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Abstract

Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic
inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP,
we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among
presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled
postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to
evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced
synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings
revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased
during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+
interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition
in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation)
control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity.
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Introduction

Association-based Hebbian plasticity is a powerful form of

activity-dependent synaptic modification capable of shaping the

response properties of neurons during development, and is a

proposed substrate for experience-dependent learning [1–3].

However, associative forms of plasticity by themselves are

destabilizing and must be constrained for circuit activity to remain

balanced [4–6]. Studies from various preparations demonstrate

that both the magnitude and direction of synaptic modification is

dependent on the relative timing between pre- and postsynaptic

spike events [7–13]. Modeling studies indicate that such spike-

timing-dependent plasticity (STDP) is inherently stabilizing and

competitive because presynaptic inputs that consistently drive

postsynaptic spike events ultimately dominate to control postsyn-

aptic spike timing, at the expense of those inputs that are less

effective in bringing the postsynaptic cells to threshold. Thus, the

net excitatory input onto a given postsynaptic neuron is constant

due to re-organization of the synaptic weight distribution [14]. It

has been demonstrated that cortical synapses can be modified by

STDP rules in vivo in response to visual [15–18] and whisker [19]

stimulation. Importantly, these studies demonstrate that the

temporal precision of spike times required for STDP can be

propagated from the periphery to the level of the cortex. Thus,

STDP may contribute to maintaining circuit stability during

experience-dependent plasticity. In the present study we consider

how the stabilizing properties of STDP influence experience-

dependent plasticity during postnatal development in the visual

cortex.

According to the STDP rule, factors that enhance the

probability of a given synapse to evoke a postsynaptic action

potential, defined as synaptic efficacy [20], will lead to its

strengthening. For example, temporal clustering of different inputs

is an effective means of increasing synaptic efficacy because inputs

that arrive in a temporally coherent group are more likely to

summate and bring the postsynaptic neuron to spike threshold.

Through such cooperation, a cluster of synapses can grow

stronger, while weakening other synapses that are not part of the

cluster [21,22]. Here we use the term temporal coherence to refer to

the degree of temporal clustering among presynaptic spike times

and operationally define it as the width of the cross-correlogram

peak among pairs of spike trains within a pathway. In addition to

temporal coherence, the initial synaptic strength (ISS) of a synapse

is also a major determinant of its impact on postsynaptic spiking

[23,24]. Strong synapses have an advantage among converging

inputs, because they are more likely to drive postsynaptic spiking

and thus their spike times are likely to fall within the potentiation

window of STDP. Indeed, in the developing visual system of the

tadpole, Zhang et. al. (1998) demonstrated that synaptic strength is

capable of conferring a competitive advantage during STDP-
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mediated synaptic re-organization. This raises the question of

whether and how initially strong synapses can be weakened, and

which parameter, temporal coherence or initial synaptic strength,

determines the outcome of synaptic competition.

This issue is relevant to ocular dominance (OD) plasticity in the

developing primary visual cortex (V1). During a postnatal critical

period, monocular deprivation (MD) causes binocular neurons in

the primary visual cortex to shift their responsiveness towards

open-eye inputs via a Hebbian-based process [1,25]. Importantly,

monocular blurring using an overcorrecting contact lens, which

distorts but does not eliminate vision, is equally effective in

inducing a shift in ocular dominance [26]. These results suggest

that it is the pattern of visual input, likely manifested as the

temporal correlation of retinal afferent activity, that drives

plasticity [27,28]. In rodents, the majority of neurons in the

binocular visual cortex are normally dominated by inputs from the

contralateral eye, yet closure of this eye during the critical period

results in the weakening of its inputs and strengthening of the

ipsilateral, open eye inputs. Therefore, temporally coherent inputs

are able to overcome the initially strong but less coherent inputs

and eventually dominate in driving binocular neuron responses.

However, the conditions and cellular mechanisms that confer an

advantage to ipsilateral inputs are not well understood.

GABAergic inhibition potently influences input summation,

which is required for spike generation, by restricting the temporal

window over which inputs are able to effectively cooperate

[29–31]. Intuitively, increasing the strength of GABAergic

inhibition would seem a good candidate for shifting the control

of postsynaptic spiking to inputs with a higher temporal coherence

versus inputs with a higher synaptic strength. In addition,

GABAergic inhibition develops in a protracted postnatal period

[32–34], and this protracted development was shown to regulate

the timing of the critical period for OD plasticity [35–40]. We

therefore hypothesize that the developmental increase of inhibition

in V1, by biasing the control of postsynaptic spiking, ensures that

Hebbian plasticity mechanisms are engaged during MD to

strengthen the temporally coherent inputs over those with higher

initial synaptic strength.

Here we combine modeling and experimental approaches to

examine the role of GABAergic inhibition in promoting the selective

strengthening of temporally coherent inputs in the context of OD

plasticity. We characterized the maturation of a major class of

GABAergic interneuron in rodent visual cortex and found that both

synaptic and intrinsic properties of Pv+ interneurons changed

dramatically during the critical period of OD plasticity. Using a

simple integrate-and-fire neuron model driven by inputs modifiable

by STDP, we determined that a sufficient amplitude of synaptic

inhibition along with an increase in gain of GABAergic neuron

spike output was required to ensure that temporal coherence, rather

than initial synaptic strength, controlled postsynaptic spike timing.

Inhibition exerted this effect by preferentially reducing the synaptic

efficacy of the less coherent inputs. The modeling results predict that

the developmental increase in inhibition should decrease synaptic

efficacy during the critical period. Indeed, using acute cortical slices

of visual cortex, we found that stimulus-evoked synaptic inhibition

potently reduced synaptic efficacy at the peak of but not prior to the

onset of the critical period.

Results

Our modeling and experimental studies were driven by a desire

to understand the role of GABAergic inhibition in regulating

synaptic plasticity, especially ocular dominance (OD) plasticity in

the visual cortex in response to contralateral eye deprivation. We

first examined whether synapses in the mouse primary visual

cortex are modifiable by STDP.

Layer 2/3 synapses in V1 are modified by STDP prior to
and at the peak of the critical period of OD plasticity

Precocious OD plasticity can be triggered by enhancing

GABAergic transmission within V1 [36,39,40], suggesting that the

machinery for OD plasticity is operational before its natural onset,

but lies dormant until local GABAergic inhibitory circuits mature.

To examine whether the basic mechanisms for synaptic plasticity

are present at glutamatergic connections prior to the onset of OD

plasticity, we compared the ability to induce STDP at layer 2/3

synapses in acute slices of V1 prior to the onset (postnatal day 16–

18) and at the peak (P26–30) of OD plasticity. Long-term synaptic

depression (LTD) or potentiation (LTP) was induced using a STDP

protocol. Postsynaptic action potentials were evoked by current

injection from the recording electrode, bypassing the need for inputs

to summate to bring the cell to spike threshold. Whole-cell current-

clamp recordings were made from layer 2/3 pyramids (Figure 1A),

in the presence of 10 mM picrotoxin. EPSPs were continuously

evoked at a frequency of 0.2 Hz throughout the experiment from a

field electrode placed in layer 4. EPSPs were monitored for a

baseline period of 5 minutes, then paired 100 times with an action

potential (AP), and further monitored for 20–45 minutes. To induce

LTD, the AP was timed to precede the EPSP by 9+/22 ms. To

induce LTP, the AP was timed to follow the EPSP by 9+/22 ms.

An example of LTD induction from a P17 slice is shown in

Figure1C. The average initial slope of the EPSP during the

baseline period was 0.44 mV/ms. Following the AP-EPSP pairing

protocol, the average initial slope of the EPSP decreased to

0.27 mV/ms. We calculated the EPSP slope ratio (EPSP slope

post-pairing/EPSP slope pre-pairing) to compare plasticity across

slices and ages. In both young and mature slices there was a

significant reduction of the mean EPSP slope ratio following the

LTD protocol. The mean EPSP slope ratio was 0.72+/20.09 in

young slices (p,0.05, paired t-test, n = 12); and 0.72+/20.13 in

Author Summary

Evidence suggests that maturation of inhibition is required
for the development of plasticity to proceed in the visual
cortex. However, the mechanisms by which increased
inhibition promotes plasticity are not clear. Here we
characterized the maturation of synaptic and intrinsic
ionic properties of parvalbumin-positive interneurons, a
prominent subtype of inhibitory neuron in the cortex. We
used a simple integrate-and-fire model to simulate the
influence of maturation of inhibition on associative
plasticity rules. We simulated two input pathways that
converged onto a single postsynaptic neuron. The
temporal pattern of activity was constructed differently
for the two pathways: one pathway represented visually-
driven activity, while the other pathway represented
sensory-deprived activity. In mature circuits it is estab-
lished that postsynaptic cells can select for sensory-driven
inputs over deprived inputs, even in the case that deprived
inputs have an initial advantage in synaptic size or
number. We demonstrated that maturation of inhibition
was required for postsynaptic cells to appropriately select
sensory-driven patterns of activity when challenged with
an opponent pathway of greater size. These results outline
a mechanism by which maturation of inhibition can
promote plasticity in the young, a period of development
that is characterized by heightened learning.

Maturation of Inhibition and STDP
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mature slices (p,0.05, paired t-test, n = 12). There was no

significant difference between the two ages (Figure 1B), deter-

mined using either a t-test (p = 0.97) or a Kolmogorov-Smirnov

(KS) test (p = 0.99), which is sensitive to differences in data

distribution as well as the mean.

An example of LTP is shown in Figure 1d. The baseline EPSP

slope was 0.28 mV/ms. Following the AP-EPSP pairing protocol,

the EPSP slope increased to 0.42 mV/ms. Similar to the LTD

protocol, the LTP protocol induced significant plasticity at both

ages. The mean EPSP slope ratio was 1.32+/20.10 in young slices

(p,0.05, paired t-test, n = 11), and was 1.36+/20.09 in mature

slices (p,0.05, paired t-test, n = 11). There was no significant

difference between the two ages (t-test, p = 0.76; KS, p = 0.81).

We also compared the ability to induce STDP at local recurrent

connections within layer 2/3 in the two age groups (Figure 1B). To

stimulate local recurrent connections, the field electrode was

placed laterally within 50 microns of the recorded cell. Similar to

layer4Rlayer2/3 connections, we found that the activated

synapses were modifiable by STDP in both young and mature

slices. In response to the LTD protocol the mean EPSP slope ratio

was 0.79+/20.09 in young slices (p,0.05, Wilcoxon signed rank,

n = 10), and was 0.78+/20.09 in mature slices (p,0.05, Wilcoxon

signed rank, n = 9). There was no significant difference between

the two ages (KS, p = 0.25). In response to the LTP protocol the

mean EPSP slope ratio was 1.47+/20.16 in young slices (p,0.05,

Wilcoxon signed rank, n = 8), and 1.29+/20.10 in mature slices

(p,0.05, Wilcoxon signed rank, n = 9). There was no significant

difference between the two ages (KS, p = 0.90).

Therefore, by bypassing the requirement for input summation,

we demonstrated that STDP was similarly induced at layer 4R
layer 2/3 connections as well as local recurrent connections in

mouse primary visual cortex both prior to the onset and at the

peak of the critical period of OD plasticity. Our results, along with

others [41], raise the possibility that the ability to induce plasticity

at glutamatergic synapses may not be a primary factor in

determining the onset of OD plasticity.

Maturation of GABAergic synaptic and intrinsic
properties in primary visual cortex

To examine the changes of GABAergic inhibition onto V1

pyramidal neurons during the critical period, we assayed the

Figure 1. STDP is inducible in mouse primary visual cortex before and after the onset of the critical period of OD plasticity. (A)
Position of field stimulation electrode in layer 4 and whole-cell recording electrode in layer 2/3 in V1, scale bar: 100 microns. WM: white matter. Inset:
an alexa-594-filled L2/3 pyramidal neuron. (B) Mean (black bar) and median (gray bar) EPSP slope ratios for young (open circle, LTD n = 12, LTP n = 11)
and mature (closed circle, LTD n = 12, LTP n = 11) age groups at vertical layer 4R layer 2/3 connections (left) and layer 2/3R 2/3 connections (right).
(C) Example of an individual cell in which the EPSP followed the action potential by 9 ms, age = P17. (D) Example of an individual cell in which the
EPSP preceded the action potential by 9 ms, age = P17, scale bar 25 mV, 5 ms. Baseline traces are represented by solid lines, post-pairing traces are
represented by dashed lines, scale bar: 0.5 mV, 10 ms.
doi:10.1371/journal.pcbi.1000797.g001

Maturation of Inhibition and STDP
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maximal inhibitory input onto layer 2/3 pyramids at two

developmental ages, just prior to the onset (young) and during

(mature) the critical period. Postsynaptic responses in layer 2/3

pyramidal neurons were recorded in response to stimulation of

layer 4, which evoked a mixed excitatory-inhibitory response

(Figure 2A). Similar to previous reports [42], we found that

inhibitory drive increased with age relative to excitatory drive

(Figure 2A), and that the maximal inhibitory charge significantly

increased with age, while the maximal excitatory charge was stable

(Table 1). Parvalbumin-containing (Pv+) basket cells make up

,50% of GABAergic interneurons in rodent V1, and it has been

shown that there is a ,2-fold increase in the number of Pv+ basket

presynaptic terminals surrounding pyramidal somata during the

critical period [34]. To determine if there was a corresponding

increase in synaptic function, we recorded from synaptically

connected Pv+ interneuron to pyramidal neuron pairs in layer 2/

3. Pv+ interneurons were recorded using either BAC transgenic

mice in which the Pv promoter drives GFP [43] or Pv-cre mice

[44] injected with a recombinant adeno-associated virus that

expresses GFP specifically in Pv+ basket cells [45]. We found that

peak inhibitory synaptic conductance increased by 1.8-fold during

the critical period compared to prior to the onset of critical period,

while there was a 25% decrease in the synaptic decay time-

constant (Figure 2B, Table 1). In contrast to inhibitory

connections, paired recording of pyramidal neurons revealed that

the peak excitatory synaptic conductance was similar between

young (n = 10) and mature (n = 10) layer 2/3 connections (0.17+/

20.09 and 0.23+/20.14 nS, respectively).

In addition to synaptic properties, we characterized the intrinsic

properties of Pv+ interneurons (Table 2) and found that the

Figure 2. Maturation of GABAergic synaptic and intrinsic properties in primary visual cortex. (A) Stimulus recording configuration for
determining the maximal IPSC amplitude prior to (young) and during (mature) the critical period. Upper trace, example of disynaptic IPSC activity in a
layer 2/3 pyramidal neuron in response to stimulation of layer 4, 15 mA intensity. IPSC responses are from two separate trials (black), EPSC (gray); scale
bar: 50 pA, 10 ms. Lower traces, amplitude of isolated monosynaptic AMPA-mediated current (EPSC, recorded at the empirically determined GABAA

reversal potential, gray) and compound GABAA-mediated current which included both monosynaptic and polysynaptic IPSCs (recorded at 0 mV,
black) in layer 2/3 pyramidal neurons in response to stimulation of layer 4. Stimulus input- output curves for a range of stimulation intensities (10–
80 mA) were generated (see Figure S1). The average current from all trials in which a 350650 pA EPSC was elicited is shown here. Young: n = 9 (of 14
cells) fulfilled this criteria, mature: n = 8 (of 13 cell) fulfilled this criteria. The normalized IPSC charge (nA*ms) shown here increased 1.7-fold with age
(young, 36.5+/23.6; mature, 62.0+/29.8 pC, t-test p,0.05). GABAB and NMDA-mediated currents were blocked. Scale bar: 250 pA, 10 ms. (B) Unitary
IPSCs recorded in layer 2/3 pyramidal neurons in response to stimulation of single Pv+ basket interneurons prior to the critical period (n = 14), and
during the critical period (n = 19). Left, averaged current responses across all cells. The average IPSC amplitude increased 1.8-fold with age, while the
average synaptic decay time-constant decreased roughly 25%, from 5.8 to 4.3 ms. See Table 1 for statistics. (C) Input/output curves of instantaneous
firing frequency of Pv+ basket interneurons prior to (n = 27, p14–15, triangles), during (n = 21, p19–23, circles), and at the end of the critical period
(n = 5, p44–46, squares). Maximal spike output in response to the same input increased by greater than 2-fold during the course of the critical period
(right). There was a corresponding decrease in spike half-width during development, p14–15 (0.96+/20.18 ms), p19–23 (0.56+/20.14 ms), p44–46
(0.23+/20.03 ms), example voltage traces of spike shape shown on the left.
doi:10.1371/journal.pcbi.1000797.g002
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current input/spike out curve shifted during the critical period: for

the same stimulus input, the number of output spikes was greater

during the critical period compared to that prior to the onset of the

critical period. Thus, the gain of Pv+ interneurons increased

during the critical period. In addition, there was a corresponding

decrease in spike half-width (Figure 2C).

These electrophysiological results are summarized in Tables 1

and 2. Relative to excitatory connections, synaptic inhibition

significantly matured with age. These results do not exclude the

possibility that there are subtle developmental changes in synaptic

excitation. In contrast to synaptic properties, the intrinsic

properties of pyramidal cells, including input resistant, changed

with age, as previously reported [46].

A simple point conductance model driven by two
convergent input pathways modifiable by STDP

Modeling studies have demonstrated that in response to a

change in the temporal pattern of presynaptic spike times, STDP

implemented in its most basic form, re-organizes the population of

synapses converging onto a postsynaptic neuron such that the most

coherent inputs are strengthened, while the remaining synapses

are weakened [22]. The outcome of STDP driven re-organization

is that the net excitatory drive across a population of synapses

converging onto a single postsynaptic neuron is stabilized and a

subset of presynaptic inputs controls postsynaptic spike timing.

Here we extended the Song-Miller-Abbott (2000) model to include

two distinct convergent input pathways, and tested the effects of

altering presynaptic spike times within a pathway on the ability of

the pathway to control postsynaptic spike timing, across a range of

inhibitory levels. It has been observed that strong synapses can in

some situations undergo less potentiation than weak synapses [47],

therefore we also ran the simulation in a weight-dependent mode

in which the amount of potentiation was inversely related to

synaptic size.

We used an integrate-and-fire model neuron driven by 2

presynaptic pathways that each contained 40 synaptic inputs. As in

Song et. al. (2000), a function F(Dt) determined the amount of

excitatory synaptic modification arising from a single pair of pre-

and postsynaptic spikes separated by a time Dt (Methods).

Excitatory synaptic conductance was not allowed to exceed a

maximum value gmaxex. If the modification function pushed the

synaptic weight past the gmaxex value, the weight was reset to the

appropriate limiting value. The maximum amount of modification

for a single pre- and postsynaptic spike pair corresponded to a

0.5% change of gmaxex. This function provides a reasonable

approximation of the dependence of synaptic modification on

spike timing observed experimentally, and makes no assumptions

regarding the mechanism(s) of STDP. The model neuron also

received inhibitory conductance: each excitatory conductance was

followed by an inhibitory conductance of fixed amplitude with a

delay randomly varying between 4 to 10 ms. For the simulations in

Figure 3, the ratio of the amplitude of inhibitory conductance over

gmaxex (gI/gmaxex) was 0.264, and the average initial synaptic

strength (ISS), was the same for both pathways, set to 25% of

gmaxex. This amount of inhibition was sufficient to maintain the

postsynaptic neuron in a balanced mode, defined by an excitatory-

inhibitory ratio of 1.1–1.2 at the threshold for action potential

generation [14].

A minimal number of parameters were used to generate

presynaptic spike trains (see Methods). We then altered two of

these parameters to modify the temporal relationships among

inputs within and between the two pathways. First, we altered the

temporal correlation between pathway 1 (P1) and pathway 2 (P2),

defined as whether or not the two pathways share coincident

Table 1. Synaptic properties of layer 2/3 neurons of V1.

L4 fld stm R L2/3 Pyr wc recording Inhibitory current Excitatory current

young mature young mature

maximal charge (pC, nA* ms) 63.20+/231.97 147.83+/275.82 * 0.37+/20.17 0.44+/20.23

L2/3 R L2/3 wc paired recording Pv+ R Pyr Pyr R Pyr

young mature young mature

peak conductance (nS) 0.98+/20.69 1.80+/21.62 * 0.17+/20.09 0.23+/20.14

decay time-constant (ms) 5.84+/21.62 4.30+/21.13 * 2.48+/20.67 2.56+/20.59

Synaptic currents were measured by whole-cell (wc) voltage-clamp recordings of layer (L) 2/3 pyramidal neurons and stimulating presynaptic inputs. Maximal charge
was measured using the L4 field stimulation (fld stm) configuration shown in Figure 2A (inhibitory: young, n = 13, mature, n = 12; excitatory: young, n = 13, mature,
n = 12). For paired recordings, either presynaptic parvalbumin interneurons (Pv+; young, n = 14; mature, n = 19) or presynaptic pyramidal (Pyr) neurons (young, n = 10;
mature, n = 10) were stimulated as indicated. +/2 std. dev.
doi:10.1371/journal.pcbi.1000797.t001

Table 2. Intrinsic properties of layer 2/3 neurons of V1.

Pv+ Pyr

young mature young mature

Input resistance (mV) 160.0+/274.3 130.8+/219.5 269.4+/260.9 150.1+/236.9 *

Membrane time-constant (ms) 6.13+/23.4 3.93+/21.5 * 25.31+/27.8 14.68+/24.9 *

Spike half-width (ms) 0.96+/20.18 0.56+/20.14 * 1.13+/20.11 0.97+/20.15 *

Intrinsic properties were measured by whole-cell current-clamp recordings of Pv+ (young, n = 14; mature, n = 15) or Pyr neurons (young, n = 15; mature, n = 16). +/2 std.
dev.
doi:10.1371/journal.pcbi.1000797.t002
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presynaptic spike times. Second, we altered the temporal coherence

(1/s) among inputs within a single pathway, which refers to the

degree of temporal clustering of spike times; the value s represents

the temporal jitter (ms) of presynaptic spike times (Figure 3).

In our baseline condition, Input Regime I (Figure 3A–C),

presynaptic spike times were correlated between P1 and P2, and

presynaptic spike times within the two pathways had the same

degree of high temporal coherence (sP1 = 3, sP2 = 3). This input

regime represents features of a normal binocular neuron, which

receives converging and correlated inputs from the two eye

pathways, and activity within each pathway displays high temporal

coherence driven by the same visual stimulus. Ten independent

trials of the simulation were run. Cross-correlation analysis of

individual presynaptic spike trains versus the postsynaptic spike

train demonstrated that each pathway was capable of driving

postsynaptic events during the initial 50 seconds of simulated time,

and also in the final phase of the simulation (Figure 3B). Cross-

correlation results are schematized in Figure 3a. As expected for

this input regime, the mean synaptic weight for each pathway was

unchanged during the course of the simulation (Figure 3C), both

pathways maintained the ability to control postsynaptic spike

timing throughout the simulation, as indicated by the dashed lines

in Figure 3A.

In Input Regime II (Figure 3D–F), presynaptic spike times

between the two pathways were de-correlated, while the high

degree of temporal coherence within each pathway (sP1 = 3,

sP2 = 3) was preserved. This input regime represents features of a

binocular neuron during strabismus, in which inputs from the two

eyes are de-correlated and spike times within each eye-specific

pathway display high temporal coherence. Ten independent trials

of the simulation were run. The mean synaptic weight of one

pathway strengthened, at the expense of the opposing pathway,

such that the total excitatory driving force was maintained and the

firing rate of the postsynaptic neuron was stable. The outcome of

which pathway, P1 or P2, dominated occurred at chance level.

For Input Regime III (Figure 3G–J), in addition to temporal de-

correlation between the pathways, temporal coherence was

reduced in Pathway2 (sP1 = 3, sP2 = 6, a s ratio of 1:2). This

input regime represents features of a binocular neuron during

monocular deprivation, in which the two eye-specific pathways are

uncorrelated and the temporal structure of activity differs between

the two pathways. The open eye views high-contrast patterns,

therefore the open-eye pathway likely has a relatively higher

degree of temporal coherence compared to the closed-eye pathway

[26–28]. The temporal structure of the presynaptic spike trains

used in the simulation is shown in Figure 3J. Ten independent

trials were run. Pathway1, with higher temporal coherence, always

attained the higher mean synaptic weight and emerged to drive

spike output. In addition, the spike times of the postsynaptic

neuron became controlled by P1 in all trials. Our model thus

demonstrates that the stabilizing and competitive properties of

STDP first described by Song et. al. (2000), also apply to the

condition of two independent convergent pathways, and that the

pathway with relatively higher temporal coherence will dominate

in driving postsynaptic spike times when the initial synaptic

strength is equal between pathways.

Initial synaptic strength confers a competitive advantage
In addition to the temporal structure of presynaptic inputs,

initial synaptic strength plays a major role in driving postsynaptic

spiking and is also likely to contribute to the outcome of STDP-

driven re-organization of inputs. Inputs with higher synaptic

strength have an advantage because fewer active synapses are

required to evoke a postsynaptic action potential. Indeed, at the

retinotectal projection in tadpoles, it has been demonstrated that

the extent to which a given pathway potentiates in response to

asynchronous stimulation of convergent inputs is dependent on

initial synaptic strength [9].

Using Input Regime III (s ratio of 1:2), we challenged the

ability of P1, the temporally more coherent pathway, to control

postsynaptic spike timing by increasing the initial synaptic strength

(ISS) of P2. The ISS ratio (P2/P1) was varied from 1.0 to 2.0.

Using the same level of inhibition as in Figure 3 (gI/

gmaxex = 0.264), we found that the fraction of simulation trials

in which P1 controlled postsynaptic spike timing decreased with

increasing strength of P2 (Figure 4A, dashed line). When P2 was

initially 50% stronger (ISSP2/P1 ratio = 1.5), it dominated in

driving postsynaptic spike activity in only half of the trials. Thus

when the ISSP2/P1 ratio was $1.5, P1, the pathway with higher

temporal coherence, failed to direct postsynaptic spike timing

above chance level. This result, however, formally contradicts with

the results of OD plasticity in V1.

The majority of binocular neurons in V1 are not equally driven

by the two eye-specific pathways. In rodents, approximately 70%

of binocular neurons [25] are characterized as class 2/3 cells,

preferentially driven by the contralateral eye inputs. Despite this

contralateral bias, contralateral eye closure during the critical

period shifts the response properties of class 2/3 cells such that

they become dominated by the initially weak, but temporally more

coherent ipsilateral eye inputs. Our result in Figure 4A, in which

the pathway with higher temporal coherence fails to direct

postsynaptic spikes, is thus inconsistent with the OD shift of

class2/3 neurons induced by monocular deprivation. In the

following section we tested the hypothesis that synaptic inhibition

can constrain STDP and promote the selective strengthening of

Figure 3. A simple IAF model neuron driven by two convergent input pathways subject to the STDP rule. The synaptic weight re-
organization following iterations of the STDP rule and the impact on correlations between pre- and postsynaptic spike times in response to 3 input
regimes are summarized schematically in the top row (A, D, G; also see text). Large black triangles represent postsynaptic pyramidal neurons. Red line
and small triangle represent input pathway 1 (P1). Blue line and small triangle represent input pathway 2 (P2). The size of red and blue triangles
symbolize synaptic weights. Short vertical lines represent spike times in P1 (red), P2 (blue), and postsynaptic pyramidal neurons (black). Vertical
dashed lines highlight the presence of significant cross-correlation between pre- and postsynaptic spike times. s represents the temporal jitter in
spike times of inputs within a pathway. Note that in Regime III (G–I), inputs in P2 are not aligned, denoting higher spike jitter (s= 6) compared to
those in P1 (s= 3). Middle row (B,E,H), cross-correlogram plots of example trials depicting the cross-correlation of an individual presynaptic spike train
from either P1 (red) or P2 (blue) versus the postsynaptic spike train, calculated for the initial 50 seconds (left column) and the final 50 seconds (right
column) of the simulation, in the case of (F), a trial in which P2 dominated is shown. Units for the x-axis are ms. Out of the 40 possible presynaptic
spike trains, the presynaptic spike train with the highest peak correlation value is shown. Peak cross-correlogram values for all 40 presynaptic spike
trains for P1 and P2 are shown in Figure S2. Note that in all three regimes, both P1 and P2 provide threshold input and contribute to postsynaptic
spike events early in the simulation. Bottom row (C,F,I), mean synaptic weight of P1 and P2 over the course of the simulation (same example trials as
in B,E,H), in units of conductance (gE) divided by the maximal excitatory synaptic conductance (gmaxex). In all cases, gI/gmaxex = 0.264. (J) Left, raster
plot of presynaptic spikes used in Regime III simulation, each row represents a single spike train (10 of 40 shown). Right, cross-correlation between
two randomly selected spike trains from P1(top), P2(middle), and between the two pathways (bottom). Bin size was 5 ms.
doi:10.1371/journal.pcbi.1000797.g003
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temporally coherent inputs at convergent pathways, even when

challenged with inputs of higher initial synaptic strength.

Inhibition biases STDP to favor temporal coherence over
initial synaptic strength

The stabilizing influence of STDP on net excitatory drive is

highly dependent on the non-linearity of the spike generation

process [22]. Given that synaptic inhibition has been shown to

potently influence input summation by restricting the temporal

window over which inputs are able to effectively cooperate [29–

31], we tested if increasing the amplitude of synaptic inhibition in

Input Regime III could bias the weaker but temporally more

coherent pathway (P1) to control postsynaptic spike timing. The

simulation was run at 6–12 different levels of inhibition and the

strength of P2 was increased 2 to 3-fold relative to P1. The

simulation was run for 30–50 independent trials for each

parameter pair, and the same presynaptic spike train was used

for each level of inhibition for a given ISSP2/P1 ratio (Figure 4A).

We found that the range of ISSP2/P1 ratios in which P1 out-

competed P2 was extended when inhibition was high, and that for

a given ISSP2/P1 ratio, higher levels of inhibition increasingly

biased the outcome of STDP-driven competition to favor P1 over

P2 (Figure 4A). For example, in the case that P2 was set to be 50%

stronger than P1 (ISSP2/P1 = 1.5) and the amplitude of inhibition

was set to $0.792 gI/gmaxex, P1 dominated in 100% of the trials,

while at lower levels of inhibition (gI/gmaxex = 0 to 0.264), P2 out-

competed P1 in roughly 50% of the trials. We examined a range of

relative temporal coherence values and found that increasing

inhibition had a similar effect as above in cases that the ISS ratio

was sufficiently high to give an advantage to P2 (Figure 4B).

As previously reported [46], we found that the input resistance

of layer 2/3 pyramidal cells decreased with age (Table 1). A

change in input resistance (Rin) could potentially influence

summation and therefore impact the effect of inhibition in our

simulation. However, there was a parallel change in the

membrane time-constant (tmem). Given the relationship, tmem =

Rin * whole-cell capacitance, whole-cell capacitance remained

stable. In acute slice experiments, values of Rin are typically about

30% higher than in vivo studies [48]. We examined a

physiologically realistic range of whole-cell capacitance values in

Figure 4. The level of inhibition determines whether temporal coherence or synaptic drive controls postsynaptic spike times in the
IAF model. Color shades indicate fraction of trials in which P1 out-competed P2: red = 100%, black = 0%. (A) At the lowest amplitude of inhibition,
the range of initial synaptic strength ratios (ISSP2/P1) over which the temporally more coherent P1 pathway can compete with the stronger but less
coherent P2 pathway is narrow (between 1–1.2) and restricted to a subset of OD class 4 cells. At a high level of inhibition, the range of ISSP2/P1 ratios
over which P1 successfully out-competed P2 above chance level (0.5) is extended to include the full spectrum of OD class 4 and the majority of class
2/3 cells. In this case, pathway temporal coherence (s21) between the two pathways was set to a ratio of 1:2 (P1:P2). (B) The influence of inhibition
holds for a range of temporal coherence pathway ratios. (C) Increased inhibition had a similar influence when contralateral bias was implemented as a
difference in number of synaptic inputs, rather than initial synaptic strength, P2/P1 ratios ranging from 1 to 3 were tested. (D) The ability of increasing
inhibition to provide a competitive advantage to P1 over P2 is maintained in an implementation of weight-dependent STDP. In this case, the amount
of potentiation for a given LTP event was inversely related to synaptic strength A+ * (1-a), see Methods for more details.
doi:10.1371/journal.pcbi.1000797.g004
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our simulation (from 0.125 nF to 0.375 nF) and found that the

effect of increasing inhibition was independent of whole-cell

capacitance (Figure S3).

In the above simulations we implemented contralateral bias as

an increase in initial synaptic strength. However, contralateral bias

in vivo could be the result of an increased number of inputs rather

than increased synaptic strength (or a combination of the two).

Therefore we examined the effect of increasing inhibition across

an increasing number of P2 inputs and found that as with synaptic

strength, increased inhibition helped to ensure that the temporally

coherent pathway out-competed the pathway with an initially

stronger synaptic drive (Figure 4C).

A likely mechanism by which stronger inhibition biased STDP

to favor P1 is that inhibition narrowed the window of input

cooperation, thereby preferentially restricting the less coherent

inputs in P2 from contributing to postsynaptic spike generation. If

this is the case, then the relative ability of P1 synapses to drive a

postsynaptic spike event (synaptic efficacy) should increase with

inhibition, independent of the STDP learning rule. To examine

this possibility, we compared the efficacy of P1 and P2 synapses in

a simulation implemented as in Figure 3A, except without

applying the STDP learning rule. As expected, increasing the

level of inhibition (from gI/gmaxex = 0.264 to 0.729) decreased the

relative efficacy of P2 synapses. At a high level of inhibition, P1

synapses had a slight advantage in driving postsynaptic events 2–

8 ms preceding the postsynaptic spike (Figure 5, compare A&B), a

temporal window for which STDP-mediated potentiation is the

strongest. This slight advantage of P1 was robustly magnified when

the STDP learning rule was applied in the simulation. Within the

first 100 spikes of the simulation, the relative efficacy of P1

synapses increased compared to the no-STDP condition (Figure 5,

compare B&D). P1 synapses completely dominated by the end of

the simulation (Figure 5, compare D&F). Analysis of synaptic

efficacy was also performed on the results from the initial

simulations shown in Figure 3 (see Figure S4). Similarly, we found

that the pathway having a slight advantage after the first 100 spikes

of the STDP simulation would ultimately dominate.

We previously showed that at a low level of inhibition (gI/

gmaxex = 0.264), P2 out-competed P1 in 50% of the STDP

simulation trials (Figure 4A, ISSP2/P1 ratio = 1.5). It was surprising

therefore to find that in the absence of STDP, P2 dominated in

driving postsynaptic spikes for the full 20 ms time window

(Figure 5A, upper left). Given this advantage, P2 would be

expected to dominate in 100% of the STDP simulation trials

rather than only 50%. The reason that P2 did not dominate in

100% of the trials was that the number of presynaptic spikes

occurring after each postsynaptic spike was greater for P2 than P1

(Figure 5G), thus leading to more LTD in P2 than in P1 when the

STDP learning rule was applied. Importantly, the difference in the

number of presynaptic spikes following postsynaptic spike events

Figure 5. The relative contribution of input pathways with different temporal coherence and initial synaptic strength to
postsynaptic spike events is dependent on inhibition. In these simulations, P1 (red, s= 3) is more coherent than P2 (blue, s= 6), as in Input
Regime III (Figure 3G), but is weaker (ISSP2/P1 = 1.5). The relative number of presynaptic spikes in P1 or P2 that preceded postsynaptic spike events
was counted in 1 millisecond time bins and plotted as a function of time preceding the postsynaptic spike for two levels of inhibition, low (A,C,E, gI/
gmaxex = 0.264) and high (B,D,F, gI/gmaxex = 0.792). The analysis was first done in the absence (A, B) and then in the presence (C–F) of the STDP
learning rule, (C–F) are examples of individual STDP simulations trials. At a low level of inhibition, P2 had a slight advantage in all time bins in the
absence of STDP (A), and went on to dominate in 50% of the STDP trials; an example of P2 domination shown in (C, E). At a high level of inhibition, P1
had a slight advantage over P2 in contributing to postsynaptic spike events 2–8 ms preceding the postsynaptic spike (B); and this advantage was
dramatically magnified by STDP (D,F). (G–H) The total number of presynaptic spikes in P2 that followed postsynaptic spike events is greater than that
in P1 in the absence of STDP learning rules. The relative number of presynaptic spikes was calculated as in (A–B), except that 1 ms bins counts were
made for a time window of 20 ms following postsynaptic spikes.
doi:10.1371/journal.pcbi.1000797.g005
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between the two pathways was similar for both low and high levels

of inhibition (Figure 5G,H). Therefore, the preferential restriction

of P2 inputs (Figure 5 A,B) was due to a specific decrease in their

synaptic efficacy rather than a increase of their LTD at higher

levels of inhibition.

It has been shown that under some conditions, the amount of

synaptic potentiation is dependent on synaptic strength [13,49],

and that this can impact the outcome of STDP [47]. Therefore,

we ran the same simulation shown in Figure 3A with an additional

weight-dependent rule in which the amount of LTP was inversely

related to synaptic size (Figure 4D). The ability of stronger

inhibition to confer a competitive advantage to P1 was

maintained.

Influence of inhibitory neuron gain on STDP
Our whole-cell recordings from pyramidal neurons in cortical

slices revealed that while the amplitude of unitary IPSCs increased

at the onset of the critical period, there was a concomitant

decrease in the synaptic decay time-constant, thus the develop-

mental change in unitary synaptic charge does not scale equally

with amplitude. When the 25% decrease in synaptic decay time-

constant that we experimentally observed was implemented in the

simulation, we found that the effectiveness of increased inhibition

in ensuring that P1 out-competed P2 was diminished (Figure 6).

We hypothesized that the developmental increase in gain of spike

output in GABAergic interneurons that we experimentally

observed could compensate for the decrease in the synaptic decay

time-constant. We tested this hypothesis by first demonstrating

that an increase in gain of spike output increased the probability of

P1 out-competing P2 across a range of initial synaptic strength

values (Figure 6). In this case the synaptic inhibitory decay time-

constant was set to the original value of 5.75 ms, and increased

gain was implemented as the probability of a given inhibitory

input spiking twice. For example, a gain of 1.0 corresponded to a

given presynaptic input spiking only once, a gain of 1.5

corresponded to a 50% probability that a given presynaptic would

generate a second spike, and a gain of 2 signified that a presynaptic

input would spike twice. Pv+ interneuron-to-pyramidal synapses

display short-term depression in which the amplitude of the second

IPSC is 10–30% reduced compared to the first IPSC (Figure S5).

To account for short-term depression in our simulation, the

amplitude of the conductance on the second spike was reduced by

20%. We found that increasing spike output gain increased the

probability of P1 out-competing P2. Next, the gain was increased

at the same time the synaptic decay time-constant was reduced to

75% of the original value. We found that an increase in gain could

indeed compensate for the decreased synaptic decay time-

constant.

In summary, our modeling results show that both temporal

coherence and initial synaptic strength of synaptic inputs can

confer a competitive advantage at convergent pathways modifiable

by STDP, but synaptic inhibition can constrain STDP to favor

temporally coherent inputs at the expense of inputs with stronger

initial synaptic strength. These results have implications for ocular

dominance plasticity, particularly for class 2/3 neurons. Given

that OD plasticity involves correlation-based Hebbian mecha-

nisms [25], a prerequisite for a binocular neuron to shift its ocular

dominance towards the open eye is that its spike times must

correlate with the open eye pathway. For a class 2/3 neuron

during contralateral eye closure, this means that the weaker but

more coherent inputs of the open eye pathway must increase the

correlation of their spike times with the spike times of the

postsynaptic neuron. Studies using single unit recordings generally

classify cells as 2/3 if the contralateral drive is 1.5 fold or greater

than the ipsilateral drive [50], thus the ISSP2/P1 ratios we used are

well within the range of experimental observations, and the effects

that we observe on STDP may also apply to cells that are

borderline class 4 cells. Our modeling results demonstrate that the

maturation of GABAergic inhibition can constrain STDP so that

the spike output of class 2/3 neurons, which are dominated by the

contralateral eye at the time of its closure, become increasingly

correlated with the ipsilateral, open-eye input. Our simulation

further shows that inhibition mediates such an effect by reducing

the synaptic efficacy of the less coherent, even though stronger,

inputs. Therefore, a prediction from our model is that maturation

of GABAergic inhibition must be sufficiently strong to more

potently decrease synaptic efficacy at the peak versus prior to the

onset of the critical period of OD plasticity.

Maturation of visual cortical synaptic inhibition reduces
synaptic efficacy

We used a visual cortical slice preparation to examine whether

the maturation of GABAergic inhibition reduces synaptic efficacy,

and whether this effect correlates with the onset of OD plasticity.

Postsynaptic responses in layer 2/3 pyramidal neurons were

recorded following stimulation of layer 4, which evoked a mixed

excitatory-inhibitory response (Figure 2A). The time course of

evoked IPSCs outlasted the EPSCs by roughly 7-fold. This was due

to the slower kinetics of the GABAA receptors compared to that of

the AMPA receptors and to the presence of polysynaptic IPSCs.

Previous studies have shown that stimulus-evoked inhibition can

reduce the synaptic efficacy of asynchronous EPSPs for up to 30–

Figure 6. An increase in gain can compensate for the decrease in the decay time-constant of synaptic inhibition. The fraction of trials
in which P1 out-competed P2 was diminished when the decay time-constant of synaptic inhibition (tisyn) was decreased to 75% of the original value
of 5.75 ms. However, an increase in gain, implemented as an increase in number of inhibitory presynaptic spikes, increased the fraction of trials in
which P1 out-competed P2.
doi:10.1371/journal.pcbi.1000797.g006
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50 ms [30,51], a time course that matches the duration of the

evoked GABAA current measured here. We used a two-pathway

stimulation paradigm to examine the effect of synaptic inhibition

on synaptic efficacy at layer 4 to layer 2/3 connections (Figure 7A).

The stimulation intensity of both pathways was normalized to

spike threshold in layer 2/3 pyramidal neurons to facilitate

comparison across slices and animals. A test pathway (Ptest) was

stimulated at threshold intensity such that an action potential in a

layer 2/3 pyramidal neuron was generated with a probability of

approximately 0.5 (see methods). The ability of Ptest to trigger a

postsynatpic action potential was then challenged by stimulating a

leading pathway (Plead) 40 ms earlier. The stimulation intensity of

Figure 7. The potency of one input pathway to suppress the probability of a convergent pathway from triggering a postsynaptic
spike in layer2/3 pyramidal neurons in V1 is developmentally regulated. (A) An experimental paradigm in visual cortical slices to examine
the interaction of two convergent input pathways to drive postsynaptic spiking at layer 4Rlayer 2/3 connections. Triangle represents a layer2/3
pyramidal soma. Field stimulation sites for the lead and test pathways are depicted. The slice is cut between the stimulation sites to ensure that the
two pathways are independent. The ability of Plead to suppress threshold stimulation of Ptest was assayed in both cell attached mode and whole-cell
mode in mature (B–D) and young (E–G) slices in the presence of APV and CGP55845. (B,E) Example traces of cell-attached recordings with inter-leaved
trials in response to pathway stimulation. Stimulus artifacts were clipped. Action potentials were detected as a capacitive transient, approximately
500–600 pA in amplitude. Raster plots of spike events are aligned to onset of Plead stimulation. 30 trials are displayed, 30–60 trails were collected for
each cell. Spike probability was assayed from 2 to 10 ms following stimulation of the Ptest during the Lead-Test trial,scale bar: 100 pA,10 ms. (B–D)
Spike probabilities of each cell during Test Only and Test-Lead trial stimulations are shown for cell-attached (C; n = 9), and whole-cell (D; n = 12)
recordings from mature visual cortical slices (P26–30), mean probability (black bar). (E–G) Same as in b-d except recordings were done in young slices
(P16–18). Cell-attached, n = 9, whole-cell, n = 12. Note that Plead potently suppressed Ptest from driving postsynaptic spiking in mature but not young
slices.
doi:10.1371/journal.pcbi.1000797.g007
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the Plead was set such that an action potential in the postsynaptic

pyramidal neuron was triggered with .0.9 probability. Ptest and

Plead were verified to be independent pathways to avoid short-term

plasticity such as synaptic depression. The use of the 40 ms

interval between the two stimuli ensured that postsynaptic spikes

evoked by Plead stimulation did not over lap with the postsynaptic

responses evoked by Ptest stimulation. Trials in which only Ptest

(Test Only) was stimulated were interleaved with those in which

Plead and Ptest were sequentially stimulated (Lead-Test).

The first experiment was done in cell-attached mode, with an

intact intracellular chloride gradient. We found that at the peak of

the critical period (P26–30), Plead stimulation reduced the spike

probability (r) of layer 2/3 pyramidal neurons in response to Ptest

stimulation by 37+/20.09% (lead-test: r= 0.32+/20.08, test

alone: r= 0.69+/20.08, n = 9, Wilcoxon signed rank, p,0.02,

Figure 7B,C). Prior to the onset of the critical period (P16–18),

however, there was little if any effect of Plead stimulation on spike

probability of layer 2/3 pyramidal neurons triggered by Ptest

stimulation (lead-test: r= 0.66+/20.09, test alone: r= 0.62+/

20.06, mean difference: D+0.04+/20.08, n = 9, Wilcoxon signed

rank, p = 0.25, Figure 7E,F).

We then repeated the above stimulation protocol using whole-

cell recordings of layer 2/3 pyramidal neurons. Similar to cell-

attached recording, spike probability in layer 2/3 pyramidal

neurons in response to Ptest stimulation was significantly reduced

by Plead stimulation at the peak of the critical period (lead-test:

r= 0.25+/20.07, test alone: r= 0.58+/20.07 mean difference:

D20.034+/20.08, n = 12, Wilcoxon signed rank, p,0.003,

Figure 7D), while no such effect of Plead stimulation was found

prior to the onset of the critical period (lead-test: r= 0.56+/20.08,

test alone: r= 0.55+/20.06, mean difference: D+0.01+/20.11,

n = 12, Wilcoxon signed rank, p = 0.58, Figure 7G).

To examine whether the reduction in synaptic efficacy of Ptest was

mediated by synaptic inhibition, we repeated the whole-cell

experiment in a bathing solution containing 3 mM divalent cations

and 3 mM bicuculline methiodine (BMI). This resulted in an 80%

block of synaptically evoked GABAA current (data not shown)

without inducing epileptic activity in cortical slice. In the presence of

raised cation concentration but in the absence of BMI, spike

probability in layer 2/3 pyramidal neurons in response to Ptest

stimulation was significantly reduced by Plead stimulation at the peak

of the critical period (lead-test: r= 0.2360.10, test only:

r= 0.5660.07, mean difference: D233+/20.10, n = 12,

Figure 8A,B), similar to the above results of Figure 7. The effect

of Plead stimulation was blocked in the presence of BMI (lead-test:

r= 0.7560.05, test only: r= 0.5660.05, n = 11, mean difference:

D+0.1860.08, Figure 8E). In contrast, prior to the onset of the

critical period, BMI had little impact on the ability of Plead to reduce

spike probability in response to Ptest stimulation (no BMI, lead-test:

r= 0.4560.07, test alone: r= 0.5360.02, mean difference:

D20.0860.07, n = 12, Figure 8C; BMI, lead-test: r= 0.6060.50,

test alone: r= 0.4960.02, mean difference: D+0.1160.06, n = 10,

Figure 8F). A 2-way ANOVA was performed to determine whether

the age-dependent effect of GABAA blockade was significant. The

change in spike probability (lead-test – test only) for layer 2/3

pyramidal cells was compared across treatment groups (Figure 8G).

The interaction between age and BMI treatment was significant

(p,0.05), and the effect of BMI on spike probability was significant

(p,0.001). Subsequent pairwise comparisons using the Holm-Sidak

method revealed a significant difference between BMI treated and

control cells in the mature age group, but not in the young age

group. We conclude that there is a developmental increase in the

ability of synaptic inhibition to decrease synaptic efficacy during the

critical period in mouse visual cortex.

We noted that reduced GABAA conductance revealed the

presence of a slight summation among inputs. This effect was also

seen by Mittman et. al. (2005); given the rapid kinetics of AMPA

receptors, this effect was unlikely due to synaptic conductance

evoked by stimulation of Plead. The effect could not be explained

by a change in input resistance (young: control, 262.3863.89,

BMI, 261.6264.96; mature: control, 132.5063.38, BMI,

135.5762.34 MV), suggesting that the slight summation observed

in the condition of 80% GABAA block may be due to a voltage-

dependent persistent sodium conductance induced by stimulation

of Plead [52].

Further evidence for the role of chloride conductance in

mediating the reduction in spike probability at the peak of the

critical period was obtained by using DIDS-fluoride in the

recording pipette to block anionic conductances, including

GABAA [53]. Because the drug was in the pipette, the blockade

was specific to the recorded cell. Spike probability in response to

Ptest stimulation was significantly reduced by Plead stimulation

(lead-test: r= 0.6160.07, test alone: r= 0.3260.06, mean differ-

ence: D+0.28+/20.01, n = 8, Wilcoxon signed rank, p,0.03,

Figure 8G). In this case, there was a 2.8 fold change in input

resistance that likely contributed to summation (break in: 154637,

stable: 348650 MV). The change in spike probability due to

stimulation of Plead for all treatments is summarized in Figure 8G.

In summary, synaptic inhibition evoked by the Plead was

effective in reducing synaptic efficacy of Ptest at the peak of but not

prior to the onset of the critical period of OD plasticity.

Discussion

A significant advance towards understanding the mechanism of

association-based Hebbian plasticity is the discovery of spike-

timing-dependent plasticity. In addition to providing an explana-

tion for how the strength of synaptic connections can be modified

based on the causality of pre and postsynaptic spike events, STDP

is inherently stabilizing. Modeling studies indicate that STDP

implemented in its most basic form leads to a stable distribution of

synaptic conductances, STDP forces the postsynaptic neuron into

a balanced regime in which the net excitatory drive onto the

postsynaptic cell remains constant: inputs that repeatedly take part

in firing the postsynaptic cell are strengthened at the expense of

those that do not. STDP-mediated re-organization of synaptic

strengths is therefore also inherently competitive. A major issue in

STDP, and stabilization of Hebbian plasticity in general, is to

define the parameters and conditions that select for one group of

inputs over another group. Temporal coherence among inputs has

been well recognized to impact postsynaptic spiking and confers a

competitive advantage during STDP-mediated re-organization of

synaptic weights [21,22]. Additionally, synaptic strength exerts a

critical influence on the outcome of STDP [9,23,24] However, it is

not clear how synaptic inhibition, central in controlling many

aspects of synaptic summation and spike generation, regulates the

manner in which these two input parameters direct the outcome of

STDP.

Our modeling study here showed that synaptic inhibition

constrained STDP to favor temporally coherent inputs at the

expense of stronger, less coherent inputs. Inhibition exerted this

effect by preferentially reducing the synaptic efficacy of the less

coherent inputs. In visual cortical slices, we showed that STDP is

expressed at postnatal ages that correspond to the peak as well as

prior to the onset of the critical period; and that GABAergic

inhibition more potently reduced synaptic efficacy at the former

compared to the latter age. These results have implications for the

role of GABAergic inhibition in visual cortical plasticity.
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Figure 8. Reduction of synaptic efficacy of Ptest by Plead stimulation is mediated by synaptic inhibition. Whole-cell recording of spike
probability of layer 2/3 pyramidal neurons in V1 in response to the Test Only and Lead-Test pathway stimulation paradigm (Figure 7A); bathing media
contained high cations (3 mM CaCl2 and 3 mM MgSO4). (A) Example traces of two inter-leaved trials in response to pathway stimulation in mature
slices with intact inhibition. Raster plots of spike events are shown below the traces. Spike probabilities of individual pyramidal neurons in response
to Test Only and Lead-Test pathway stimulation with intact inhibition are then plotted for the mature (B) and young (C) age group. (D–F) Same as in
A–C except inhibition was reduced with the application of 3 mM BMI. Scale bar: 50 mV, 20 ms. (G) Summary plot of the average differences in spike
probability of layer 2/3 pyramidal neurons in response to Test Only and Lead-Test stimulation. Circles represent cell-attached recordings, diamonds
and triangle represent whole-cell recordings. GABAB and NMDA-mediated currents were blocked. Asterisks denote a significance effect of treatment
(p,0.05), determined by ANOVA analysis.
doi:10.1371/journal.pcbi.1000797.g008
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Inhibition constrains STDP to favor temporal coherence
over initial synaptic strength

The initial synaptic strength among converging inputs in neural

circuits may be determined by genetic mechanisms and/or prior

activity-dependent modifications. As an effective plasticity mech-

anism, STDP must maintain the capacity to modify synaptic

strength, including the weakening of strong synapses, according to

the on-going patterns of input activity. This is crucial in order for

circuits to refine connectivity based on experience. By using a

simple integrate-and-fire model neuron driven by two input

pathways, we compared the effectiveness of temporal coherence

versus initial synaptic strength in shaping the outcome of STDP.

In addition, we compared the effectiveness of temporal coherence

versus number of inputs within a given pathway. Here we show

that the competitive advantage that temporally coherent inputs

have over initially stronger inputs does not result from the intrinsic

properties of STDP, but rather requires constraints by synaptic

inhibition.

Synaptic inhibition potently influences input summation

required for spike generation by restricting the temporal window

over which inputs are able to effectively cooperate [29–31]. In vivo

recordings in primary sensory cortex demonstrate that inhibition

exerts this effect by increasing the requirement for temporal

coherence among inputs to evoke spiking beyond what is set by the

membrane time-constant of the postsynaptic neuron [31,54]. The

precise manner by which synaptic inhibition is recruited during

sensory experience is likely influenced by many factors [34,55,56].

In our model therefore, we implemented synaptic inhibition using

the least number of assumptions: every EPSP was followed by an

IPSP with a delay ranging between 4 to 10 ms; and for a given

simulation, the amplitude of inhibition was fixed. We then

systematically varied the amplitude of inhibition across simulation

trials. We found that, independent of STDP, an increase of

inhibition reduced the synaptic efficacy of both P1 and P2

pathways, but the reduction was more profound for the less

coherent, even though stronger, P2 pathway (Figure 5; compare

A&B). The small difference in synaptic efficacy between the two

pathways brought about by synaptic inhibition had a major impact

on STDP-mediated re-organization of synaptic weights (Figure 5;

compare C,E,&D,F).

Our results thus suggest that, at low levels of inhibition, strong

but less coherent inputs effectively competed with weaker but

more coherent inputs; the stabilizing property of STDP favors the

maintenance of the existing synaptic weight distribution over

updating the distribution according to novel temporal patterns of

input. At higher levels of inhibition, on the other hand, the efficacy

of the less coherent inputs is preferentially reduced, biasing STDP

to increasingly favor the more coherent inputs. Therefore, a

sufficient level of inhibition is crucial to regulate STDP such that

inputs are modified according to their correlation structure, a

parameter that is often controlled by peripheral sensory events

[27].

Maturation of inhibition in OD plasticity and critical
period

Monocular deprivation during a critical period induces a shift in

the ocular dominance (OD) of binocular neurons in V1 such that

the open eye pathway dominates in driving spiking activity. The

OD shift involves both a reduced drive from closed eye inputs

[57,58] and an increased drive from open eye inputs [59]. The

recent finding that monocular blurring rapidly shifts OD indicates

that it is the quality rather than the quantity of retinal illumination

that is the key factor for OD plasticity [26]. These results suggest

that it is the temporal pattern rather than the overall rate of activity

that drives receptive field plasticity [27]. Accordingly, in our model

we altered temporal correlation of inputs but held the overall rate

of the two pathways fixed at 20 Hz.

Multiple forms of cellular plasticity, operating on different time-

scales, likely mediate OD plasticity in vivo at excitatory synapses.

MD has been shown to induce classic homosynaptic LTD [58,60],

modeling studies suggests that STDP may also account for some

forms of OD plasticity [23]. Homeostatic mechanisms also likely

contribute on a slower time-scale [61,62]. Similarly, it appears that

STDP alone cannot account for the MD-induced ocular

dominance plasticity that is observed in fast-spiking interneurons

[63]. In addition to STDP, simulations of interneuron plasticity

must add additional rules of synaptic elimination to recapitulate

experimental results. Furthermore, it was recently demonstrated

that in acute slices, the polarity and magnitude of associative

plasticity can be regulated by neuromodulators applied generally

to the bathing perfusion, raising the possibility that under some

neuromodulatory states in vivo, timing rules of STDP are not

rigorously bi-directional [64]. Here we find that both layer 4R
layer 2/3 inputs and local recurrent inputs are modifiable by

STDP in V1 prior to and during the critical period in mice. Our

results are consistent with and extend previous work that

examined local recurrent connections in rat V1 [16]. It has been

demonstrated that cortical synapses can be modified by STDP

rules in vivo in response to visual stimulation [15,17,18], indicating

that the temporal precision required for cortical STDP is

propagated to upper cortical layers during sensory experience.

The current available evidence supports the view that in response

to MD, the synaptic weight distribution of synapses converging

onto binocular neurons is re-organized and stabilized in part by

STDP. Regardless of the precise contribution of these cellular

mechanisms to the OD shift itself, a prerequisite for plasticity to

proceed according to Hebb’s rule is that the temporally coherent

open eye inputs must correlate their spike times well with those of

their postsynaptic binocular neuron. Our results suggest that

GABAergic inhibition is required for this prerequisite to be met.

Maturation of GABAergic inhibitory circuits has been impli-

cated in the regulation of critical period plasticity in visual cortex

[37,38]. Particularly compelling is the finding that direct

enhancement of GABAergic transmission induces precocious

OD plasticity [36,39,40]. This result indicates that the machinery

for OD plasticity is operational even before its natural onset but

lies dormant, and can be triggered by the maturation of

GABAergic transmission. However, the cellular and synaptic

mechanisms by which GABAergic inhibition regulates OD

plasticity remain elusive. It is also unclear how GABAergic

inhibition is related to correlation-based plasticity mechanisms.

Our modeling study now demonstrates that a sufficient level of

synaptic inhibition is crucial to constrain STDP so that synaptic

strengths are modified according to their correlation structures

rather than their initial synaptic drive. We further provide

experimental evidence that maturation of inhibition is sufficient

to potently reduce synaptic efficacy during the critical period.

These results are consistent with the notion that inhibition

preferentially reduces the synaptic efficacy of the less coherent

inputs among convergent pathways.

Due to the dominance of crossed contralateral retinal

projections, most binocular neurons in rodent V1 are character-

ized as class 2/3 neurons, driven strongly by contralateral input,

and weakly by ispilateral eye input. Closure of the contralateral

eye likely reduces the temporal coherence of inputs in this pathway

compared to that of the ipsilateral, open eye pathway. Prior to the

onset of OD plasticity, GABAergic inhibition is immature

Maturation of Inhibition and STDP
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(Figure 9, upper row) and is ineffective in reducing the synaptic

efficacy of inputs (regardless of their temporal coherence), and the

temporal window of input summation is wide. The stronger

contralateral inputs, though less coherent, continue to drive the

postsynaptic neuron and correlate with postsynaptic spiking. Thus,

at low level of inhibition, temporal coherence is not sufficient to

control postsynaptic spike timing. As a consequence, correlation-

based plasticity mechanisms cannot be engaged and the shift in

OD fails to occur. STDP in fact disrupts Hebbian processes from

selecting temporally coherent inputs. At the peak of critical period,

inhibition is mature (Figure 9, lower row), which restricts the

temporal window of input summation and thus preferentially

reduces the efficacy of the less coherent contralateral inputs. As a

consequence, the spike times of the ipsilateral pathway are better

correlated with postsynaptic spike times compared to those of the

contralateral pathway (Figure 9, lower row). In the presence of the

STDP rule, the ipsilateral pathway consistently dominates the

control of spike timing of postsynaptic neurons. Therefore,

correlation-based mechanisms are able to strengthen ipsilateral

inputs, weaken the contralateral inputs, and OD plasticity

proceeds. By modeling specific features of temporal input structure

that are disrupted during MD, we were able to characterize the

effect of increasing inhibition on STDP. Other Hebbian and non-

Hebbian mechanisms operating at various time scales are likely

involved in mediating the loss of responsiveness of the contralateral

pathway (Figure 9, far right) [55,58,65]. In summary, the

maturation state of GABAergic inhibition likely has a major

impact on whether the synaptic weight distribution can be updated

to reflect to novel patterns of sensory input, including monocular

deprivation at the onset of the critical period for OD plasticity.

A complete understanding of the impact that maturation of

inhibition has on OD plasticity will require closer examination of

interneuron binocular plasticity and initial contralateral bias

during development. A recent study examining layer 2/3

interneuron calcium activity reported an initial contralateral bias

in interneurons similar to that of pyramidal cells, and a delayed

shift in ocular dominance relative to pyramidal cells in response to

monocular deprivation. Modeling results indicated that a delayed

shift of interneurons potently increased the rate of pyramidal

ocular dominance plasticity [66]. If it is the case that the

inhibition/excitation ratio for a given postsynaptic pyramidal cell

is higher in response to contralateral stimulation compared to

ipsilateral stimulation during the pre-critical period, the need for

maturation of inhibition to regulate STDP as we describe may not

be as strong. However, two other recent studies observe a different

pattern of interneuron recruitment in which there is little or no

initial contralateral bias of interneurons [63,67]. Under conditions

in which the contralateral pathway does not preferentially drive

inhibition the requirement for inhibition to regulate STDP is

maintained.

It has been proposed that maturation of inhibition may promote

STDP to efficiently induce LTD of deprived inputs during OD

Figure 9. Proposed mechanism by which maturation of inhibition promotes OD shift of class 2/3 neurons in V1. Symbol designs are
the same as in Figure 2. In addition, the filled red and blue triangles highlight the increase of synaptic weights. From left to right, a class 2/3 binocular
neuron is driven by convergent ipsi- (red) and contralateral (blue) input pathways. The contralateral bias is indicated by the larger triangles in the blue
pathway. Contralateral deprivation decreases the temporal coherence among inputs of the contralateral pathway. The effect of this altered temporal
structure on the correlation between pre- and postsynaptic spike times is dependent on the level of inhibition. When inhibition is immature (low
inhibition, upper row), spike output of the class 2/3 neuron correlates slightly better with the contralateral input compared to the ipsilateral input.
Through STDP, either the ipsi or the contralateral pathway can increase its correlation with the postsynaptic outputs at the expense of a decreased
correlation of the other pathway (STDP-mediated increases in synaptic weight are indicated by filled triangles and decreases indicated by smaller
open triangles). Since P1 inputs fail to drive postsynaptic spiking, Hebbian mechanisms will not be able to weaken the contralateral deprived eye
inputs and strengthen the ipsilateral open eye input. A shift in OD fails to occur. When inhibition is mature (lower row), the spike output of the class
2/3 neuron correlates slightly better with the more coherent ipsilateral, open eye input. In the presence of STDP, open-eye inputs will be able to
control postsynaptic spike timing, thus, association-based Hebbian mechanisms can proceed.
doi:10.1371/journal.pcbi.1000797.g009
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plasticity [10,68]. In this scenario, loss of responsiveness of

deprived inputs is directly mediated via STDP. Furthermore,

there is precedent for STDP to actively participate in the selective

weakening of deprived inputs in barrel cortex [19]. Interestingly,

our modeling results demonstrate that the mechanism by which

increased inhibition promotes STDP-mediated LTD does not

necessarily involve more LTD of the less coherent inputs due to

increasing the probability that these inputs fall in the LTD portion

of the STDP rule (Figure 4G,H), which is extended compared to

the LTP portion [10]. Instead, we describe a set of conditions in

which increased inhibition increases the relative number of

coherent inputs that fall into the LTP window (Figure 4A–F).

Thus, it appears that inhibition can exert a potent effect on the

outcome of STDP-mediated competition by regulating synaptic

efficacy.

Diverse sources of synaptic inhibition
Synaptic inhibition is mediated by diverse types of GABAergic

interneurons [69]. Our point-conductance model implies that

perisomatic inhibition is a candidate source of synaptic inhibition.

Consistent with this notion, parvalbumin-positive (Pv+) periso-

matic GABAergic synapses structurally mature during the critical

period of OD plasticity [34], and there is evidence that a1-

containing GABAA receptors, which are enriched at the periso-

matic region, contribute to OD plasticity [40]. Here we

demonstrated that on average, there was a 2-fold increase in

IPSC amplitude at unitary Pv+ interneuron-to-pyramidal connec-

tions during the critical period compared to that prior to the

critical period. We also found that the stimulus input/spike output

curve of Pv+ interneurons matured during the critical period,

raising the possibility that an increase in the gain of Pv+
interneurons may contribute to the onset of the critical period.

Indeed, increasing gain or IPSC amplitude had a similar effect on

STDP-mediated redistribution of synaptic weights in our simula-

tion. Furthermore, the increase in gain was sufficient to

compensate for the developmental decrease in IPSC decay time-

constant.

It is important to note that in addition to spike generation,

inhibition may constrain STDP by regulating the propagation of

dendritic action potentials [70]. This effect is not simulated in our

point conductance model. Although dendtritic-targeting interneu-

rons also mature during postnatal development [71], whether their

maturation correlates with the critical period remains to be

investigated.

By modeling primary features of MD-induced alterations in

temporal input structure we demonstrated that regardless of the

extent to which STDP mediates the shift in ocular dominance, the

potent stabilizing property of STDP can in fact disrupt ocular

dominance plasticity from proceeding unless constrained by

inhibition. As predicted by the model, we found that maturation

of inhibition decreases synaptic efficacy at the peak of the critical

period. Our results highlight the need for circuits to regulate

powerful stabilizing mechanisms such as STDP in order for

experience-dependent plasticity to proceed.

Methods

Ethics statement
All procedures were approved by CSHL IACUC.

Slice preparation and electrophysiology
Acute cortical slices of visual cortex were prepared from C57B6

mice, age postnatal day (P)16-18 (young), or P26–30 (mature),

unless otherwise noted in the text. Brain slices (300 microns thick)

were cut in the coronal plane with a vibroslicer (Vibratome, St.

Louis, MO) in ice-cold dissection ACSF (in mM): 212.7 sucrose,

2.5 KCl, 1.25 NaH2PO4, 3 MgSO4, 1 CaCl2, 10 D(-)-glucose, and

26 NaCHO3, continuously bubbled with 95%O2/5%CO2 and

allowed to recover for .30 minutes in normal ACSF (in mM): 126

NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2, 10 D(-)-

glucose, and 25 NaCHO3 continuously bubbled with 95%O2/

5%CO2 and then transferred to the recording chamber. Slices

were viewed with infrared differential interference contrast optics

on an upright microscope (Axioskop, Zeiss, Thornwood, NY).

Slices were submerged in normal ACSF containing 50 mM APV

(Tocris, Ellisville, MO) and 1 mM CGP55845 (Tocris, Ellisville,

MO), except as noted, and perfused at a rate of 2–3 ml/min (33+/

21uC). Recording were made using a Multiclamp 700A amplifier

(Molecular Devices, Sunnyvale, CA).

For current-clamp recordings using the STDP protocol, the

intracellular solution contained (mM): 110 K-gluconate, 20 KCl,

10 HEPES; 4 MgATP, 10 phosphocreatine(Na), and 0.3 NaGTP,

pH 7.3, 300 mOsm. To avoid confounding effects of inhibition

when assaying plasticity at glutamatergic synapses, 10 mM

picrotoxin was included in the bath perfusion to block GABAA

receptors. Picrotoxin is a preferred blocker over bicuculine

methiodine (BMI) in synaptic plasticity assays because BMI used

at concentrations sufficient to completely block GABAA receptors

has been shown to block SK potassium channels [72], which could

potentially alter local dendritic excitability and thereby impact the

induction of plasticity. For voltage-clamp recordings used in the

EPSC-IPSC maximal charge assay, the intracellular solution

contained (mM): 130 Cs-gluconate, 8 KCl, 10 HEPES, 10 EGTA,

10 QX-314 (Alomone, Jerusalem, Israel). For current-clamp

recordings in the synaptic efficacy assay, the intracellular solution

contained (mM): 135 K-gluconate, 4.3 KCl, 2 NaCl, 10 HEPES,

0.5 EGTA, 4 MgATP, 20 phosphocreatine(Na), and 0.3 NaGTP,

pH 7.3, 300 mOsm. Methods currently available to block GABAA

receptors in cortical slices during protocols that require synaptic

stimulation intensities strong enough to bring postsynaptic cells to

spike threshold are limited because full blockade of GABAA

receptors, such as achieved with 10 mM picrotoxin in the bathing

medium, will cause epileptic-like activity in response to strong

synaptic stimulation. Therefore, we employed two different

methods to reduce GABAA receptor conductance, both have

non-overlapping drawbacks. Low-concentration BMI (3 mM) in

combination with raised cation concentration was previously

shown to significantly reduce GABAA receptor conductance

without inducing epilepsy in cortical slices [16], this method was

employed in Figure 8. Anion channels and pumps can be blocked

intracellularly with a fluoride-based internal solution in combina-

tion with 4,4’-diisothiocyanatostilbene-2, 2’-disulfonic acid (DIDS)

[73,74]. The DIDS internal solution contained (in mM): 120 KF, 8

KCL, 10 HEPES, 10 EGTA, 1 DIDS. Whole-cell recordings

pipettes had a tip resistance of 3–4 MV. Data were digitized at

10 kHz, filtered at 2 kHz, and analyzed with Clampfit 9

(Molecular Devices, Sunnyvale, CA). EPSP/Cs were evoked by

focal extracellular stimulation (0.2 ms, 10–100 mA) with commer-

cial bipolar electrodes (FHC, Bowdoin, ME), except in STDP

protocols, a small glass bipolar electrode was used [16]. In STDP

protocols, the initial EPSP slope (mV/ms) was set to be the same

across ages and cells. Vertical LTP: young, 0.44+/20.11; mature,

0.46+/20.06 (t-test, p = 0.88). Vertical LTD: young, 0.45+/

20.05; mature, 0.34+/20.06 (t-test, p = 0.16). Horizontal LTP:

young, 0.38+/20.08; mature, 0.42+/20.11 (t-test, p = 0.79).

Horizontal LTD: young, 0.48+/20.08; mature, 0.35+/20.04

(t-test, p = 0.13). Input resistance was monitored with hyperpolar-

izing current pulses (25 pA, 100 ms); cells were excluded if input
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resistance changed .30% over the entire experiment. The change

in initial EPSP slope (first 2 ms) was calculated as the EPSP slope

ratio by dividing the average initial slope after pairing (10–20

minutes following the EPSP and AP pairing) by the average

baseline initial slope. In the synaptic efficacy paradigm, the two

pathways were considered independent if EPSP slopes summed

linearly [75–77]. Plead stimulation intensity did not exceed 1.5x

threshold stimulation intensity. Chemicals were purchased from

Sigma-Aldrich (St. Louise, MO) except as noted. For statistical

analysis, two-tailed parametric tests were used unless the data were

not normally distributed. In such cases, Wilcoxon signed rank was

used for paired samples, and Mann-Whitney for unpaired samples.

Error is reported as 6 standard error of the mean, unless noted.

Simulation
We simulated a conductance-based integrate-and-fire model in

Matlab (Mathworks, Natick, MA), using the difference equation

Vtz1~{
dt

C
get

Vt{Eeð Þzgit Vt{Eið Þzgrest Vt {Erestð Þ½ �zVt,

where grest = 12.5 nS and capacitance, C, was set to C = 0.25 nF to

give a membrane time-constant of 20 ms. Ee = 0 mV, and

Ei = 270 mV. When the membrane potential Vt reached a

threshold value of 254 mV, V was reset to –65 mV with a

refractory period of 2 ms (20 iterations or time-steps). Excitatory

synaptic inputs were modeled as conductances given by the

function, g(Dt) = ae-Dt/t, where t= 2 ms, and a was equal to the

synaptic weight value. N = 80 excitatory synapses for all

simulations. As in Song et. al. (2000), the synaptic weight value

a was updated every iteration based on the STDP function F(Dt):

F(Dt)~
Az exp (Dt=tAz) ifDtv0

{A{ exp (Dt=tA{) ifDtw0

�

Where A+ = 0.5%* gmaxex, A- = 0.45%* gmaxex, tA+ = 20 ms,

and tA- = 35 ms. gmaxex was set to 15* 150 pS to give an output

firing rate of 5–20 Hz for N = 80 synapses. In the weight-

dependent mode shown in Figure 4, potentiation was updated as

A+ * (1-a). Inhibitory conductances were also given by the

function, g(Dt) = ae2Dt/t, the decay time-constant for inhibitory

synapses was initially set to t= 5.75 ms and varied as noted in text,

the value of a was fixed for the duration of a particular simulation,

the amplitude varied between simulations as noted in the text.

Excitatory presynaptic spike trains were generated in the following

manner: In the case of Input Regime (I), the spike trains activating

the synapses of the two sets of inputs were generated from a single

Poisson process. In the case of Input Regime (II) and (III), the spike

trains activating the synapses of the two sets of inputs were

generated from two independent Poisson processes. The correla-

tion coefficient between any two cells within the same pathway for

the total number of spikes fired was fixed at r = 0.5 in all

simulations. An additional parameter was used to define the

temporal coherence (1/s) among spike times within a given

pathway. Sigma (s) defined the temporal jitter among spike times

within a given pathway, and controlled the width of the cross-

correlogram peak between any two trains within the same

pathway, we defined temporal coherence as the inverse of s.

Inhibitory presynaptic spike trains were implemented in a

feedforward manner, every excitatory presynaptic spike was

followed by an inhibitory presynaptic spike with a delay randomly

ranging between 4–10 ms. The initial amplitude of inhibition was

set via matching the total conductance of one inhibitory synaptic

event to the total conductance of one initial excitatory event, this

amplitude corresponded to 8.8% of gmaxex, and is indicated as

0.09 gI/gMaxex in Figures 4 and 6. Simulations were run for 40–

80 minutes of simulated time, except for the simulations shown in

Figure 3 which were run for 12 minutes of simulated time. The

Matlab M files used to generate the simulation are included in the

supplement (Protocol S1).

Supporting Information

Protocol S1 Matlab M files used to generate the IAF STDP

simulation.

Found at: doi:10.1371/journal.pcbi.1000797.s001 (0.04 MB ZIP)

Figure S1 Input/output curves used to generate Figure 2A and

calculate maximal charge in Table 1. (A–D) Stimulus input/

output curves in response to single pathway stimulation. (A,C)

Examples of individual cells, inward EPSCs recorded at the

empirically determined GABAA reversal potential (gray) and

outward IPSCs recorded at 0 mV (black), using a Cs-based

internal solution with APV in the bath. (B,D) Absolute maximal

current evoked as a function of stimulus intensity, averaged across

cells (young, n = 14; mature, n = 13). Stimulation intensities used in

(A): 20,30,40,50,60,70 mA, stimulation intensities used in (B): 10,

15,10,20, 30,40,50,60,70 mA. (E) Reversal potential for GABAA

receptor conductance was -55 mV, recorded in presence of

CNQX and APV.

Found at: doi:10.1371/journal.pcbi.1000797.s002 (0.12 MB TIF)

Figure S2 Cross-correlogram peak values of all 40 inputs for the

example trials shown in Figure 3. Peak cross-correlogram values

are plotted as an ascending sort for all 40 inputs of P1 (red) and P2

(blue), during the initial 50 seconds (dashed), and final 50 seconds

(solid). (A–E) Peak cross-correlogram values corresponding to

individual trials shown in Figure 3; in panel B, trials were sorted

based on which pathway dominated at the end of the simulation.

In addition to the individual trials described above, the median

cross-correlaogram peak value for all trials combined for a given

input regime were as follows: (A) Input Regime I, initial P1, 35.1;

initial P2, 35.2; finalP1, 35.6; final P2, 35.6 spikes/second (n = 10

trials). (B) Input Regime II, trials in which Path1 dominated: initial

P1, 22.4; initial P2, 14.6; final P1, 38.1; final P2, 4.5 spikes/second

(n = 4). Trials in which P2 dominated: initial P1, 15.1; initial P2,

21.9; final P1, 4.4; final P2, 38.7 spikes/second (n = 6). (C) Input

Regime III, initial P1, 25.0; initial P2, 6.8; final P1, 38.3; final P2,

4.4 spikes/second (n = 10). (D) Input Regime III, gI/

gmaxex = 0.264, trials in which P1 dominated: initial P1, 15.7;

initial P2, 14.0; final P1, 37.7; final P2, 4.4 spikes/second (n = 9).

Trials in which P2 dominated: initial P1, 9.8; initial P2, 17.1; final

P1, 4.4; final P2, 22.1 spikes/second (n = 11). (E) Input Regime III,

gI/gmaxex = 0.792, initial P1, 5.9; initial P2, 5.1; final P1, 32.6;

final P2, 4.4 spikes/second (n = 11).

Found at: doi:10.1371/journal.pcbi.1000797.s003 (0.45 MB

DOC)

Figure S3 The effect of increasing inhibition on pathway

dominance was tested across a range of whole-cell capacitance

(c) values. In all cases, stronger inhibition increased the probability

of P1 to out-compete P2.

Found at: doi:10.1371/journal.pcbi.1000797.s004 (0.16 MB TIF)

Figure S4 Synaptic efficacy of P1 and P2 for Input Regimes II

and III. As in Figure 5, the relative number of presynaptic spikes

that preceded post synaptic spike events was counted in 1

millisecond time bins and plotted as a function of time preceding

the post synaptic spike in the absence (A,B) and the presence of the

STDP rule (C–F). P1, red; P2, blue. (G–H) The relative number of

presynaptic spikes that followed postsynaptic spike events was

calculated as in (A–B), except that 1 ms bin counts were made for

a time window of 20 ms following postsynaptic spikes. The
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example shown for Input Regime II is a case in which P2 out-

competed P1, which occurred in half of the trials. For Input

Regime III, P1 out-competed P2 in all trials.

Found at: doi:10.1371/journal.pcbi.1000797.s005 (0.21 MB TIF)

Figure S5 Short-term dynamics of unitary IPSCs at mature Pv+
interneuron to pyramidal synapses. As expected from previous

reports [78], IPSCs were depressing in response to 20 Hz

stimulation, and depression was less pronounced at higher

stimulation frequencies [79]. The average paired pulse ratio

(IPSCamplitude 2/IPSCamplitude 1) during the critical period (age

p21-27) at 20 Hz stimulation was 0.71+/20.05 (n = 6), and at

100 Hz stimulation was 0.89+/20.11 (n = 7). Left, example cell

pair at 20 Hz stimulation, average of 15 traces. Right, example

cell pair at 100 Hz stimulation, average of 5 traces.

Found at: doi:10.1371/journal.pcbi.1000797.s006 (0.04 MB TIF)
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