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Abstract
We systematically generated large-scale data sets to improve genome annotation for the nematode
Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling
across a developmental time course, genome-wide identification of transcription factor–binding
sites, and maps of chromatin organization. From this, we created more complete and accurate gene
models, including alternative splice forms and candidate noncoding RNAs. We constructed
hierarchical networks of transcription factor–binding and microRNA interactions and discovered
chromosomal locations bound by an unusually large number of transcription factors. Different
patterns of chromatin composition and histone modification were revealed between chromosome
arms and centers, with similarly prominent differences between autosomes and the X
chromosome. Integrating data types, we built statistical models relating chromatin, transcription
factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of
the conserved genome.

Complete genome sequences provide a view of the full instruction set of an organism.
However, understanding the functional content of a genome requires more than DNA
sequence. To address this need, in 2003 the U.S. National Human Genome Research
Institute (NHGRI) initiated the Encyclopedia of DNA Elements (ENCODE) project in order
to study the human genome in greater depth (1). Recognizing the importance of well-
annotated model genomes, in 2007 the NHGRI initiated the model organism ENCODE
(modENCODE) project on Caenorhabditis elegans and Drosophila melanogaster so as to
systematically annotate the functional genomic elements in these organisms (2).
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Given its intermediate complexity between single-celled eukaryotes and mammals, C.
elegans offers an outstanding system for studies of genome organization and function. C.
elegans was the first multicellular organism with a fully defined cell lineage, a nervous
system reconstructed through serial-section electron microscopy, and a sequenced genome
(3–5). Its 100.3-Mb genome is only about eight times larger than that of S. cerevisiae, and
yet it contains almost as many genes as a human and all of the information necessary to
specify the major tissues and cell types of metazoans.

From the project start in 2007 (2), the C. elegans modENCODE groups had by February
2010 collected 237 genome-wide data sets (table S1) bearing on gene structure, RNA
expression profiling, chromatin structure and regulation, and evolutionary conservation. To
ensure the completeness and standardization of modENCODE data, all data sets were
submitted to the modENCODE Data Coordinating Center; hand curated with extensive,
structured metadata; validated for completeness; and checked for consistency before release
at www.modencode.org.

Analyses of these data reveal (i) directly supported protein-coding genes containing 5′ and 3′
ends and alternative splice junctions; (ii) sets of noncoding RNAs, including RNAs
belonging to known classes and previously unknown types; (iii) gene expression and
transcription factor (TF)–binding profiles across developmental stages; (iv) genomic
locations bound by many of the TFs analyzed, designated as HOT (high-occupancy target)
regions; (v) a hierarchy of candidate regulatory interactions among TFs and its relationship
to the network of microRNAs (miRNAs) and their targets; (vi) differences in histone
modifications and nuclear-envelope interactions between the centers and arms of autosomes
and between autosomes and the X chromosome; (vii) evidence for chromatin-mediated
epigenetic transmission of the memory of gene expression from adult germ cells to embryos;
and (viii) predictive models that relate chromatin state to TF-binding sites and to expression
levels of protein- and miRNA-encoding genes.

The summation of features annotated through these functional data sets provides a potential
explanation for most of the conserved sequences in the C. elegans genome and lays the
foundation for further study of how the genome of a multicellular organism accurately
directs development and maintains homeostasis.

The Transcriptome
Accurate and comprehensive annotation of all RNA transcripts (the transcriptome) provides
a framework for interpreting other genomic features, such as TF-binding sites and chromatin
marks. At the project's inception [WS170; WormBase versions used for specific analyses
can be found in (6)], the C. elegans genome lacked direct experimental support for about
one third of predicted splice junctions, and some of these predictions were erroneous (7, 8).
Many genes lacked transcript start sites and polyadenylate [poly(A)] addition sites; exons
and even whole genes were missing. To address these deficiencies, cDNA-based evidence
was obtained through high-throughput sequencing (RNA-seq), reverse transcription
polymerase chain reaction (RT-PCR)/rapid amplification of cDNA ends (RACE), and tiling
arrays from a variety of stages, conditions, and tissues (tables S1, S3, and S4). Analysis of
the data yielded previously unrecognized protein-coding genes, refined the structure of
known protein-coding genes, revealed the dynamics of expression and alternative splicing,
provided evidence of pseudogene transcription, and suggested previously unknown
noncoding RNAs (ncRNAs). Through mass spectrometry, we verified predicted proteins and
distinguished short single-exon protein-coding transcripts from ncRNAs.
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Protein-coding genes
We used RNA-seq to generate more than 1 billion uniquely aligned short sequence reads
from 19 different nematode populations, including all major developmental stages
(embryonic, larval, dauer, and adult), embryonic and late L4 males, animals exposed to
pathogens, and selected mutants (fig. S3) (9, 10). Data sets targeting the 3′ ends of poly(A)-
plus transcripts were also collected, and additional sequence tags representing
polyadenylated 3′ ends that were acquired by using 3P-Seq [poly(A)-position profiling by
sequencing] were made available to the consortium (11, 12).

RNA-seq reads were mapped exhaustively and, together with the 3P-Seq data, allowed us to
detect with nucleotide resolution features of protein-coding genes independently of previous
WormBase models (fig. S7). The number of confirmed splice junctions increased from
70,028 at project start to 111,786, with 8174 of these not previously represented in
WormBase (Fig. 1A and fig. S8). The number of genes with a trans-spliced leader (either
Spliced Leader 1 or 2) at the 5′ end increased from 6012 to 12,413, covering 20,515
different trans-spliced transcript start sites (TSSs), and the number of poly(A) sites
associated with genes increased from 1330 to 28,199 (table S2A) (13). RT-PCR/RACE and
mass spectrometry provided direct support for 40,114 splice junctions (6). About 95% of
these overlapped with those detected with RNA-seq, providing independent support for
37,830 of these features (fig. S9). In addition, mass spectrometry proved that of 359 tested,
73 single-exon genes produced protein.

We used several avenues to estimate how many features of protein-coding genes remain to
be supported in C. elegans. Of predicted WormBase transcripts, only 1108 (5%) do not have
support through RNA-seq (table S2B). Of these, 369 are members of rapidly evolving gene
families implicated in environmental response and may be nonfunctional or only expressed
under specific conditions. The yield of new features discovered with additional RNA-seq
samples is clearly diminishing, and features such as newly discovered exons are approaching
saturation (fig. S10). Intersection of the data sets produced here with previous evidence from
WormBase suggests as few as 2000 to 3000 exons (2 to 3%) remain undetected (fig. S10).
However, we continue to detect rare splice-junction and spliced-leader events, particularly
those associated with more abundantly expressed genes. These could be biologically
important but might also result from RNA-processing errors.

Gene models
We built probable gene models from the results of transcript sequencing, allowing for
multiple transcripts (isoforms) from a given region (10). These models, called genelets
because they could be fragments of full genes, were initiated with the most highly
represented splice junction in a region and extended in each direction so as to incorporate
regions covered by above-threshold sequence reads and splice junctions (6). The model was
terminated when either a transcript start or stop signal was encountered or when coverage
was interrupted (fig. S5). By iterating the process, we generated alternative isoforms. We
used the longest open reading frame to annotate protein-coding sequences (CDSs) and 5′ and
3′ untranslated regions (UTRs).

For each of the 19 stages and conditions, we built transcript sets purely on the basis of RNA-
seq data from a given stage (stage-specific RNA-seq–only genelets), along with three
aggregate sets: (i) aggregate RNA-seq–only genelets; (ii) aggregate integrated genelets,
which combined RNA-seq data with available ESTs (expressed sequence tags), cDNAs, and
OSTs (open reading-frame sequence tags) (7, 8, 11) as well as the RT-PCR/RACE and mass
spectrometry data produced in the project; and (iii) aggregate integrated transcripts, which
incorporates all evidence from “(ii)” above and allows WormBase predictions to fill small
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coverage gaps within exons. The last set incorporates all of the splice junctions and spliced-
leader sites, as well as multiple poly(A) addition sites, and thus often contains multiple
isoforms. Altogether, we generated 64,824 transcripts from 21,733 genes, as compared with
23,710 transcripts from 20,082 genes in WormBase at the project start. Our gene models,
which come from direct experimental evidence, exactly match the internal splice junction
pattern for 10,123 WormBase transcripts, but we provide revised 5′- or 3′UTRs for many of
these. For 6418 models, the internal gene structure was unchanged from WormBase, but
new 5′ or 3′ exons and associated splice junctions were added. The remaining fall into three
categories: Our models overlap WormBase transcripts but differ in splice junctions (3292);
they fail to cover all of the splice junctions (2235); or they are not represented in WormBase
at all (1952).

Expression dynamics
To determine the dynamics of gene expression during development and in specific cell
types, we analyzed tiling array data from 42 biological samples, comprising 17 different
growth stages and conditions from whole animals, and 25 samples from different isolated
cell and tissue types (table S3) (6). For almost all whole-animal samples, RNA-seq data
were also obtained from the same or similarly prepared samples. Calibration and processing
were done to facilitate the integration of sequencing and arrays for both RNA-seq and for
chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq),
allowing them to be used for a merged data set (figs. S1, S2, and S4) (6, 14). Overall, we
found that only a small number of genes (∼100 per stage) showed strong stage-specific
expression in the whole-animal samples, but fewer than half of the genes were detectably
expressed in all stages by means of RNA-seq, and tiling arrays suggest that >75% of genes
show a greater than twofold range of expression across all the tissues (figs. S11 and S12)
(15).

To investigate the relationship between gene expression and developmental stages in greater
detail, we correlated the RNA-seq expression profiles at a given stage with all other stages.
For simplicity, we focused on a set of 8428 genes with non-overlapping transcripts and
found that profiles over the time course cluster into distinct embryo and larval phases (Fig.
2A) (6). This division was consistent with a principal-components analysis on the tiling-
array data from matched tissues from embryo and L2 (Fig. 2C) (6). The RNA for the
embryos and larvae was isolated through different procedures, but on the basis of a number
of controls and comparisons these differences are unlikely to confound the analysis (6).

Alternative splicing
Alternative mRNA processing, including selection of alternative splice junctions, promoters,
or poly(A) addition signals, provides another mechanism for differential transcript
generation. To discover prominent stage-specific alternative isoforms among the aggregate
integrated transcript models, we identified genes with two or more isoforms whose
abundance changed more than fivefold during development; differential splice junction
usage ranged from simple alternative exons to more complicated patterns, such as splicing
or retention of an entire series of introns in different stages (Fig. 1C and fig. S6).

We also developed algorithms that infer quantitative transcript-level expression by
distributing sequence reads among alternative isoforms in a probabilistic manner (6).
Pairwise comparisons of staged samples showed that overall, isoform usage does not change
dramatically between stages: Of 12,875 genes with multiple isoforms, 280 on average
switch isoform usage between any two stages, totaling 1324 genes with switching (Fig. 1B
and fig. S14) (6). Using a different approach, we grouped transcript-level expression profiles
across many stages into 48 distinct clusters (figs. S15 and S16). We identified 1320 genes
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for which one isoform fell into a separate cluster from all the others and then classified these
according to the type of processing events that distinguish them (figs. S17 and S18) (6).
These analyses illustrate the range of alternative mRNA processing that takes place during
development.

Pseudogenes
Several gene models derived from RNA-seq fell in regions previously annotated as
pseudogenes. Pseudogenes are DNA sequences similar to protein-coding genes that are
generally thought not to produce functioning proteins (16). However, some pseudogenes are
transcribed and may potentially act as endo-siRNA (endogenous small-interfering RNA)
regulators of their parent genes (17). Using computational methods, we identified 1293
probable pseudogenes in the C. elegans genome, adding 173 to and removing 213 from the
previous annotation set (WS170), and established the probable source (parent) gene for 1198
of them (fig. S19) (6). Using RNA-seq data, we found evidence of transcription for 323
pseudogenes (6). For 191 of the 323, we determined that the transcription was clearly
independent of the parent gene, ruling out potential mismapping artifacts. Of these 191, 104
had a discordant expression pattern across stages relative to the parent (Fig. 1D), and 87
were greater than two times more expressed than the parent (6). Intriguingly, 17 of the
transcribed pseudogenes have a unique peptide match through mass spectrometry,
suggesting that they are translated and may create novel short peptides.

ncRNAs
The genome produces a variety of transcripts that do not code for proteins but instead
function directly as noncoding RNA (ncRNA). At the start of the project, there were 1061
known ncRNAs in C. elegans (table S5). These include small nucleolar RNAs (snoRNAs),
RNAs involved in mRNA translation and splicing [such as ribosomal RNAs (rRNAs) and
tRNAs], miRNAs, piwi-associated RNAs (piRNAs, called 21U-RNAs in C. elegans), and
multiple classes of endo-siRNAs (18).

To provide a more comprehensive annotation of small ncRNAs, we profiled small-RNA
gene expression using RNA-seq on size-fractionated total RNA. In particular, using 81
million aligned reads from 11 different stages enabled us to identify 154 out of 174
previously annotated miRNA genes (19, 20). Most of these are products of the canonical
Drosha-Dicer cleavage pathway. However, four are mirtrons—miRNAs for which the
precursor hairpins are generated directly by intron splicing (21). Our computational and
experimental analysis validated 13 previously unidentified mirtrons (6, 22). Small-RNA data
also defined 102 additional candidate canonical miRNAs and thousands of 21U-RNAs,
although these latter were from previously identified loci (6, 19, 23).

To identify other candidate ncRNAs, particularly ones longer than those discussed above,
we combined all the transcriptome data sets to integrate both tiling-array and RNA-seq data.
We found that in comparison to other genomic “elements” (such as well-curated CDSs,
UTRs, or intergenic regions), the known ncRNAs tend to have a higher small RNA-seq
signal and very little poly(A)-plus RNA-seq signal. However, no single transcriptome
feature was able to reliably distinguish them (fig. S21A) (24). Therefore, we developed a
multivariate machine-learning model combining all the transcriptome data sets and found
support for 21,521 previously unknown ncRNAs (4.3 Mb in total), which we call the 21k-set
of ncRNAs (tables S6 to S8 and fig. S20) (6).

Because identifying ncRNAs by using tiling arrays can be problematic (14), we added
conservation and RNA secondary structure to our model. However, doing so restricted the
predictions of this second model to only the ∼15% of the C. elegans genome that was
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readily alignable to C. briggsae. Overall, the second model predicted 7237 previously
unidentified ncRNA candidates (the 7k-set, comprising 1.0 Mb), with an estimated positive-
predictive value of 91% (from testing against an independent validation set of known
ncRNAs) (24). Of these, 1678 ncRNA candidates (181 kb) fell in intergenic regions, with
the remainder in introns, pseudogenes, or regions antisense to exons (fig. S21B). We tested a
number of these intergenic candidates to validate expression: RT-PCR detected RNA
products for 14 of 15, and Northern blots detected expression for three of five (24).

The 7k-set contains many RNA structural motifs, including some not found in known RNA
secondary structure families (24). Additionally, these ncRNA candidates tend to be
differentially expressed across development (24), with many preferentially expressed in the
embryo. Comparing the expression profiles of the 7k-set with those of well-characterized
genes allowed us to identify putative functions for some candidate ncRNAs (table S9) (6).
Lastly, in comparing the 7k and 21k sets of ncRNAs the overlap was small, with just 1259
overlaps. Thus, when conservation and structure were considered we detected candidate
ncRNAs not found from the expression data alone; conversely, many previously
uncharacterized transcripts in C. elegans may occur in nonconserved parts of the genome.
Thus, the 7k and 21k sets provide complementary types of ncRNA candidates for further
study.

In summary, the improved annotation of transcribed portions of the genome from these data
sets provides the community with new substrates for further experimentation. However,
gaps remain in some transcript models, some protein-coding genes remain to be discovered,
and direct evidence is needed to support the candidate ncRNAs.

Regulatory Sites and Interactions
Accurate annotation of sites bound by TFs is central to understanding the regulatory
networks underlying development and homeostasis. However, at the start of the project very
few TF-binding sites had been annotated in the nematode genome, in part because of a lack
of suitable methods with which to assay binding sites in whole animals (25). We developed
these methods and have applied them to map the binding sites for 23 green fluorescent
protein (GFP)–tagged fusion proteins and RNA polymerase II (RNA Pol II) using ChIP-seq
(table S10) (6, 26). Most factors were assayed at their stage of highest expression, but both
PHA-4 (a well-studied factor required for pharyngeal development) and RNA Pol II were
analyzed at six developmental stages. Some of the factors were expressed in as few as 10%
of the cells in the whole animal.

TF-binding sites, motifs, and targets
Binding sites were identified by first finding relatively broad regions of enrichment and
then, for some analyses, refining these to narrow [≤200 base pairs (bp)] peak summits (figs.
S24 and S46). Most TF-binding sites defined by means of ChIP-seq peaks for protein-
coding genes lie within 500 bp upstream of transcript start sites. Binding sites assigned to
known ncRNAs are even closer to the 5′ end of the transcript (fig. S22C). On the basis of
their proximity to the TSS, we were able to assign most sites to specific protein-coding or
known ncRNA genes, creating a set of candidate targets for each TF (6); however, some
sites were ambiguously located and remain unassigned. Although most factors target both
protein-coding and known ncRNA genes, GEI-11 preferentially targets ncRNAs (Fig. 3D
and fig. S22, A and B). Analysis of TF-binding sites adjacent to ncRNA candidates from the
7k-set showed that 59% are potential targets of the 22 TFs examined, which is significantly
more than would be expected by chance (P < 0.001, derived from a z score assuming a
normal distribution of random sequences) (6, 24). Pairwise correlation of target genes
revealed that factors with related functions often show substantial overlap in their protein-
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coding gene targets (fig. S23A). Three homeobox (HOX) genes involved in establishing the
body plan provide particularly striking examples (mab-5, lin-39, and egl-5) (26). In contrast,
pairwise correlation of targeted miRNAs shows that the factors bound to them tend to
cluster together more by stage than by factor type (fig. S23B), which is consistent with
observations that expression of miRNAs tends to show strong stage-specific enrichment
(19).

To further characterize TF-binding sites, we searched for 8- to 12-bp cis-regulatory motifs
within the ChIP-seq peaks (6) and found strong motifs for eight TFs (BLMP-1, CEH-14,
CEH-30, EGL-5, HLH-1, LIN-39, NHR-6, and PHA-4) (fig. S35). Two of these are similar
to previously described motifs (PHA-4 and HLH-1).

The binding sites (defined from narrow peaks) cover a total of 5,165,949 bp (5.2% of the
genome) and target 8859 protein-coding genes, as well as 652 known ncRNAs, indicating
that each gene may have sites for many factors.

Clustered binding in HOT regions
We identified 304 short binding regions (average length of ∼400 bp) that were significantly
enriched (q value < 1e-5) in most TF ChIP-seq experiments despite the fact that the 22
analyzed factors have diverse functions and expression patterns. These regions, which we
term HOT regions, were bound by 15 or more factors (Fig. 4, A and B, and fig. S25A) (6).
Control experiments revealed that these regions are not enriched in input DNA, nor do they
appear in control ChIPs from strains lacking GFP-tagged TFs (fig. S26) (6). The number of
factors bound to HOT regions was relatively insensitive to the width of the peaks used to
identify them because peak summits occur within 100 bp for over 80% of HOT regions (fig.
S25B) (6).

In addition to the HOT regions, most TFs also cross-link to “factor-specific” DNA regions
(bound by one to four total factors) (Fig. 4A). Using HLH-1, a typical factor with both
known tissue specificity and a known binding motif, we compared these two different
classes of sites (HOT and factor-specific) for functional differences. HLH-1 drives muscle
development in C. elegans (27) and is associated with 598 factor-specific and 165 HOT
regions. Relative to HOT regions, factor-specific HLH-1 ChIP-seq regions were over
twofold enriched for the HLH-1–binding motif (Fisher's exact test, P < 0.0001) (28), and
genes associated with these regions were more than ninefold enriched for muscle-specific
expression (Fisher's exact test, P < 0.01) (fig. S27, A and C) (29). Similar enrichment for
motifs and tissue-specific expression of targets was also observed for other TFs when factor-
specific sites were compared with HOT regions (fig. S27B) (6), suggesting that factor-
specific and HOT regions are functionally distinct.

Genes associated with HOT regions are distinguished by several other measures. HOT-
region genes assayed for expression at the individual-cell level in L1 larvae are expressed in
most or all cell types, whereas other genes mostly showed tissue-specific expression (Fig.
4C and fig. S29) (30). Genes associated with HOT regions were also expressed at higher
levels in whole-animal and tissue-enriched measurements and were less likely to be stage-
specific (fig. S28) (6). Compared with 3% of genes associated with factor-specific regions,
21% of the HOT region–associated genes are essential (P < 1e-40; χ2 test) (fig. S27C) (6,
31). Gene Ontology (GO) (32) analysis revealed a variety of biological processes highly
represented in HOT-associated genes, including growth, reproduction, and larval and
embryonic development (each P < 1e-15), as well as 19 ribosomal protein genes (>12×
enrichment, P < 1e-12) (table S11). In comparison, GO analysis of the remaining (non-
HOT) targeted genes identified functional terms that are consistent with the known tissue
specificity and function of the individual TFs (26).
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Extensive overlap in binding sites between TFs with disparate functions has previously been
observed in both limited (33) as well as whole-genome ChIP-chip experiments (34, 35).
Using ChIP-seq data, we have shown that hundreds of regions in C. elegans are bound by
the majority of TFs within a 100-bp window. Our results suggest that many TFs that are
cross-linked to HOT regions are not directly associated with DNA via specific binding,
which is consistent with findings for highly occupied regions in Drosophila (34). Rather,
they suggest that association with HOT regions may be driven by protein-protein
interactions to a currently unknown set of HOT region–associated DNA-binding factors. We
searched for sequence motifs that might be broadly associated with HOT regions and found
a few that were significantly enriched (fig. S35), but the protein factors that bind directly to
these motifs are currently unknown.

Building a TF hierarchy
Following the assignment of binding sites to target genes, we investigated the resulting
“binding network,” as had previously been done in yeast and Escherichia coli (36). The
network for 18 factors assayed in larval stages (Fig. 3, A and B, and fig. S36) is relatively
dense, with each TF bound to an average of 828 genes, including TFs and other gene targets.
We pruned the network to the strongest interactions, using the fact that the expression
profile of a TF tends to be more strongly correlated over the time course with that of its
targets than nontargets, being positive for activators and negative for repressors (table S12)
(6). The pruned network shows a high level of autoregulation among the factors.

Within the network, we organized TFs hierarchically according to the degree to which they
target other TFs (top of the hierarchy) or are themselves targets for other TFs (bottom) (37).
We observed clear differences between the TFs at each level (Fig. 3, A and B). TFs at the
lower levels tended to be more uniformly expressed across multiple tissues (P = 0.07,
Student's t test) (6). Consistent with this, TFs at the bottom level were essential more often
than those at the top. In contrast, members of the Hox family were more often at the top of
the hierarchy—among the six Hox TFs examined, four were at the top layer of nine TFs—
perhaps reflecting their role in modulating specific developmental processes across multiple
tissues. Lastly, TFs showed connectivity in the existing C. elegans protein-protein
interaction network so that those at the hierarchy top tended to have significantly fewer
protein-protein interactions than those below (P = 0.002, Student's t test) (38). This suggests
that TFs in the middle and bottom layers act as “mediators” or “effectors,” more likely to
exchange information with other proteins. Although the predicted larval-stage TF network
here is small and one cannot make strong statistical statements, these conclusions follow a
pattern that is consistent with regulatory hierarchies in yeast and E. coli, in which essential
and highly connected “workhorse” regulators tend to occupy lower levels whereas overall
modulators are on the top (37).

An integrated miRNA-TF network and its motifs
Next, we added miRNAs to our TF hierarchy in order to enable us to explore the interplay
between transcriptional and posttranscriptional regulation. In particular, we identified the
targets of miRNAs on the basis of annotated 3′UTRs and sequence conservation (table S13)
(6). We then constructed an integrated network between miRNAs expressed during larval
stages and the above 18 TFs (all assayed in the same stages). For simplicity in this network,
we describe connections between two entities as “A regulates B”—though more properly,
we should describe them as “A is predicted to bind near B and regulate it.” In the integrated
network, the level of a miRNA was assigned according to the highest-level TF it regulates
or, if it does not regulate a TF, the lowest-level TF that regulates it. The miRNAs fall into
distinct levels, paralleling the arrangement of TFs (Fig. 3A). Moreover, the network reveals
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two different classes of miRNAs: those that are more strongly regulated by TFs versus those
that predominantly regulate TFs (Fig. 3A, bottom right versus top left, respectively).

We can further analyze our integrated network in terms of motifs, which is a common
approach used to decompose a complex network into simple building blocks (36). Many
different types of network motifs exist; as a simple example, we observed miRNA-TF loops
in our integrated network, in which a miRNA regulates a TF and the same TF regulates the
miRNA (39). Of particular interest are patterns that are overrepresented as compared with
randomized, rewired null models (6). We observed three overrepresented motifs in the
integrated miRNA-TF network (fig. S37) (6). One example is a miRNA-mediated feed-
forward loop, in which a TF regulates a miRNA and, together with the miRNA, regulates a
target coding gene (Fig. 3C). This particular motif structure is potentially responsible for
buffering noise and maintaining target protein homeostasis (40).

RNA Pol II binding and expression
We profiled RNA Pol II and the specific factor PHA-4 in each of the main stages of C.
elegans development and compared their binding profiles with the corresponding RNA-seq
data. Similar to the above approach for gene-expression dynamics, for RNA Pol II we
focused on a set of 8428 genes with non-overlapping transcripts and used the binding
profiles at promoters to generate correlation matrices between each stage. We found a
similar differential clustering of the embryonic and larval stages (Fig. 2A). This embryonic-
larval division was also observed for PHA-4 binding across stages (fig. S30) and
presumably reflects the different transcriptional programs between embryos and larvae.

Next, we correlated the RNA Pol II–binding profiles with expression profiles across all the
stages. As expected, the same-stage correlation was fairly high (0.64 to 0.70) (Fig. 2B) but
was notably lower for embryonic stages than for larval ones, perhaps reflecting the presence
of maternal transcripts in embryos (6, 41, 42). Unexpectedly, we found expression at earlier
developmental stages more tightly correlated with binding at later stages, rather than RNA
Pol II–binding anticipating RNA production (Fig. 2B). Specifically, the correlation is low
initially, reaches a maximum at the matching stage, and then remains high for later stages.
This can be interpreted as RNA Pol II binding to genes at the same developmental stage at
which they are initially expressed, and Pol II then remaining bound in later stages, even if
expression drops. The initial round of transcription may affect the accessibility of the
promoter, which may then remain unaltered in later stages for nondividing cells.
Alternatively, this result may reflect paused RNA Pol II at genes with reduced expression at
later stages. We have found several examples of genes in which RNA Pol II binding remains
high in later stages but gene expression is low [such as isl-1 and pgp-2 (fig. S31)], which is
consistent with RNA Pol II stalling.

Overall, we have shown how the analysis of relatively few TFs allows the construction of a
fairly elaborate network. To improve these networks in the future, we will need to identify
the precise cells and stages in which the TFs and miRNAs are expressed.

Chromatin Organization and Its Implications
One modENCODE goal is to identify elements that control chromosome behavior and
regulate the function of DNA elements. C. elegans chromosomes have several distinctive
features. Instead of having centromeres embedded in highly repeated sequences, its
chromosomes are holocentric, with microtubule attachment sites distributed along their
length. In hermaphrodites (XX), gene expression from both X chromosomes is down-
regulated in somatic cells by a dosage compensation mechanism and so better match
expression in males, which have one X chromosome (XO) (43). Furthermore, the entire X
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chromosome is under-expressed relative to the autosomes in the germline cells of both
hermaphrodites and males (44). C. elegans autosomes have distinct domains—a central
region flanked by two distal “arms” that together comprise more than half of the
chromosome. Compared with the centers, the arms have higher meiotic recombination rates,
lower gene density, and higher repeat content (5, 45, 46). Arms are not as sharply defined on
the X chromosome.

Chromosome-scale domains of histone modification
The distribution of 19 histone modifications and two key histone variants (C. elegans
homologs of H2A.z and H3.3) revealed striking, broad domains of histone modification
states on the autosomes, with relatively sharp boundaries between the central region of each
autosome and the arms (Fig. 5, A to C) (47–49). Modifications traditionally associated with
gene activity and euchromatin such as acetylation and H3K4 and H3K36 methylation are
enriched in the central regions of the chromosomes. In contrast, H3K9 mono-, di-, and
trimethylation marks associated with transcriptional repression and heterochromatin
formation are relatively depleted from the central regions and enriched on the arms of the
autosomes (Fig. 5A). These megabase-scale chromosomal domains are not homogeneous;
there are small zones of repressive marks within the generally active central regions and
active marks within the generally repressed arms. The chromosome-scale domains of
histone modification do not vary substantially in composition or position between embryos
and L3 larvae. Despite the biased distribution of repressive marks, the arms of the
chromosomes do not appear heterochromatic through 4′,6′-diamidino-2-phenylindole
(DAPI) staining or classical banding techniques (50). Although our samples did not include
appreciable meiotic tissue, the broad domains of histone modifications correspond to regions
defined by differences in recombination rate, with the boundaries located at the
recombination rate inflection points (Fig. 5A) (5, 46). On each chromosome, one arm
contains a meiotic pairing center that mediates homologous pairing and synapsis (50, 51).
As previously reported, H3K9me3 is more highly enriched on that arm (Fig. 5A) (52).
However, methylation is not particularly enriched within the pairing center regions
themselves (53). H3K9me3 is also highly enriched on silent genes on arms, and all forms of
H3K9 methylation are enriched in repetitive elements, which are more prevalent on
chromosome arms (fig. S32).

The X chromosome
Gene density, recombination rates, and repeat content are more uniformly distributed along
the X chromosome than autosomes (5). Consistent with this, chromatin marks on the X are
more uniformly distributed. A high density of repressive marks, similar to that seen
throughout the autosome arms, is associated with only two narrow ∼300-kb regions at the
left end of the X that flank the meiotic pairing center (Fig. 5B). The genomic distribution of
DPY-26, DPY-27, DPY-28, and SDC-3, proteins mediating dosage compensation, is highly
enriched on the X chromosome (Fig. 5B) (25, 54, 55). H4K20me1, a modification linked in
mammals to chromosome maturation and X-chromosome inactivation (56), is also enriched
on the X. This X-enrichment is detectable in early embryo populations, when some embryos
have initiated dosage compensation, and becomes more pronounced in L3 animals, when
dosage compensation is fully established.

Chromosomes and nuclear envelope interactions
Interactions between the genome and the nuclear envelope were determined by means of
ChIP of LEM-2, a transmembrane protein associated with the nuclear lamina (57). In
embryos, LEM-2 interacts with the repeat-rich, H3K9-methylated arms of the autosomes but
not with the autosome centers (Fig. 5, A and D). Similar to H3K9 methylation, the transition
between LEM-2–enriched arms and the central chromosomal regions is relatively sharp,
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coinciding with the transition between regions of high and low meiotic recombination rate
(Fig. 5B). Within the arm regions, LEM-2 enrichment exhibits a complex underlying
subdomain structure (57). On the X chromosome, LEM-2 interacts with only the small
regions on the left end that harbor repressive chromatin marks (Fig. 5B). This suggests a
particular organization for the X chromosome within the nucleus (Fig. 5D).

Histone mono-methylation
We plotted the distribution of each chromatin mark relative to transcript starts and ends and
further subdivided these plots by the expression level of the associated gene on autosomes
versus the X chromosome (Fig. 6 and fig. S34). Overall, the results are consistent with the
known distributions and functions of chromatin marks in other eukaryotes (58). However,
the distribution of several mono-methyl marks—including H4K20me1, H3K9me1, and
H3K27me1—are associated more with the bodies of highly transcribed genes on the X
chromosome than with similarly expressed genes on autosomes. Further, H3K36me1 is
confined sharply to gene bodies on X, in contrast to broader enrichment that spans
promoters and 3′ UTRs on autosomal genes. Conversely, H3K36me3 and H3K36me2 are
more associated with autosomal genes than with X-linked ones (Fig. 6 and fig. S34).
Differences in several marks are observed between early embryogenesis and more
differentiated L3 animals—most notably a redistribution of H3K27me1 and H3K27me3
(Fig. 6 and fig. S34, bottom row).

Nucleosome organization
Consistent with micrococcal nuclease (MNase) nucleosome-mapping experiments (52, 59,
60), both X and autosomal genes exhibit a typical nucleosome-depleted region upstream of
TSSs, a well-positioned +1 nucleosome, and nucleosome depletion at the 3′ ends. However,
we observed that the average nucleosome occupancy immediately upstream of the +1
nucleosome on the X chromosome was 1.6-fold higher than that of genes on autosomes (at
−300 to +200 bp relative to the TSS; P < 2.2e−16, Wilcoxon rank-sum test) (61). Relative to
autosomal genes, promoters of X-linked genes have higher GC content, which is predictive
of high nucleosome occupancy in vitro (fig. S33) (61–63). We observed a similar difference
between X and autosomal promoters when naked DNA was digested with MNase, although
this result was expected because the known DNA sequence preferences of MNase are
similar to the sequence preferences of linker DNA (64, 65). DNA sequences associated with
nucleosome occupancy evolve according to expression requirements (66, 67), suggesting
that the higher GC content on X promoters may relate to mechanisms of X-specific gene
regulation in the soma and germline.

Epigenetic transmission of chromatin state to progeny
The activity of the C. elegans protein MES-4—a histone H3K36 methyltransferase required
for the survival of nascent germ cells in developing animals—mediates the transmission of
information about the pattern of germline gene expression from mother to progeny. Similar
to other H3K36 methyltransferases, MES-4 is associated with gene bodies. However, in
contrast to previously studied H3K36 methyltransferases (68) MES-4 is able to associate
with genes in an RNA Pol II–independent manner (69). In the embryo, MES-4 is
preferentially bound to genes that were highly expressed in the maternal germline but may
no longer be expressed in embryos (69). Conversely, MES-4 is not associated with genes
expressed specifically in early embryos, despite recruitment of RNA Pol II to those genes
(69). Therefore, RNA Pol II association with genes is neither necessary nor sufficient to
recruit MES-4 in embryos (69). These findings suggest that MES-4, which is required for
fertility, functions as a maintenance histone methyltransferase and propagates the memory
of gene expression from the maternal germline to the cells of the next generation (69).
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Models relating chromatin to TF binding
To integrate chromatin with other types of modENCODE data, we sought to relate the
patterns of histone marks with the observed TF-binding sites. Across the whole genome, we
observed only weak direct correlations between the two (fig. S38A). However, the
relationship between chromatin and TFs may involve complex, nonlinear relationships. To
probe these, we built machine-learning models to identify TF-binding peaks from chromatin
features (fig. S39). Investigating the association of individual histone marks with TF-binding
sites, we found some that discriminate TF-binding sites from the genomic background with
reasonable accuracy (Fig. 7A). Often, this is connected with their actual presence at binding
sites; for example, when comparing the background to binding peaks, on average, some
marks have stronger signals, where-as others have weaker ones [such as H3K4me3 versus
H3K9me3 (fig. S41)]. Individual chromatin marks and RNA Pol II–binding signals could
also distinguish HOT regions from the genomic background, highlighting the association
with active transcription in these regions.

Because chromatin features work in combination to influence binding-site selection (70), we
combined all the histone marks together in a classifier. The resulting models could identify
binding sites better than those based on any individual mark (Fig. 7A and figs. S38B and
S40A).

We further observed that chromatin features are particularly good at identifying the binding
peaks of some specific TFs. For example, H3K4me2 and H3K4me3, which are usually
enriched in promoters, identified the binding peaks of a group of five factors (CEH-14,
CEH-30, LIN-13, LIN-15B, and MEP-1) better than the other TFs. This association is
specifically due to a relative enrichment of these H3K4me2 and H3K4me3 at the binding
peaks of this group of five TFs (fig. S41). It further suggests that the chromatin features can
be useful in discriminating not only binding sites from the genomic background but also the
sites of specific TFs in comparison with other TFs. Indeed, we were able to build integrated
models to do this with reasonable accuracy (fig. S40B). The same approach was also
successful in discriminating HOT regions from all TF-binding regions (fig. S40B). Our
models perform best when chromatin features are measured at the same stage as the TFs,
suggesting a dynamic relationship between chromatin and binding sites across
developmental stages (fig. S42).

To provide additional predictive power, we incorporated into our models the information
from the specific sequence motif recognized by a TF, summarized by a position-weight
matrix. The combined models with both chromatin and sequence information were more
accurate than were models involving either type of information alone (Fig. 7B and fig. S43).
Thus, chromatin features enable one to predict TF-accessible regions and broad classes of
binding sites, and motifs provide additional information on the exact sites bound by
particular factors, chosen from these broad classes.

Models relating chromatin to gene expression
Next, we developed a model to relate chromatin marks to gene expression levels. We
divided the regions around each TSS and transcript termination site (TTS) into small (100
bp) bins and calculated the average signal of each chromatin feature and RNA Pol II (13
features in total) in a set of 160 bins up to 4 kb upstream and downstream of these two
anchors (to include even long-range effects). Then at each bin, we correlated the chromatin
signals with the stage-matched gene expression value (Fig. 7C). There is clear variation
across the bins in this correlation, with the effect of making activating marks more sensitive
than are repressive ones to their exact positioning relative to the TSS or TTS.
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By combining all features at each of the 160 bins, we built a model for gene expression,
predicting the quantitative expression levels of transcripts with support vector regression
(SVR) (6). Predicted expression levels were highly correlated with measured ones
[correlation coefficient (r) = 0.75, cross-validated]. As an overall benchmark, we compared
our chromatin model with one based on the level of RNA Pol II–binding alone (r = 0.37);
our model achieves better prediction accuracy for expression levels.

To find the relative importance for gene expression of the 160 possible bin locations, we
divided genes into highly and lowly expressed classes and predicted the class of each gene
from each bin. The best predictions were obtained from bins immediately after the TSS and
just before the TTS. With increasing distance upstream of the TSS, predictive power
decreased smoothly. Intriguingly, the predictive capability of chromatin features extended as
much as 4 kb upstream of the TSS and 4 kb downstream of the TTS, even when we
restricted the analysis to widely separated genes with distant neighbors. This may indicate a
long-range influence of chromatin on gene expression.

In contrast to protein-coding genes, the association between histone modifications and
miRNA expression has not been explored in detail. Because protein-coding and miRNA
genes are both transcribed by RNA Pol II, we applied the above chromatin model, derived
from protein-coding genes, to the regions around candidate pre-miRNAs. We then predicted
expression levels for 162 microRNAs, for which genomic locations are provided by
miRBase (71), and compared these predictions to the measurements in the modENCODE
small RNA-seq data set. We found a correlation of 0.60 (r = 0.62 for just miRNAs far from
known genes) (Fig. 7D). That expression of miRNAs can be predicted accurately by using a
chromatin model trained on protein-coding genes is consistent with miRNAs and protein-
coding gene regulation sharing similar mechanistic connections to histone marks.

Conservation Analysis
Because mutations are constantly accumulating over evolutionary time, purifying selection
slows the rate of divergence of functional relative to nonfunctional sequences (72). For this
reason, evolutionarily constrained regions can assist in identifying functional elements (73).
Although some functional sequences may not be conserved, are conserved in a way that we
are unable to detect, or are under positive selection (resulting in accelerated divergence), the
coverage of constrained bases by identified functional elements is a valuable measure of the
completeness of our understanding of the genome. We characterized regions of the C.
elegans genome under evolutionary constraint by constructing a multiple alignment among
the nematodes C. elegans, C. remanei, C. briggsae, C. brenneri, C. japonica, and
Pristionchus pacificus using methods previously developed (1). We then calculated
conservation scores with PhastCons (6, 74). These procedures identified 59,504 constrained
blocks that cover 29.6% of the C. elegans genome as a whole and range from 27.4% of
chromosome IV to 31.9% of chromosome X. The single largest constrained block was 3558
bp on chromosome V, but conserved blocks were typically much smaller (mean 49 ± 58.6
bp).

These conserved regions are highly correlated with functional elements. We first examined
the proportion of evolutionarily constrained regions that overlap experimentally annotated
portions of the genome (Fig. 8A and fig. S44). In the last WormBase freeze before the
incorporation of modENCODE data (6), 50.8% of the constrained regions were covered by
annotations supported by direct experimental evidence. Adding modENCODE protein-
coding gene evidence increased the coverage of constrained bases to 58.3%. Other
modENCODE increases came from the 7k-set of ncRNAs (1.9%), TF-binding sites, (5.9%),
dosage compensation (9.3%), and other chromatin-associated factors (2.8%). Thus,
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modENCODE explains an additional 27.4% (8.1 Mb) of the constrained portion of the
genome; together with remaining unconfirmed WormBase gene predictions (0.7%) and
pseudogenes (0.6%), coverage now totals 79.5% of constrained bases.

We then estimated the extent of constraint on different functional elements by plotting the
distribution of the PhastCons conservation scores for each type of element (Fig. 8, B and C,
and fig. S45). The most constrained elements were ncRNAs (both known and the 7k-set),
presumably reflecting the fact that conservation was a criterion used to identify them. Next
came protein-coding elements, followed by miRNAs, TF-binding sites, and other chromatin
factor–binding sites. Pseudogenes, introns, and regions of the genome not covered by
modENCODE data sets all have low levels of conservation. We then used the genome
structure correction (GSC) statistic (1, 75) to calculate confidence intervals on the degree of
overlap between evolutionarily constrained bases and functional elements defined by
modENCODE and other sources. This demonstrated that coding regions, ncRNAs, TF-
binding sites, and other chromatin factor–binding sites are significantly more constrained
than would be expected by chance, whereas regions covered by pseudogenes, introns, and
unannotated regions are significantly depleted in constrained regions relative to chance.

Roughly 20.5% of the constrained genome remains uncovered by known functional
elements, but a portion of this sequence directly abuts known functional elements. If the
borders of transcribed regions and chromatin-associated protein-binding sites are extended
across all constrained blocks that neighbor them, ∼ 4.1 Mb (14%) in isolated constrained
blocks remains. These residual constrained bases are highly enriched in introns and
intragenic regions (table S14), are moderately enriched in the 1-kb regions upstream of
TSSs, and are depleted in the 1-kb regions downstream of TTSs. One potential explanation
for the residual constrained bases is that they correspond to the binding sites of untested
TFs. Indeed, a plot of coverage of constrained sequence against numbers of TF experiments
shows that the relatively small numbers of TFs studied here are far from saturating
constrained bases (fig. S47), implying that additional TFs may explain part of the remaining
constrained bases in these regions. Other explanations for the residual constrained regions
include other intronic regulatory sites, transcribed regions that are expressed only under rare
circumstances, and possibly as-yet unknown classes of functional elements.

Discussion
Our analysis illustrates patterns at multiple genomic scales: individual gene, chromosomal
domain, and whole-chromosome. At the first scale, in addition to improving annotation of
protein-coding genes, we identified transcribed pseudogenes and many previously
unidentified ncRNAs, mapped binding sites of TFs, built regulatory networks, and
constructed models predicting binding location and expression levels from chromatin marks.
On a larger scale, we found chromosomal domains—characterized by repressive marks and
interactions with the nuclear envelope on the autosome arms—and noted how the
boundaries in these domains align with changes in recombination frequency. We also
identified additional properties of the entire X chromosome, including the preferential
accumulation of multiple mono-methylated histone marks. Our large-scale approach also
discovered unexpected biological phenomena that would be difficult to uncover in
conventional studies. In particular, upon profiling the binding sites of 23 factors we
identified regions of clustered binding (HOT regions).

One limitation of the modENCODE strategy is that we cannot readily distinguish low levels
of biochemical noise, such as a rare nonfunctional transcription splice form, from
biologically important phenomena. The presence of such noise may be an unavoidable part
of the cell regulatory machinery (76) and will only be distinguished from biologically
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important signals through careful follow-up experimentation. Another limitation is that
almost all experiments were performed in populations of whole animals composed of
multiple tissues. Future studies will increase the tissue-specific resolution of the data.

Model organisms such as C. elegans have long served as key experimental systems for
developing technology and providing fundamental insights into human biology. Comparing
our modENCODE results with the ENCODE pilot, which assessed functional elements in
1% of the human genome, we can already begin to see commonalities (6). For instance, for
some aggregated binding signals (such as for RNA Pol II) the overall shape of the signal
distributions relative to the TSS are quite similar between human and C. elegans. Likewise,
the overall amount (per base pair) of transcription and binding by TFs is comparable (fig.
S49 and tables S15 and S16). However, there are differences in the shape of the aggregated
signal distributions for a few matched histone modifications (Fig. 6 versus fig. S50).
Moreover, the relative proportion of constrained genome covered by experimental
annotation is quite different in human and nematode, perhaps reflecting evolutionary
pressures for a compact genome in the latter (fig. S48). A more comprehensive comparison,
including the Drosophila genome data presented in the accompanying article, must await
genome-wide analysis of human cells—an effort currently underway in the ENCODE
project.

The modENCODE data sets are intended as an enduring resource for the genomics
community. All raw and analyzed data, metadata, and interpreted results are available at
www.modencode.org, where they can be searched, displayed, and downloaded. Raw
sequencing reads and microarray data are archived at the Short-read Archive and the Gene
Expression Omnibus, and higher-order results are being incorporated into WormBase (77).
In addition, we have assembled a compact guide to the data sets used (at
www.modencode.org/publications/integrative_worm_2010) (table S1) (6) and have
populated a community cloud-computing resource with the data and analysis tools to
facilitate further investigation by interested researchers (6). We expect that analyses of these
data sets in the coming years will provide additional insights into general principles of
genome organization and function, which will ultimately aid in annotating and deciphering
the human genome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Funding for this work came from the NHGRI of the NIH as part of the modENCODE project, NIH (grant
R01GM088565), Muscular Dystrophy Association, and the Pew Charitable Trusts (J.K.K.); the Helmholtz-Alliance
on Systems Biology (Max Delbrück Centrum Systems Biology Network) (S.D.M.); the Wellcome Trust (J.A.); the
William H. Gates III Endowed Chair of Biomedical Sciences (R.H.W.); and the A. L. Williams Professorship
(M.B.G.). M. Snyder has an advisory role with DNANexus, a DNA sequence storage and analysis company.
Transfer of GFP-tagged fosmids requires a Materials Transfer Agreement with the Max Planck Institute of
Molecular Cell Biology and Genetics. Raw microarray data are available from the Gene Expression Omnibus
archive, and raw sequencing data are available from the SRA archive (accessions are in table S18). We appreciate
help from S. Anthony, K. Bell, C. Davis, C. Dieterich, Y. Field, A. S. Hammonds, J. Jo, N. Kaplan, A. Manrai, B.
Mathey-Prevot, R. McWhirter, S. Mohr, S. Von Stetina, J. Watson, K. Watkins, C. Xue, and Y. Zhang, and B.
Carpenter. We thank C. Jan and D. Bartel for sharing data on poly(A) sites before publication, WormBase curator
G. Williams for assistance in quality checking and preparing the transcriptomics data sets for publication, as well as
his fellow curator P. Davis for reviewing and hand-checking the list of pseudogenes.

Gerstein et al. Page 17

Science. Author manuscript; available in PMC 2011 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.modencode.org
http://www.modencode.org/publications/integrative_worm_2010


References and Notes
1. Birney E, et al. ENCODE Project Consortium. NISC Comparative Sequencing Program; Baylor

College of Medicine Human Genome Sequencing Center; Washington University Genome
Sequencing Center; Broad Institute; Children's Hospital Oakland Research Institute. Nature. 2007;
447:799. [PubMed: 17571346]

2. Celniker SE, et al. Nature. 2009; 459:927. [PubMed: 19536255]
3. Sulston JE, Schierenberg E, White JG, Thomson JN. Dev Biol. 1983; 100:64. [PubMed: 6684600]
4. White JG, Southgate E, Thomson JN, Brenner S. Philos Trans R Soc London B Biol Sci. 1986;

314:1.
5. C. elegans Sequencing Consortium. Science. 1998; 282:2012. [PubMed: 9851916]
6. Materials and methods are available as supporting material on Science Online.
7. Reboul J, et al. Nat Genet. 2003; 34:35. [PubMed: 12679813]
8. Lamesch P, et al. Genome Res. 2004; 14(10B):2064. [PubMed: 15489327]
9. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Nat Methods. 2008; 5:621. [PubMed:

18516045]
10. Hillier LW, et al. Genome Res. 2009; 19:657. [PubMed: 19181841]
11. Mangone M, et al. Science. 2010; 329:432. [PubMed: 20522740]
12. Jan CH, Friedman RC, Ruby JG, Burge CB, Bartel DP. Nature. published online 17 November

2010. 10.1038/nature09616
13. Allen MA, Hillier LW, Waterston RH, Blumenthal T. Genome Res. 10.1101/gr.113811.110
14. Agarwal A, et al. BMC Genomics. 2010; 11:383. [PubMed: 20565764]
15. Spence WC, et al. Genome Res. 10.1101/gr.114595.110
16. Harrison PM, Gerstein M. J Mol Biol. 2002; 318:1155. [PubMed: 12083509]
17. Sasidharan R, Gerstein M. Nature. 2008; 453:729. [PubMed: 18528383]
18. Mattick JS. Science. 2005; 309:1527. [PubMed: 16141063]
19. Kato M, de Lencastre A, Pincus Z, Slack FJ. Genome Biol. 2009; 10:R54. [PubMed: 19460142]
20. Stoeckius M, et al. Nat Methods. 2009; 6:745. [PubMed: 19734907]
21. Ruby JG, Jan CH, Bartel DP. Nature. 2007; 448:83. [PubMed: 17589500]
22. Chung W, et al. Genome Res. 10.1101/gr.113050.110
23. Ruby JG, et al. Cell. 2006; 127:1193. [PubMed: 17174894]
24. Lu ZJ, et al. Genome Res. 10.1101/gr.110189.110
25. Ercan S, et al. Nat Genet. 2007; 39:403. [PubMed: 17293863]
26. Niu W, et al. Genome Res. 10.1101/gr.114587.110
27. Fukushige T, Krause M. Development. 2005; 132:1795. [PubMed: 15772130]
28. Grove CA, et al. Cell. 2009; 138:314. [PubMed: 19632181]
29. Roy PJ, Stuart JM, Lund J, Kim SK. Nature. 2002; 418:975. [PubMed: 12214599]
30. Liu X, et al. Cell. 2009; 139:623. [PubMed: 19879847]
31. Kamath RS, et al. Nature. 2003; 421:231. [PubMed: 12529635]
32. Ashburner M, et al. Nat Genet. 2000; 25:25. [PubMed: 10802651]
33. Carr A, Biggin MD. EMBO J. 1999; 18:1598. [PubMed: 10075930]
34. Moorman C, et al. Proc Natl Acad Sci U S A. 2006; 103:12027. [PubMed: 16880385]
35. MacArthur S, et al. Genome Biol. 2009; 10:R80. [PubMed: 19627575]
36. Alon U. Nat Rev Genet. 2007; 8:450. [PubMed: 17510665]
37. Yu HY, Gerstein M. Proc Natl Acad Sci U S A. 2006; 103:14724. [PubMed: 17003135]
38. Simonis N, et al. Nat Methods. 2009; 6:47. [PubMed: 19123269]
39. Martinez NJ, et al. Genes Dev. 2008; 22:2535. [PubMed: 18794350]
40. Hornstein E, Shomron N. Nat Genet. 2006; 38(suppl):S20. [PubMed: 16736020]
41. Edgar LG, Wolf N, Wood WB. Development. 1994; 120:443. [PubMed: 7512022]
42. Seydoux G, Fire A. Development. 1994; 120:2823. [PubMed: 7607073]

Gerstein et al. Page 18

Science. Author manuscript; available in PMC 2011 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



43. Meyer, BJ. X-Chromosome Dosage Compensation. In: The C. elegans Research Community. ,
editor. WormBook. WormBook; 2005.

44. Kelly WG, et al. Development. 2002; 129:479. [PubMed: 11807039]
45. Barnes TM, Kohara Y, Coulson A, Hekimi S. Genetics. 1995; 141:159. [PubMed: 8536965]
46. Rockman MV, Kruglyak L, Przeworski M. PLoS Genet. 2009; 5:e1000419. [PubMed: 19283065]
47. Liu T, et al. Genome Res. 10.1101/gr.115519.110
48. Ooi SL, Henikoff JG, Henikoff S. Nucleic Acids Res. 2010; 38:e26. [PubMed: 19966274]
49. Egelhofer TA, et al. Nat Struct Mol Biol. 10.1038/nsmb.1972
50. Albertson, DG.; Rose, AM.; Villeneuve, AM. C elegans II. Riddle, DL.; Blumenthal, T.; Meyer,

BJ.; Preiss, JR., editors. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 1997. p.
47-78.

51. MacQueen AJ, et al. Cell. 2005; 123:1037. [PubMed: 16360034]
52. Gu SG, Fire A. Chromosoma. 2010; 119:73. [PubMed: 19705140]
53. Phillips CM, et al. Nat Cell Biol. 2009; 11:934. [PubMed: 19620970]
54. Ercan S, Dick LL, Lieb JD. Curr Biol. 2009; 19:1777. [PubMed: 19853451]
55. Jans J, et al. Genes Dev. 2009; 23:602. [PubMed: 19270160]
56. Kohlmaier A, et al. PLoS Biol. 2004; 2:E171. [PubMed: 15252442]
57. Ikegami K, Egelhofer TA, Strome S, Lieb JD. Genome Res. 10.1186/gb-2010-11-12-r120
58. Kouzarides T. Cell. 2007; 128:693. [PubMed: 17320507]
59. Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. Genome Res. 2006; 16:1505.

[PubMed: 17038564]
60. Valouev A, et al. Genome Res. 2008; 18:1051. [PubMed: 18477713]
61. Ercan S, Lubling Y, Segal E, Lieb JD. Genome Res. 10.1101/gr.115931.110
62. Kaplan N, et al. Nature. 2009; 458:362. [PubMed: 19092803]
63. Tillo D, et al. PLoS ONE. 2010; 5:e9129. [PubMed: 20161746]
64. Hörz W, Altenburger W. Nucleic Acids Res. 1981; 9:2643. [PubMed: 7279658]
65. Segal E, Widom J. Curr Opin Struct Biol. 2009; 19:65. [PubMed: 19208466]
66. Field Y, et al. PLoS Comput Biol. 2008; 4:e1000216. [PubMed: 18989395]
67. Tsankov AM, et al. PLoS Biol. 2010; 8:e1000414. [PubMed: 20625544]
68. Kizer KO, et al. Mol Cell Biol. 2005; 25:3305. [PubMed: 15798214]
69. Rechtsteiner A, et al. PLoS Genet. 2010; 6:e1001091. [PubMed: 20824077]
70. Berger SL. Nature. 2007; 447:407. [PubMed: 17522673]
71. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. Nucleic Acids Res. 2008; 36(Database

issue):D154. [PubMed: 17991681]
72. Cooper GM, et al. Genome Res. 2004; 14:539. [PubMed: 15059994]
73. Moses AM, et al. PLOS Comput Biol. 2006; 2:e130. [PubMed: 17040121]
74. Siepel A, et al. Genome Res. 2005; 15:1034. [PubMed: 16024819]
75. Bickel PJ, Boley N, Brown JB, Huang H, Zhang N. Annals Appl Stat. 2010; 0:1.
76. Eldar A, Elowitz MB. Nature. 2010; 467:167. [PubMed: 20829787]
77. Harris TW, et al. Nucleic Acids Res. 2010; 38(Database issue):D463. [PubMed: 19910365]

Gerstein et al. Page 19

Science. Author manuscript; available in PMC 2011 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Transcriptome features and alternative splicing. (A) Bar graphs indicate the number of
confirmed splice junctions categorized by type. The leftmost bars show the progression from
project start (6) to the aggregate integrated transcript set. The three other groups provide
data for the various developmental stages, males, mutants, and populations exposed to
pathogens. Specific sample names are described in table S3. (B) Histogram of fractional
differences in isoform composition for 12,875 genes with multiple isoforms in 21 pair-wise
comparisons across seven developmental stages. A fractional difference close to 1 indicates
large differences in the relative composition. (C) Representative example (F01G12.5; let-2),
illustrating alternative exon usage across stages. (D) Example of a differentially transcribed
pseudogene creating a ncRNA. Rows are normalized signal tracks for the various
developmental stages, showing the expression pattern of the parent gene (T01B11.7.1;
orange) and an associated duplicated pseudogene (PP00501, green).
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Fig. 2.
Expression and binding dynamics. (A) Spearman correlations of gene expression and RNA
Pol II binding across seven stages. Expression-level correlations are shown above the
diagonal; RNA Pol II–binding correlations appear below. For both expression and binding,
there is a notable transition between embryonic and larval stages. (B) Correlation of RNA
Pol II–binding levels with gene expression. Although RNA Pol II–binding in embryonic
stages shows low correlation with gene expression in larval and young adult stages,
expression in the embryo correlates moderately well with RNA Pol II–binding later. (C)
Principal components analysis (PCA) of six matched tissue samples from mixed embryo
(MxE) and L2 (7). GABA, γ-aminobutyric acid.
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Fig. 3.
Integrated miRNA-TF regulatory network. (A) TFs are organized hierarchically, and those
miRNAs either regulating or being regulated by the TFs are shown. (TF names are in fig
S36.) All larval TF-TF interactions in HOT regions were removed. Tissue specificity and
number of protein-protein interactions are shown for each of the hierarchical levels (6). (B)
TF network after filtering out edges that do not show a significant correlation in their
expression patterns. Also shown is a schematic representation of the target genes of the 18
larval TFs. (C) One of the three significantly enriched network motifs (other two are in fig.
S37). (D) Enrichment of binding targets and signal of TFs in noncoding versus coding
genes. Max signal equals the ratio of maximum binding signal of a TF at noncoding versus
coding genes. Target fraction represents the ratio of target percentage in noncoding genes to
that in coding genes (fig. S22A).
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Fig. 4.
HOT regions. (A) TF-binding peaks at a HOT region and two “factor-specific regions” on
chromosome III: 7,206,000 to 7,220,000. Top tracks show read density (scaled based on the
total mapped reads) from 22 ChIP-seq experiments. Bottom tracks show ChIP-seq controls,
RNA-seq expression levels, and ChIP-chip signals for two histone modifications. (B) 304
HOT regions bound by 15 or more factors and 50 randomly chosen TF-bound regions. Each
row represents a TF, and each region is colored by enrichment q value (6). (C) Genes
associated with HOT regions are broadly expressed. Single-cell gene expression
measurements of 93 mCherry reporters (30) are shown separated by whether the promoter
contains a HOT region, contains a region bound by 10 to 14 factors, or contains only regions
bound by 0 to 9 factors (gene names are in fig. S29). The x axis represents 363 specific cells
present in L1-stage animals.
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Fig. 5.
Chromosome-scale domains of chromatin organization. (A and B) Whole-genome ChIP-
chip data for various histone modifications and chromatin-associated proteins, along with
relevant genome annotations, were normalized, placed into 10-kb bins, and displayed as a
heat map. Red indicates a stronger signal, and blue indicates a weaker signal. The
continuous black line plots the relationship between physical (x axis) and genetic (y axis)
distance. Three major groups were identified by hierarchical clustering. Group 1 contains
H3K9 methylation marks and LEM-2, which tend to be enriched at distal autosomal regions,
and correlate with repetitive DNA and a high recombination rate. Group 2 contains dosage
compensation complex members and H4K20me1, which are highly enriched on X. Group 3
contains marks associated with active chromatin. Generally, signals for active marks are
weaker on the X chromosome than the autosomes. This megabase-scale chromatin
organization persists through all stages examined. (A) Chromosome III is representative of
autosomes. (B) X has a distinct chromatin configuration. (C) H3K9me1, - 2, and -3 signals
decrease gradually at the boundaries between the central and distal domains, whereas the
boundaries defined by LEM-2 are relatively sharp. (D) A schematic representation of key
findings.
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Fig. 6.
Chromatin patterns around genes. Average gene profiles around the TSS and TTS of various
histone marks displayed for the (red) X chromosome and (blue) autosomes. Genes were
further stratified according to their expression level, with the top 20% of expressed genes
shown in darker shade and the bottom 20% of expressed genes shown in lighter color.
Marks typically associated with active or repressed transcription are labeled on the left.
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Fig. 7.
Statistical models predicting TF-binding and gene expression from chromatin features. (A)
Modeling TF-binding sites with chromatin features. The color of each cell represents the
accuracy of a statistical model in which a chromatin feature or a set of features acts as
predictor for TF binding or HOT regions. (B) An example of combining chromatin and
sequence features. Potential binding sites of HLH-1 were predicted by using only sequence
motifs, only chromatin features, or both. (C) Correlation pattern for a number of chromatin
features in 100-bp bins around the TSS (± 4 kb) and TTS (± 4 kb) of transcripts at the early
embryo (EE) stage. The Spearman correlation coefficient of each chromatin feature with
gene-expression levels was calculated for each bin. (D) Chromatin features can predict
expression levels for both protein-coding genes and miRNAs. (Top) A model involving all
chromatin features. (Bottom) The model for protein-coding genes can also be used to predict
accurately miRNA expression levels.
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Fig. 8.
Relative proportion of annotations among constrained sequences. (A) Relative proportion of
constrained and unconstrained bases in the C. elegans genome. Within the constrained
region, the stacked bar chart shows the cumulative proportion covered by various classes of
annotated genomic elements. (B) Fraction of element classes covering (red) constrained and
(gray) unconstrained bases. The error bars show the 95% confidence interval for random
placement of elements calculated with GSC. If the ends of the columns are outside the
confidence interval, then it is unlikely that the fraction of the element class overlapping
constrained and/or unconstrained bases could have occurred by chance. (C) Constraint
profiles of broad categories of elements. The x axis indicates the PhastCons score of bases
covered by the element ranging from 0 (no conservation) to 1.0 (perfect conservation). The y
axis indicates the log ratio of the number of bases with the given score covered, relative to
what would be expected by random element placement (dotted line) (fig. S45 shows more
detail).
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