes HER2 and

BRCA1, which are commonly amplified in breast- and other

cancers [82,83,84]. Therefore, our finding that miR-451 is

selectively released from malignant mammary epithelial cells in

culture and in the body may be of importance for diagnostics.

In addition, we and others have described that viral RNAs and

proteins transferred in exosomes have biological functions relevant

to cancer ([23] and reviewed in [26,85,86]). In addition vesicular

miRNAs have been found to have signaling capacity [27,30].

Therefore, the finding that some miRNAs are released more

abundantly than retained may suggest a role of these miRNAs in

signaling. Perhaps selectively released miRNAs, including miR-

451 may be involved in paracrine signaling of the cancer and the

stroma [87], and in field cancerisation [88].

Alternatively, the release of miRNAs in exosomes might fit with

a trash disposal mechanism [89], in which cells release damaged

and other cellular components into the environment akin to a

house-cleaning mechanism. In agreement with this idea, we have

found the accumulation of specific rRNA and snRNA fragments,

and improperly processed miRNAs in the extracellular space.

However, because specific tRNA fragments have been found to

have distinct biological roles [90], RNA fragments may possibly be

more than degradation products destined for disposal.

The mechanism of selective miRNA release remains to be

determined. For example, in addition to an MVB-mediated

miRNAs release mechanism, cell death may be a mechanism of

miRNA release [17,33]. We considered this possibility, and found

that IMR90 cells and MDA-MB-231 cells in culture had similar

proportions of dead cells (11% and 9% respectively), yet MDA-

MB-231 cells released about 2.3 times more of their miR-16

molecules than IMR90 cells did (Figure 3A, and data not shown).

Therefore, cell death alone cannot explain the accumulation of

extracellular miRNAs. To identify the selection mechanism, it may

be informative to determine if the selective release and retention of

miRNA subpopulations is regulated by environmental cues. In

addition, the recent findings that miR-451 biogenesis is dicer-

independent [91], raise the possibility that miRNAs processed in

noncanonical ways may be specifically targeted for release through

mechanisms yet to be determined.

Our finding that the extracellular miRNA profile of ductal fluids

and HMECs is similar has several consequences. For example, it

opens the possibility of using the extracellular miRNA population

of ductal lavages for diagnosis, as is considered for proteins ([92]

and reviewed in [93,94]). This may be especially useful for women

at high-risk of breast cancer, where measurements of the

extracellular miRNA composition might supplement other

approaches, and overcome some of the diagnostic limitations of

analyzing the cellular composition of lavages [95,96]. In addition,

the finding of differences in the extracellular miRNA composition

of ductal fluids raises an interesting possibility that specific

miRNAs contribute to the multifunctional roles milk may have

during nursing [79] or consuming animal milk [97], and the

function ductal fluid miRNAs may have in the resting gland [98].

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The samples were collected under

NH/NCI Clinical Protocol # 02-C-0077. The study was

approved by the Institutional Review Board of RFUMS (IRB

protocol numbers # 001 PATH, # 002 PATH, and # 003

PATH). All patients provided written informed consent for the

collection of samples and subsequent analysis.

Figure 6. Extracellular Mammary Epithelial Signature miRNAs are Present in Body Fluids. A. Abundance of indicated miRNAs quantitated
using qRT-PCR from the plasma of mice injected subcutaneously with indicated breast-cancer cell lines as shown in Figure S3, and normalized to
miR-22, a microRNA of murine blood, but not found in the conditioned media of these cancer cell lines. B. Plot of quantities for indicated miRNAs in 3
samples each of human milk (milk), cell-free ductal lavages of breast cancer patients (lavages), extracellular (MCF7 X) and intracellular MCF7 (MCF7 C)
preparations, as quantitated by the stem-loop-primer qRT-PCR approach. A: lavages of a patient with atypical ductal hyperplasia; B and C: lavages of
patients with less severe epithelial hyperplasia. Inset: plot of ratios for miR-451 and miR-720. Dot shadings correspond to the same samples as labeled
in Figure 6B. C. Additional miRNAs quantified in ductal lavages using the linker-ligation qRT-PCR method.
doi:10.1371/journal.pone.0013515.g006
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All animals were handled in strict accordance with good animal

practices as defined by the RFUMS IACUC and accredited by the

Association for Assessment and Accreditation of Lab Animal Care

International (AAALAC) in compliance with the US Public Health

Service policy as assured by the Office of Laboratory Animal

Welfare. All animal work was approved by the RFUMS IACUC

under protocol 08-25.

Cell Culture
MDA-MB-231, MCF7, MCF 10A, BT-20, IMR90, SK-BR-3

cell lines were purchased from ATCC and maintained according

to provider’s recommendations, except for MCF 10A, and SK-

BR-3 cells. MCF 10A cells were maintained in media containing

horse serum as previously described [99]. However, for dot-blot

analyses, MCF 10As were grown in calf serum (CS), because

horse serum produced a high background reactivity with the

secondary antibody. For miRNA analyses, as a rule, MCF10A

cells were grown in FBS (Mediatech, Manassas, VA; Gemini,

West Sacramento, CA, or HyClone, Thermo Scientific, Pitts-

burgh, PA), because CS (Gemini, West Sacramento, CA)

contained some of the miRNAs measured (Figure S4A).

Microvesicles including exosomes were depleted from animal

sera by filtration and ultracentrifugation approaches as described

[23]. Alternatively, most miRNAs tested, including miR-451

were nearly undetectable in the FBS serum we used, consistent

with the fact that miR-451 has not been detected in blood

microvesicles [34] (Figure S4). SK-BR-3 cells were grown in

MEM supplemented with 10% FBS, NEAA and sodium

pyruvate.

Cells were grown in one 10 cm plate for routine miRNA

analyses and 10 15 cm plates for array analyses (2–50*106 cells) for

collection of conditioned supernatant and cell pellet. Depending

on the cell line used, media was replaced when cells were about

40–70% confluent, and maintained in this medium for 5 days to

collect the released particles and miRNAs, unless otherwise

indicated. Culturing for 5 days was used to effect optimal exosome

accumulation in the media [23]. On the fifth day cells were nearly

90% confluent. Cell viability was quantified using trypan blue as

described [100].

Mice
Nude mice (Taconic, Hudson, NY) were housed, maintained,

and injected with indicated breast cancer cell lines according to

RFUMS IACUC guidelines, and as described [101]. In brief, 5

million cells of indicated cell lines were injected in 100 ml BD

Matrigel (BD Biosciences, San Jose, California) into the right flank

of mice, and monitored for tumor growth. Mandibular blood was

drawn about weekly according to IACUC protocol and plasma

was prepared immediately or after refrigeration.

Lavages
Coded human breast ductal lavages were collected and

provided by Dr. David Danforth (NIH) in accordance to NIH/

NCI Institutional Review Board (IRB) guidelines, and were

described in [80].

Milk
Milk was donated from the Mother’s Milk Bank of Iowa (The

University of Iowa Children’s Hospital) and the Indiana Mother’s

Milk Bank, Inc. Eight hundred microliters of milk from three

mothers each was analyzed to determine miRNA composition.

The study was approved by the IRB of RFUMS (IRB protocol

number # 001 PATH).

Exosome Preparation
P70 and S70 was prepared as described [23]. In brief,

conditioned media or sera were cleared of cells and cell debris

by low-speed centrifugation and filtration, followed by concen-

trating the remaining particulate at 70,000 g for 1 h. The pellet

was washed in PBS by resuspension, and centrifuged again at

70,000 g. We chose this centrifugation speed over conventional

higher speed-preparations [102], because vesicles prepared at

higher speeds can lose some of their biological activities [23].

Negative-Stain EM
EM was done as described [23]. In brief, a P70 was fixed in

suspension with 2% PFA and 0.2% glutaraldehyde followed by

pelleting. This preparation was adsorbed to butvar-coated grids

followed by negative staining/embedding in 1% aqueous uranyl

acetate in 1% methyl cellulose [103]. Micrographs were acquired

using a transmission electron microscope (H7000T; Hitachi).

Dot-Blots and Slot-Blots
Blots were prepared using antibodies as described [23]. In brief,

P70s and other preparations were resuspended in Tris-buffered saline

and blotted onto Immobilon FL (Millipore) or nitrocellulose (What-

man) using a Bio-Dot Filtration Apparatus (BioRad). Antibody

binding was quantified using a Typhoon 9400 (GE Healthcare), and

goat-anti-mouse IgG-Alexa 488 (Invitrogen) and ImageQuant T

software. Antigenicity was determined by quantifying antibodies

bound to slot-or dot blotted P70 and other material using a standard

curve produced using dilutions of a known amount of primary

antibody.

RNA Extraction
Total RNA was extracted using Trizol procedure (Invitrogen).

For linker ligation qRT-PCR, small RNAs were enriched from

Trizol-extracted total RNA using PureLink (Invitrogen) according

to manufacturer’s instructions. For looped-primer qRT-PCR, total

RNA was extracted using Trizol.

59 End Labeling of RNA
RNA (,50 pmol) was isolated from MCF7 cells or exosomes

and enriched for small RNAs using PureLink followed by

treatment with with Antarctic phosphatase (NEB) according to

manufacturers protocol. Dephosphorylated RNA was 59 end

labeled using T4 polynucleotide kinase (-39 phosphatase minus)

(NEB) and 32P-c-ATP according to the manufacturers instruc-

tions. Radiolabeled RNA was separated on a 12% urea-

polyacrylamide gel.

miRNA Microarrays
MicroRNAs were screened by LC Sciences. One microgram of

MCF7 cellular RNA preparation was labeled with Cy5, and one

microgram of the extracellular RNA samples was labeled with

Cy3. In brief, the RNA was labeled with Cy5 or Cy3 and

hybridized to LCSciences standard arrays for mature miRNA of

all species available in the Sanger miRBase database (Release

12.0). The data were analyzed including background subtraction,

using a LOWESS (locally weighted regression) method on the

background-subtracted data. Only transcripts with a signal

intensity higher than 36 (background SD) and spot CV,0.5.

CV was calculated by (SD)/(signal intensity), and in which

repeating probes on the array produced signals from at least 50%

of the repeating probes are above detection level. Only data are

plotted in which extracellular or the cellular signal intensity for a

particular transcript was at least 100. Array data have been

Selective Release of MicroRNAs

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13515



submitted to the NCBI/GEO database, GPL10517 - LC_MRA-

1001_miRHuman_12.0_080901, GSE22235.

miRNA Quantitation
Two PCR approaches were used, stem-loop primers, which in

general are more sensitive and specific, and linker-ligated primers,

which allow sequencing of the 39 portion of miRNAs, and the

quantitation of a wider variety of miRNAs from the same cDNA

sample.

RNA Ligation
For linker-ligated qRT-PCR, the 39 end of RNA was ligated to

linker 1 (IDT, Coralville, IA) according to manufacturer

instructions for miRCat (IDT), except for the substitution of

Ligation Enhancer with PVA, and truncated RNA ligase 2 (NEB)

to promote polar ligation.

Reverse-Transcription
Reverse Transcription (RT) was carried out using SuperScript

III (Invitrogen) according to manufacturer’s instructions, and using

half of the total RNA or microRNA isolated from the P70, cells, or

other sources and using 20 pmoles of the primers discussed below.

For linker ligation, Modban primer [38] was used for reverse

transcription. For reverse transcription of mature miRNAs, we

used sets of stem-looped primers (Table S5). For pre-miRNAs

and other immature miRNAs, we used a set of primers specific for

the 39 end of immature miRNAs (Table S6), many of which are

described in [39].

Quantitative PCR
qPCR was performed on a 1/1000 dilution of the cDNA using

the primers listed in Tables S5 and S6. The optimal concentration

of template used was determined empirically (Figure S5). qPCR

was performed in triplicate 20 ml reactions using an ABI 7500 Real-

Time PCR System (Applied Biosystems, Carlsbad, CA). The

reagents used included PCR primers produced by IDT, Invitrogen

or Operon and Power SYBR Green PCR Master Mix. We

optimized the qRT-PCR approach empirically to produce a single

band of the correct size by native PAGE (Figure 2E). In so doing,

we were able to confirm the specificity and purity of our amplified

and quantitated products. Quantitation was performed for up to 40

cycles of melting at 95uC for 15 s, annealing at 50uC for 1 min, and

extension at 73uC for 15 s, the optimal conditions determined

empirically. Standard PCR was performed on a MultiGene

Thermal Cycler (Labnet International, Inc, Edison, NJ) using

PCR with GoTaq polymerase (Promega).

Absolute Quantification
MiRNA abundance was measured by computing attomoles

based on comparing CT values of samples to dilutions of a

synthetic cDNA of the same miRNA sequence to make a standard

curve.

Relative Quantification
Relative quantification was performed using the ABI 7500

detection software with correction for amplification efficiency

based on an exponential model of PCR [104,105], and after

normalizing miRNA recovery to spiked control RNA (INT-RNA)

of known quantity (Table S4).

Quantitation of Pre-miRNA Sequences
Quantitation of pre-miRNA sequences was performed with the

primers listed in Table S6. To confirm pre-miRNA sequences

analyzed, we sequenced the PCR products (Table S7). To

determine proper processing of the pre-miRNAs, we designed two

upstream primers (US1 and US2) to the region 59 of the stem-

loops of the pri-miRNAs, and a downstream primer to the 39 end

of the immature miRNAs (Rm) for amplification by PCR. (Table
S6). The resulting products of expected size were sequenced to

confirm their identity (Table S7).

PAGE
Final PCR products were separated on a 12% native acrylamide

gel at room temperature, stained with SYBR Gold (Invitrogen),

and photographed using Gene Genius Bioimaging System, and

GeneSnap software (Syngene, Frederick, MD).

Cloning and Sequencing
PCR products were cloned into pGEM-T Easy (Promega,

Madison, WI) and sequenced at the DNA sequencing facility of

the University of Chicago Cancer Research Center. By sequencing

the stem-loop and linker-ligation products, we determined that

miR-100 identified by the array (Figure 2A) was in fact miR-99a,

which differs from miR-100 by a single nucleotide (Table S5).

Supporting Information

Figure S1 Some Diagnostic miRNAs are Mostly Retained.

Indicated miRNAs were amplified from RNA collected from cells

and the conditioned media of MCF7 cells using looped primers,

and separated by native PAGE. A miRNAs in which the cellular

(c), but not the extracellular (x) RNA population contained the

indicated miRNAs. In each case of the cellular sample, the main

band (arrow) was excised, cloned and sequenced and found to be

the expected amplified product. In the case of extracellular

samples the main bands, all of which migrated differently (star),

had no resemblance to the miRNA to be amplified as determined

by sequencing. B miRNAs in which the released miRNA

population contained a band of much lower abundance than the

retained population.

Found at: doi:10.1371/journal.pone.0013515.s001 (0.31 MB

PDF)

Figure S2 Lack of Correlation between Primary Transcript and

Release Rate of MiRNAs. Released/retained miRNAs (x/c) as

evaluated in Figure 1 are plotted according to chromosomal

location (chromosomes 1-X) from top to bottom. Micro-RNA

clusters are indicated in color. Note that for cluster miR-200c-141,

which is located in a single intron, 30 times more of its encoded

miR-200c molecules than miR-141 molecules were released from

cells (Figure 2A) than retained, indicating that the extent of

miRNA release is not determined at the primary-miRNA level. In

support of this idea, within the other miR-200 cluster, which

encodes miR-200a, miR-200b and miR-429 (Bracken CP,

Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF,

Goodall GJ. A doublenegative feedback loop between ZEB1-SIP1

and the microRNA-200 family regulates epithelialmesenchymal

transition. Cancer Res. 2008 Oct 1;68(19):7846–54), more than

half of miR-429 and miR-200b molecules are released, whereas

most of miR-200a is retained. Therefore, the extracellular

accumulation of mature miRNAs is regulated at levels other than

the primary transcript abundance. MicroRNAs contained in

particular clusters are indicated by red or green colored bars.

Found at: doi:10.1371/journal.pone.0013515.s002 (2.32 MB

PDF)

Figure S3 MiR-1246 is a Reliable Indicator of Body Fluids

Conditioned by Mammary Epithelia. A tumor growth of
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xenografted cells of mice used for assessment of miRNA

abundance in blood plasma as indicated in Figure 4A. The tumor

size is presented as the product of the 3 diameters. Data presented

in Figure 6 are from bleeds at day 30 (arrow). B PAGE of end-

point PCR of miR-1246 of bleeds of MCF7-1 and MDA-MB-231.

Found at: doi:10.1371/journal.pone.0013515.s003 (0.20 MB

PDF)

Figure S4 Fetal Bovine Serum Does Not Interfere With

Extracellular MiRNA Assessment. A Relative abundance of

indicated miRNAs in calf serum (CS) and fetal bovine serum

(FBS), normalized to INT-RNA. Note the absence of miR-451

from FBS, but that CS contains measurable levels of Bos taurus

miR-451, which differs from hsa-miR-451 by a single terminal

nucleotide (Long JE, Chen HX. Identification and characteristics

of cattle microRNAs by homology searching and small RNA

cloning. Biochem Genet. 2009 Jun;47(5–6):329–43). B End-point

PCR using stem-loop primers on extracellular (x) and cellular (c)

miR-451 of indicated breast cancer cell lines grown in complete

FBS, or in FBS depleted of microvesicles (FBS S100). C Ratio of

miRNAs in c and x of cells grown in complete FBS and FBS

depleted of microvesicles (FBS S100). D. MiRNAs measured as in

Supplemental Figure S4C, by qRT-PCR using linker-ligation.

Error bars indicate standard deviation. A is an average of 2

experiments, C and E are averages of 3 independent experiments.

Found at: doi:10.1371/journal.pone.0013515.s004 (1.28 MB

PDF)

Figure S5 Template-independent amplification products at low

template concentrations. Mature miR-16 was assessed by the

stem-loop-primer protocol on 5 fold serial dilutions of a synthetic

DNA construct reflecting the expected product of miR-16.

Found at: doi:10.1371/journal.pone.0013515.s005 (0.22 MB

PDF)

Table S1 RRNA and snRNA fragments detected in unique

RNA band of extracellular miRNAs. RNA sequences cloned and

sequenced from bands in Figure 1, D and E, marked with a star.

Found at: doi:10.1371/journal.pone.0013515.s006 (0.03 MB

DOC)

Table S2 RNA Subpopulation Enriched in the Extracellular

Space. Sequences identified with D1, D2, D3 represent sequence

data of miRNAs extracted from cells, all others are miRNA

sequences retrieved from the extracellular space.

Found at: doi:10.1371/journal.pone.0013515.s007 (0.05 MB

DOC)

Table S3 Oligonucleotides used for Mature miRNA Quantita-

tion.

Found at: doi:10.1371/journal.pone.0013515.s008 (0.07 MB

DOC)

Table S4 Stem Looped Primers used for Simultaneous Analyses

of Multiple Transcripts.

Found at: doi:10.1371/journal.pone.0013515.s009 (0.05 MB

DOC)

Table S5 Confirmed sequences of qPCR products quantified

using linker ligated primers.

Found at: doi:10.1371/journal.pone.0013515.s010 (0.03 MB

DOC)

Table S6 Primers for Quantifying pre-miRNAs and Other

Immature miRNAs.

Found at: doi:10.1371/journal.pone.0013515.s011 (0.07 MB

DOC)

Table S7 Sequences of Immature miRNAs Detected.

Found at: doi:10.1371/journal.pone.0013515.s012 (0.05 MB

DOC)
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