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Biological networks have long been known to be modular, containing
sets of nodes that are highly connected internally. Less emphasis, how-
ever, has been placed on understanding how intermodule connections are
distributed within a network. Here, we borrow ideas from engineered
circuit design and study Rentian scaling, which states that the number
of external connections between nodes in different modules is related
to the number of nodes inside the modules by a power-law relation-
ship. We tested this property in a broad class of molecular networks, in-
cluding protein interaction networks for six species and gene regulatory
networks for 41 human and 25 mouse cell types. Using evolutionarily de-
fined modules corresponding to known biological processes in the cell,
we found that all networks displayed Rentian scaling with a broad range
of exponents. We also found evidence for Rentian scaling in functional
modules in the Caenorhabditis elegans neural network, but, interestingly,
not in three different social networks, suggesting that this property does
not inevitably emerge. To understand how such scaling may have arisen
evolutionarily, we derived a new graph model that can generate Rentian
networks given a target Rent exponent and a module decomposition as
inputs. Overall, our work uncovers a new principle shared by engineered
circuits and biological networks.

1 Introduction

One approach to understand how biological networks are organized is to
study their scaling properties. Developmental constraints often force evolu-
tion to conserve certain properties of networks as they change in size. By re-
lating these properties to function, we can uncover new structure-function
relationships. Here, we describe a new scaling relationship present in func-
tional modules in diverse biological networks.

Molecular interaction networks are highly modular, containing subsets
of nodes (genes or proteins) that interact more strongly with each other
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compared to the rest of the network (Spirin & Mirny, 2003; Sharan, Ulitsky,
& Shamir, 2007; Navlakha, Schatz, & Kingsford, 2009; Jiang & Singh, 2010;
Davis, Yaveroglu, Malod-Dognin, Stojmirovic, & Przulj, 2015). These mod-
ules represent core biological processes that occur in the cell, such as RNA
metabolism, protein methylation, or autophagy (Ashburner et al., 2000). Al-
though less studied, there are also many interactions between proteins in
different modules (Pinkert, Schultz, & Reichardt, 2010), such as pleiotropic
genes that have multiple functions and belong to multiple modules. These
together suggest there is substantial cross-talk between biological mod-
ules, including across modules that are seemingly unrelated (Stearns, 2010).
Here, our goal is to uncover structure in this intermodule communication
using theories developed from engineered circuit design.

E. F. Rent, a scientist at IBM in the 1960s, studied the structure of com-
puter circuits and found that when he plotted the number of gates (nodes)
in a logical block (module) of the circuit versus the number of connections
to or from that block, the two scaled according to a power law (Land-
man & Russo, 1971; Lanzerotti, Fiorenza, & Rand, 2005). This relation-
ship, now known as Rent’s rule, was preserved across many spatial scales,
from very small to very large modules, indicating that interconnections
can be described by a self-similar function (Stevens, 2009). The rule has
also been shown to hold over time as circuits evolved to become larger
(more on-board components), more energy efficient, and higher perform-
ing (Bakoglu, 1990; Lanzerotti et al., 2005; Bassett et al., 2010).

The exponent of the power law relationship is called Rent’s exponent.
Higher exponents denote random, complex wiring, though with greater
logical capacity; smaller values denote less capacity but a more econom-
ical design that prefers short-versus long-range connections (Christie &
Stroobandt, 2000). Thus, the exponent encodes a trade-off between the econ-
omy of design and performance complexity. In digital circuits, the expo-
nent is important because it can be used to predict the total amount of
wiring needed to realize a specific design topology (Christie & Stroobandt,
2000), and thus how efficiently the network is embedded in space (Bull-
more & Sporns, 2012). It can also be used to estimate various chip layout
parameters (Christie & Stroobandt, 2000). Proteins in molecular networks
do not have fixed positions in space, and thus there is no exact analog
of “wiring length”; however, proteins are largely partitioned into physi-
cal cellular compartments, and thus Rent’s exponent may provide insight
into the efficiency of cross-compartment communication. Remarkably, cir-
cuit design engineers at IBM did not explicitly try to optimize for Rent’s
rule; it emerged naturally from the human design process. In molecular
networks, a certain amount of independence of modules is clearly desired,
yet the diameters of most molecular networks and signaling pathways
are rather small, suggesting that intermodule connections are significant
and useful for information integration (Mason & Verwoerd, 2007; Gitter,
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Klein-Seetharaman, Gupta, & Bar-Joseph, 2011; Deeds, Krivine, Feret,
Danos, & Fontana, 2012; Navlakha, Gitter, & Bar-Joseph, 2012). This trade-
off between economy and complexity could also signify how disruption of
one biological process affects another (closely or distantly related) biologi-
cal process (Dillin, Gottschling, & Nystrom, 2014) and how efficiently these
effects propagate throughout the network (Navlakha, He, Faloutsos, & Bar-
Joseph, 2014).

In this work, we find evidence of Rentian scaling of functional mod-
ules in a diverse set of molecular and cellular networks, including physical
protein interaction networks, cell-type specific gene regulatory networks,
and neural circuits. In contrast to prior work testing Rentian scaling, which
decomposed networks into topological modules using graph partitioning
algorithms (Bassett et al., 2010; Klimm, Bassett, Carlson, & Mucha, 2014;
Bullmore & Sporns, 2012), we decomposed networks into biological mod-
ules based on known functional annotations of nodes. This allowed us to
test whether natural modules designed by evolution exhibited Rentian scal-
ing in the same way that the human design process naturally led to Rentian
scaling of engineered circuits. We find strong evidence in support of Ren-
tian scaling, even when using different definitions of biological module and
different protein interaction data sources for defining molecular networks.
In gene regulatory networks, we also found that Rent’s exponents in em-
bryonic cells are significantly smaller than the exponents in differentiated
cells, indicating that Rentian scaling may provide a useful network feature
for understanding cellular maturation throughout development. We also
find Rentian scaling in functional modules of the C. elegans neural network,
but, interestingly, not in three social networks, implying that information
processing may play a role in producing Rentian structure. Finally, to help
explain how Rentian scaling may have emerged biologically, we derived a
new evolutionary graph model to generate networks with a specified Rent’s
exponent. Overall, our work describes a new principle of how intermodule
edges are distributed within diverse biological networks.

2 Calculating the Rent’s Exponent of a Network

As input, we are provided an undirected network G = (V, E) and a decom-
position of the nodes V into k modules, M = (M1, M2, . . . , Mk), where each
Mi ⊂ V . An individual node can belong to multiple modules, and hence
Mi ∩ Mj �= ∅, necessarily.

To compute the Rent’s exponent p for each network (see Figure 1), we
calculated two numbers for each module Mi: the number of nodes inside
the module (ni), and the total number of external edges (ei) from nodes in
Mi to nodes in other modules. This is straightforward to calculate, except in
the case where modules overlap. For example, if node x ∈ Mi, Mj and node
y ∈ Mj, and if edge (x, y) ∈ E, then for Mi, the edge is counted as external,
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Figure 1: Computing the Rent’s exponent of a network. (Left) The input is a
network and a decomposition of the nodes into modules. Solid and dotted lines
denote internal and external edges, respectively. The orange dotted line is con-
sidered an external edge for module A and an internal edge for module B.
(Middle) Count the number of nodes in each module (n) and the number of
external edges from nodes in that module to nodes in other modules (e). (Right)
Plot n versus e on a log-log scale. If linear, the slope of the line is the Rent’s
exponent.

but for Mj, it is internal since both x and y belong to Mj. We then plot ni

versus ei for all i and test whether the following relationship between the
two variables holds:

e = cnp, (2.1)

where c is an integration constant equal to the average number of external
connections per node.

The significance of this relationship was tested by plotting ni versus ei

for all i on a log-log scale, computing a regression line for the data using
least squares, and then computing the coefficient of determination (R2) for
the line. It is well known that topological and physical Rentian scaling does
not hold for large modules—called “Region II” by the Rent community—
and thus we removed large modules from our analysis (see section A.1 in
the appendix).

If the points fall on a straight line on a log-log plot, the network ex-
hibits Rentian scaling, with an exponent 0 < p ≤ 1. Thus, p = 1 corresponds
to a random arrangement of external connections, with no placement
optimization (i.e., no preference between inter- or intramodule connec-
tions). For digital circuits with a homogeneous layout, the smaller the
value of p, the more efficiently the network is embedded (Christie &
Stroobandt, 2000; Bassett et al., 2010), indicating a preference of economy
over complexity. In functional modules in molecular networks, the embed-
ding can correspond to a diffusion distance for proteins to find their correct
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interaction partners, with smaller values of p indicating a preference for lo-
cal interactions.

Testing Rentian scaling requires a network to be decomposed into mod-
ules (M). Prior work has defined these modules using the topology of the
network (Bassett et al., 2010), for example, by recursively bipartitioning the
network using graph cuts (Karypis, Aggarwal, Kumar, & Shekhar, 1999)
and computing Rent’s exponent using modules at all levels in the hierar-
chy. However, one downside of this approach is that a graph clustering
method needs to be selected, and this method might implicitly bias toward
modules that display Rentian scaling. An alternative approach for networks
that are physically embedded in space is to randomly place randomly sized
“boxes” onto the network; each box corresponds to a module and includes
all the nodes it covers (Yang, Bozorgzadeh, & Sarrafzadeh, 2001; Bassett
et al., 2010). This is also undesirable for us because most proteins diffuse and
do not have fixed positions in space. Here, we depart from both of these ap-
proaches and instead define modules biologically (instead of topologically),
based on the known cellular function of individual nodes. Specifically, a bi-
ological module contains a set of genes or proteins that takes part in the
same biological process within the cell, such as RNA metabolism, protein
methylation, or autophagy. Assigning genes/proteins to modules is largely
done independently from network topology, often based on a battery of
experimental assays, including gene knockout experiments and expression
data on transcript levels in different conditions. These natural modules also
range across many sizes, which is important to test any scaling rule. Crit-
ically, this approach allows us to test whether evolution-defined modules
exhibit Rentian scaling similar to how the human design process naturally
led to Rentian scaling of digital circuits.

2.1 Network Randomization to Test Rentian Scaling. To determine
whether a network’s Rent’s exponent was not due to chance alone, for
each network we compared its empirical Rent’s exponent with three ran-
dom controls. We reason that any given network that follows Rent’s rule
should, if randomized, have a larger Rent’s exponent, as found by Bassett
et al. (2010). We repeated each type of randomization 100 times and then
compared each network’s empirical and random Rent’s exponents using a
one-sample two-tailed t-test. The controls were generated as follows:

1. Random modules. We selected two random nodes u and v and for
each listed the modules they do not share in common. Assuming
these two lists are not empty, we then randomly selected one mod-
ule in each list (call them mu and mv ) with probability proportional
to the size of the module, so that larger modules were more likely
to be randomized. We then moved u into mv and v into mu. This
procedure ensured that module affiliations are randomized, but the
distribution of module sizes remains the same as in the empirical
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network. We swapped nodes
∑

ni times (i.e., the sum of the num-
ber of nodes in every module) and calculated Rent’s exponent with
the new modules. We repeated this procedure 100 times and report
the average Rent’s exponent. The edges remain unchanged for this
control.

2. Random edges. We performed a standard edge-swapping procedure
that preserves the degree distribution: we selected two edges (u, v )
and (x, y) and swapped their end points to create (u, y) and (v, x),
assuming neither of the new edges already exists. We swapped pairs
of edges |E| times, where |E| is the number of edges in the network,
and then computed Rent’s exponent. We repeated this procedure 100
times and report the average Rent’s exponent. The modules remain
unchanged for this control.

3. Random both. We first randomized the modules and then randomized
the edges.

3 An Evolutionary Algorithm to Generate Rentian Networks

Here, our goal is to derive a simple, biologically feasible graph model that
could generate networks that display Rentian scaling. Formally, the prob-
lem is as follows:

Given: A set of nodes V , a decomposition of V into modules M, and a
target Rent’s exponent p

Find: A graph G = (V, E) with Rent’s exponent ≈ p, computed using the
modules M

Our goal is to develop a generative model to define the edges connecting
the given nodes in V . Contrary to most generative graph models (Leskovec,
Kleinberg, & Faloutsos, 2005; Barabási & Albert, 1999; Watts & Strogatz,
1998; Vázquez, Flammini, Maritan, & Vespignani, 2003) and prior work
in Rentian scaling (Klimm et al., 2014), our problem formulation includes
a module decomposition as input used to compute Rent’s exponent. The
modules are used as input so that we can use the same decomposition and
target Rent’s exponent of any empirical network, which ensures that a so-
lution exists and allows for a direct comparison between the synthetic and
real networks.

Duplication-divergence represents one common biological mechanism
used to evolve molecular networks. Below, we describe a standard model
for this process (called DMC) followed by our extension of this model
(called DSC) that uses the same duplication principle but better captures
Rentian properties of biological networks. We generated an ensemble of
100 DMC and 32 DSC networks. We generated only 32 DSC networks be-
cause of the time required to generate networks with an extra parameter
(namely, qfav). We then generated 100 DSC networks for the best parameter
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Figure 2: Duplication-specialization with complementarity (DSC) model. (Left)
To initialize, we connect two random nodes in each module; some nodes may
be chosen more than once because modules overlap. (Right) Step 1: We select a
“new” node u (green) and an “anchor” node v (blue) from which u duplicates.
With probability qfav, the anchor node is selected from a module shared with
u. Step 2: Neighbors of v are copied onto u. Step 3: For each common neigh-
bor x, with probability 1 − qmod, both edges (u, x) and (v, x) are retained; with
probability qmod, (u, x) is deleted if u and x share fewer modules than v and x,
or vice versa. Step 4: The two duplicated nodes are connected with probability
qcon. This procedure is repeated until all nodes join the network.

combination for each species in order to better compare the DMC and DSC
networks. The results we describe are averages over the ensemble.

3.1 The Duplication-Mutation with Complementarity Model (DMC).
In this model (Vázquez et al., 2003), an existing gene (node u) duplicates
to initially form a topologically equivalent node (v). Then their set of com-
mon interaction partners diverges, indicating subspecialization of the two
genes. These two processes, duplication and divergence, are controlled by
two parameters: qmod and qcon. Specifically, after each duplication step, each
common neighbor x of u and v is retained independently by both u and v
with probability 1 − qmod; with probability qmod, either (u, x) or (v, x) is re-
moved, with equal probability. Then, with probability qcon, an edge (u, v ) is
added between the duplicates. This model has been extensively validated
in terms of its ability to reproduce many known topological features of pro-
tein interaction networks (Middendorf, Ziv, & Wiggins, 2005; Navlakha &
Kingsford, 2011; Navlakha, Faloutsos, & Bar-Joseph, 2015), yet it does not
use or incorporate any module decomposition in its growth procedure.

In each step of the model, we choose one random unconnected node (u,
the “new” node) and a random node that already joined the network (v , the
“anchor” node), and copy v to u by applying the DMC procedure described
above. We iterated this process until all nodes joined the network.

3.2 The Duplication-Specialization with Complementarity Model
(DSC). To directly incorporate the module decomposition into the growth
procedure, we created the DSC model (see Figure 2). This model differs
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from DMC in two ways:

1. We introduced a module-aware parameter, qfav, used in the duplication step.
With probability qfav, the anchor node v is selected randomly from a
module in which the new node u lies (instead of randomly from the
entire network in DMC). This is motivated by the biological obser-
vation that duplicated nodes retain some functional association with
their ancestral node (Wagner, 2001; Pereira-Leal & Teichmann, 2005);
qfav allows us to model this variability. Due to module overlap, even
if qfav = 1, there may still be external edges between modules.

2. We modified the divergence procedure. If an edge to neighbor x is cho-
sen to diverge, then instead of randomly selecting which edge (u, x)
or (v, x) to delete, we deterministically delete the edge depending
on which node (u or v) has fewer modules in common with x. In
other words, if u and x have fewer modules in common than v and
x, then edge (u, x) is deleted. This represents the specialization of
duplicated proteins observed by Nasvall, Sun, Roth, and Andersson
(2012) and agrees with the observation by Zinman, Zhong, and Bar-
Joseph (2011) that interactions between proteins in the same module
are more likely to be conserved than interactions between proteins in
different modules. Thus, when choosing which edge will diverge, the
DSC model takes into account the module overlap with the neighbor
in question, whereas DMC merely flips a coin.

An illustration of the DSC model is shown in Figure 2. Pseudocode of
the model is shown in algorithm 1.

4 Results

First, we asked if three classes of biological networks (molecular, gene regu-
latory, and neural) and two classes of nonbiological networks (information
and social) exhibit Rentian scaling. Second, we evaluated the ability of two
generative graph models (DMC and DSC) to recapitulate Rentian proper-
ties for the biological networks studied.

4.1 Molecular Networks Demonstrate Rentian Scaling. We collected
protein-protein interaction (PPI) networks for six species from BioGRID
(Stark et al., 2006; see the appendix): Drosophila melanogaster (fly), Homo sapi-
ens (human), Mus musculus (mouse), Arabidopsis thaliana (plant), Schizosac-
charomyces pombe (fission yeast), and Saccharomyces cerevisiae (baker’s yeast).
We assigned each protein in the network to modules based on the protein’s
known annotations under the Biological Process ontology in the Gene On-
tology database (GO; Ashburner et al., 2000). Each module represents a bio-
logical process; all proteins annotated to that biological process are assigned
to the module. These annotations are largely determined using biological
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Figure 3: Molecular networks exhibit Rentian scaling. Rent’s exponents for pro-
tein interaction networks of six species with REVIGO cutoff of 0.7. The x-axis
is the log of the number of nodes (n), and the y-axis is the log of the number
of external edges (e) from that module to other modules. All networks display
Rentian scaling, with the Rent’s exponent p shown in the legend.

assays, such as gene knockout experiments, that did not include network
topology as a criteria.

To test Rent’s rule for modules over a range of sizes, we selected nonre-
dundant GO annotations from all levels of the GO hierarchy using REVIGO
(Supek, Bosnjak, Skunca, & Smuc, 2011). REVIGO uses a clustering algo-
rithm to find one GO annotation (module) that represents many semanti-
cally similar GO annotations. Semantic similarity accounts for how close
a pair of GO annotations is to its lowest common ancestor in the GO hi-
erarchy (Schlicker, Domingues, Rahnenfuhrer, & Lengauer, 2006). A user-
defined cutoff parameter can be used to vary the number and semantic
overlap of annotations. The resulting sizes of modules varied by an order
of magnitude, for example, from 174 to 1803 nodes per module for M. mus-
culus at a REVIGO cutoff of 0.7. There was also significant module overlap
(pleiotropy), with nodes belonging to an average of 12.5 modules (S. pombe)
to 35.8 modules (M. musculus), with the other species lying in between.

We found that all six PPI networks displayed Rentian scaling—each
least-squares regression line achieved an R2 > 0.75—with Rent’s exponents
ranging from 0.591 for mouse to 0.860 for human (see Figure 3). This means
that as modules contain more nodes, they have more external connections
in accordance with a power law, indicating that a single scaling rule can
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capture the distribution of intermodule connections for modules of many
sizes.

We also found a strong positive correlation between the number of edges
in the network and the Rent’s exponent (R = 0.80, over all species), suggest-
ing that larger networks tend to increase cross-module communication, as
opposed to increasing intramodularity. Moreover, all randomized controls
produced Rent’s values that were significantly higher than the empirical
Rent’s exponent observed for the real network (see Table 1). Randomizing
both edges and modules consistently produced networks with larger Rent’s
exponents than randomizing either modules or edges alone (see Table 1).
There was, however, no clear pattern when comparing Rent’s exponents
when we randomize either edges or modules; in half the species, the for-
mer produced lower Rent’s exponents, whereas the opposite was true in the
other species. While some of these differences may appear small, they are
differences in log-space, and they mimic the range of differences observed
in prior Rentian analysis of brain networks (Bassett et al., 2010).

4.1.1 Robustness to Different Module Decompositions. We tested the robust-
ness of this observation in two ways. First, we varied the cutoff parameter in
REVIGO to generate module decompositions with fewer (cutoff = 0.5) and
greater (cutoff = 0.9) numbers of modules. In both cases, we observed sim-
ilar Rent’s exponents for each species, which continued to be significantly
lower than randomized controls (see Table 1). Rent’s exponents generally
increased as the number of modules increased for all species.

Second, we assigned proteins to all modules in the entire GO Biologi-
cal Process hierarchy (we kept semantically redundant modules) using the
GoTermFinder tool (Boyle et al., 2004). This increased the range of module
sizes to over four orders of magnitude, and it produced even more highly
overlapping modules; for example, each node belonged to an average of
41.3 modules in S. pombe and 106.7 modules in M. musculus. This extensive
amount of module overlap increased the number of cross-module connec-
tions; thus, all Rent’s exponents increased, but we still observed Rentian
scaling over separate hierarchical levels of every PPI network (see Table 4
and Figure 7 in the appendix).

These tests together demonstrate that Rentian scaling in PPIs is robust to
different definitions of a module and extent of module overlap.

4.1.2 Robustness to Different Data Sources. Protein interaction networks
are notoriously noisy and incomplete (Bader, Chaudhuri, Rothberg, &
Chant, 2004; Huang & Bader, 2009), affecting the conclusions that can be
drawn from their analyses. To generate an alternative set of interactions, we
used the STRING database, which collects interactions over a broader range
of data sources (Szklarczyk et al., 2015; see also the appendix). We consid-
ered physical “binding interactions” only with a confidence score greater
than 700 to minimize noise. We again used REVIGO at three different
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cutoffs to define modules and found that these networks continued to dis-
play Rentian scaling (see Table 5 in the appendix), further suggesting that
Rentian scaling is a robust and conserved property of PPI networks. Of
note, when the STRING database is used, the human PPI network has a
much lower R2 value compared to other species and compared to the full
human PPI network (see Table 1). This discrepancy may be due to the sub-
stantially fewer nodes in the high-confidence STRING human PPI network
(∼3300) versus in the full human PPI network (∼9600). This reduction sug-
gests that there are many human PPIs yet to be mapped at a high-confidence
level, leaving the network more incomplete compared to other species. It
could also suggest that human PPI networks simply do not exhibit Rentian
scaling.

4.1.3 Comparison of Rent’s Exponents Using Functional versus Topological
Modules. Conventional analyses have used topological modules instead of
functional modules to derive Rent’s exponents. Here, we compared the ex-
ponents generated by the two approaches. To derive topological modules,
we used hMetis (Bassett et al., 2010; Karypis et al., 1999), which recursively
bipartitions the graph to minimize the number of edges between partitions.
This procedure resulted in 11 to 13 hierarchical levels of partitions across the
different PPI networks. The average number of nodes and external degrees
in a partition at a given hierarchical level were plotted on a log-log scale,
and the slope of the line was defined as the topological Rent’s exponent.
The Rent’s exponents ranged from 0.74 to 1.04 for mouse and human, re-
spectively, and the R2 values ranged from 0.25 to 0.85 for human and fission
yeast, respectively (see Table 3 in the appendix). The Rent’s exponents from
the topological modules were always larger than those for the functional
modules at all Revigo cutoff values and for every species, which implies
more random wiring in the topological modules. Further, in five out of six
networks, the fits were poorer. Thus, Rentian scaling in PPIs seems to be
better defined using functional, not topological, modules.

The differences in Rent’s exponents observed between topological mod-
ules and functional modules could be attributed to several factors. First,
there are numerous graph-theoretic algorithms to partition networks, and
it is not clear which definition of topological module makes the most biological
sense. While hMetis is commonly used in the Rent community, recent work
has shown that the Markov clustering algorithm (Enright, Van Dongen, &
Ouzounis, 2002; Brohee & van Helden, 2006) and graph-summarization-
based approaches (Navlakha et al., 2009) produce the highest correlation
between topological and functional modules in PPI networks useful for
protein function prediction. These methods, however, do not return hier-
archical modules, which is important in order to test Rentian scaling across
scales. Second, PPI networks are notoriously noisy, with many spurious in-
teractions and false negatives that obfuscate the true modules. Thus, we
focused our study here on more ground-truth modules, based on known
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functional annotations. There are also some limitations in using functional
modules (see section A.2).

4.2 Analysis of Cell-Type Specific Regulatory Networks. We collected
cell-type-specific regulatory interactions for 41 human and 25 mouse cell
lines (Neph et al., 2012; Stergachis et al., 2014) to test if Rentian scaling also
appears in transcriptional networks. Nodes in these networks correspond to
genes, and an edge exists between two genes if one regulates the transcrip-
tion of the other. Each of the 66 networks contained interactions that occur
within only one specific cell type (e.g., fetal brain, hepatoblastoma, and em-
bryonic stem cells). Using REVIGO-defined modules, we found that all cell-
type-specific networks displayed Rentian scaling, with exponents ranging
from 0.795 to 0.937 (mouse; see Table 6 in the appendix) and 0.843 to 0.921
(human; see Table 7 in the appendix). The largest of the Rent’s exponents
were attributed to immune and cancer cells.

We also found that embryonic stem cells (ESCs) had significantly lower
Rent’s exponents than differentiated cells in both species (see Figure 4).
Unlike the PPI networks, where more interactions correlated with signif-
icantly higher Rent’s exponents, the opposite was true here: ESCs con-
tained more interactions than other cell types (17, 883 ± 3518 for ESCs
versus 14, 810 ± 3522 for differentiated cells in mouse) yet had lower Rent’s
exponents (see Figure 4). This suggests that as a cell develops and defines
its functional identity, its Rent’s exponent increases by eliminating more in-
tramodule edges than intermodule edges. Thus, one signature of cellular
differentiation may be changes in the distribution of intermodule connec-
tions, from less to more intermodule cross-talk as the cell matures, an ob-
servation consistent with the balanced lineage specifier hypothesis (Loh &
Lim, 2011).

4.3 Analysis of Neural, Social, and Information Networks. Next, we
tested the generality of Rent’s rule when applied to topology-independent
module decompositions of other biological (neural) and nonbiological (so-
cial, information) networks.

Prior work has analyzed the Rentian properties of the C. elegans neu-
ral network (Bassett et al., 2010); however, here we applied a Rentian
analysis based on a module decomposition defined by known functional
annotations of neurons, as opposed to defining modules using a graph par-
titioning algorithm, as was previously done. Specifically, we obtained the
neural network for C. elegans from WormAtlas (Varshney, Chen, Paniagua,
Hall, & Chklovskii, 2011) and decomposed this network into eight natural
modules, where each module contained neurons with the same function
(Varshney et al., 2011). These functions were chemosensation, mechanosen-
sation, nociception, thermosensation, proprioception, sensation of oxygen,
olfaction, and motion. We found that the network displayed Rentian scal-
ing (R2 = 0.97), with a Rent’s exponent of 0.859 (see Figure 5a), which was
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Figure 4: Embryonic stem cells (ESCs) exhibit a lower Rent’s exponent than dif-
ferentiated cells. The average Rent’s exponent for ESCs was lower than that of
mature cells in both mice and humans. Bars are standard error of the mean,
and circles are the Rent’s exponents for individual cell lines with modules de-
fined by REVIGO at three cutoffs. The three different colors for the circles de-
note the three Revigo cutoffs (red = 0.5, blue = 0.7, yellow = 0.9). Differences
in Rent’s exponents between ESCs and non-ESCs in a given species are statisti-
cally significant across all Revigo values (p < 0.01, two-sample two-tailed t-test)
and within individual cutoffs (p < 0.01, two-sample Kolmogorov-Smirnov test
for mouse at Revigo values of 0.5, two-sample two-tailed t-tests for mouse at
REVIGO values of 0.7 and 0.9, and one-sample two-tailed t-tests for human be-
cause the latter had just one ESC line).

Figure 5: The C. elegans neural network displays Rentian scaling, but the Ama-
zon product network does not. The R2 for the worm neural network was 0.97;
for the Amazon network, it was 0.11.
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smaller than randomized controls (see Table 1). This exponent suggests two
things. First, neural circuits have some preference for short-range over long-
range connections, as supported by the wiring economy principle (Ramón
y Cajal, 1899; Chklovskii, Schikorski, & Stevens, 2002; Rivera-Alba, Peng,
de Polavieja, & Chklovskii, 2014), which states that wire is a commodity in
space- and resource-constrained neural circuits (as in digital circuits). Sec-
ond, due to the relatively high exponent, there is some deviation from this
principle, as may be expected since intermodule connections are needed to
integrate data from multiple neural types to determine appropriate behav-
ioral responses (Perez-Escudero & de Polavieja, 2007). Prior work found a
lower Rent’s exponent (0.74) when computed using random partitions in a
physical placement of the neurons (Bassett et al., 2010). Thus, Rentian scal-
ing appears robust, but the exponent is sensitive to the choice of module
decomposition.

We then tested Rentian scaling on three social and information networks
with ground-truth modules (Yang and Leskovec, 2015; Mislove, Marcon,
Gummadi, Druschel, & Bhattacharjee, 2007). In the Amazon network, prod-
ucts (nodes) were linked to other products that were purchased together
(edges). The modules represented groups of at least three products that
share a common function, ascribed using predefined product categories
(Yang & Leskovec, 2015). The Amazon network did not display Rentian
scaling, as the log-log regression was not a straight line (R2 = 0.11; see Fig-
ure 5b). We also tested the DBLP collaborations network and YouTube social
groups network (see the appendix), and found that neither exhibited Ren-
tian scaling.

Together, these results suggest that Rentian scaling is not an inevitable
consequence of any network developmental process. Further, many classes
of random networks also do not exhibit Rentian behavior (Stroobandt, 2007;
Klimm et al., 2014). One hypothesis, then, is that Rentian scaling may be
unique to information processing networks (e.g., digital circuits on a com-
puter chip or biological circuits) and is derived implicitly by some general
growth process, which we investigate next.

4.4 A Random Graph Model to Recapitulate Rentian Properties of
Networks. The fact that Rentian scaling is found in molecular and cellu-
lar networks of several species and cell types indicates that this property
may be a consequence of a common evolutionary process. We first tested
whether a popular, existing generative graph model (DMC) could form net-
works that exhibit Rentian scaling while agnostic to the module decomposi-
tion. Overall, we found that DMC mostly failed in generating the empirical
Rent’s exponents of PPI networks, whereas our extended model (DSC) per-
formed better, as described below. The DMC and DSC models are described
in section 3.

To test each model’s ability to generate Rentian networks, we used as
input to the model the same set of nodes and their module decomposition
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from each PPI network, separately. The challenge was to recapitulate the
Rentian properties for each PPI network by defining the edges. The syn-
thetic, model-generated network “succeeded” in this regard if it: (A) it had
a Rent’s exponent within 0.04 of the empirical value; (B) contained within
10% of the number of edges as the empirical network; and (C) had a similar
distribution of external edges per node as the empirical network. Attempt-
ing to lower the error rate of measure B resulted in an inability to match
Rent’s exponents for some networks; thus, more model parameters may be
needed for a tighter fit. We tested all combinations of the three model pa-
rameters (qmod, qcon, qfav; see section 3) with their values ranging from 0.1 to
0.9 in intervals of 0.1. We report the results for the best parameter settings
for each model in terms of measures A and B.

In the analysis of the ensemble, we found that the average DSC Rent’s
exponents were closer to the empirical Rent exponents than the DMC Rent’s
exponents across all species (see Figure 6A). In this figure, we selected the
parameters that generated networks with the closest Rent’s exponent to the
empirical while abiding by the constraint on number of edges. Figure 6B
shows example Rentian plots with the number of external edges averaged
over the entire ensemble (the sizes of the modules remain the same across
the ensemble). In all six species, the DSC model produced networks with
more similar Rent’s exponent and/or more similar number of edges as the
empirical network, compared to DMC-grown networks. For example, when
using the same set of nodes and module decomposition as the fly PPI net-
work (see Table 2), there were 18,952 edges in the empirical network, 17,658
edges in the DSC network, and 19,289 edges in the DMC network. Further-
more, the DMC network had a Rent’s exponent of 0.87, which was further
away from the DSC and empirical networks’ Rent’s exponents of 0.78 and
0.76, respectively.

Interestingly, the parameter settings for DSC that led to successful
networks may highlight the relative roles of duplication and divergence
during evolution. For all parameter values that generated successful
networks (as defined above), qmod = 0.64 ± 0.09, qcon = 0.63 ± 0.23, qfav =
0.53 ± 0.26. Prior studies have determined that qmod = 0.4 and qcon = 0.7
produce networks that closely match other topological properties of the
yeast PPI network (Navlakha & Kingsford, 2011; Navlakha et al., 2015);
these parameters lie roughly within the range of best parameters we found,
which further validates their use here.

We also found that the DSC model better reproduced the degree distri-
bution of the number of external edges per node compared to DMC (see
Table 2). This is a common metric used to evaluate the similarity between
a real network and a synthetic network generated by a model. This mea-
sure (dubbed “homogeneity” by the Rentian community) is a common fea-
ture of digital circuits and suggests that the interconnect complexity of
nodes is similar across modules of different sizes (Christie & Stroobandt,
2000). To quantify the similarity in degree distributions, we calculated the
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Figure 6: The DSC model better recapitulates the Rentian properties of real PPI
networks compared to DMC. (A) Compared to DMC, the DSC model gener-
ates networks with Rent’s exponents closer to the empirical Rent’s exponents
of five PPI networks. Ensembles of networks were generated for each possible
parameter combination for each model. Bars indicate mean Rent’s exponent,
and error bars represent standard deviations over the ensemble. We used the
same nodes and module decomposition of each real PPI network (REVIGO cut-
off of 0.7). (B) Rent plots of networks generated by DMC and DSC (REVIGO
cutoff of 0.7). Empirical data are shown in red, the DSC model is shown in blue,
and the DMC model is shown in yellow. Each dot corresponds to one module.
Ideal performance would be an exact overlap with the red data, indicating the
same number of edges and the same Rent’s exponent as the PPI network. Per-
formance is shown for the best parameters for each model. Overall, the DSC line
is closer than DMC to the empirical line across all species. The Rent’s exponents
(p) and fits (R2) are shown in boxes.
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Kullback-Leibler (KL) divergence to compute the distance between homo-
geneity histograms, from empirical to DSC and from empirical to DMC.
The KL distance from empirical to DSC was smaller than the distance from
empirical to DMC in all species (e.g., 0.018 ± 0.002 versus 0.025 ± 0.003, re-
spectively, for D. melanogaster), except for S. pombe, where the two distances
were nearly identical. This further validates the ability of DSC to reproduce
Rentian properties of real networks compared to DMC. There are numer-
ous other measures used to establish the similarity between two networks
(e.g., motifs, graphlets, random walk distributions, graph spectra). We do
not claim that DSC is the definitive model in this regard; rather, we show
how a simple model based on established biological principles can capture
a new feature (Rentian scaling) that future, more complex models should
attempt to satisfy.

5 Discussion

We provided evidence that the structure of several molecular and cellular
networks studied here is Rentian. While modularity has long been an appre-
ciated facet of molecular networks, we find that these networks are “more
than mere modules” (Pinkert et al., 2010), with significant structure in their
intermodule connectivity. Inspired by theories developed from engineered
digital circuits, we showed that Rentian scaling is a conserved property of
several protein interaction networks and gene regulatory networks across
multiple species and cell types; it also applies to functional modules in the
C. elegans neural network but not to three social or information networks.
Important to our work was testing this theory using module decomposi-
tions that were derived largely independently from network topology and
instead by the underlying biology itself. This allowed us to test whether
evolution converged onto biological modules with Rentian properties.

This power law relationship in module interconnects may aid in other
applications, such as for function prediction tasks (Pinkert et al., 2010) or
for ranking false or missing interactions in the network. Rentian scaling
may also be used as a feature to discriminate between networks, especially
across time. For instance, Sperry, Telesford, Klimm, and Bassett (2017) found
that the present-day London Underground railroad displays Rentian scal-
ing, but it did not in the year 1900. We found that regulatory networks for
embryonic stem cells displayed Rentian scaling but that Rent’s exponents
significantly increased with cellular development. Hence, the emergence of
Rentian scaling, or the increase in Rent’s exponent, may provide another
feature of how networks develop over time (Leskovec et al., 2005). Ren-
tian scaling, however, cannot be trivially explained by changes in network
density. For the PPIs, we found a positive correlation between Rent’s ex-
ponent and network density; however, this relationship did not hold when
PPIs were taken from the STRING database (R = 0.80 and −0.05 for the full
PPIs and those from STRING, respectively). Furthermore, in the regulatory
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networks, there was an inverse correlation between Rent’s exponent and
network density (R = −0.64 and −0.26 for the mouse and human cell lines,
respectively).

While this scaling law was persistent, exact interpretation of the Rent’s
exponent for an individual species may be muddled by the fact that pro-
tein interaction networks are still very noisy and incomplete. Although we
attempted to account for this by studying networks derived from different
data sources, it is difficult to determine whether the “true” Rent’s expo-
nents for these networks are higher or lower than the values derived here.
Erroneous edges would likely count more as intermodule edges than in-
tramodule edges; thus, removing noise may lower Rent’s exponents. On
the other hand, there are likely many missing edges between proteins in
different modules, which might increase Rent’s exponent when mapped.
Our results here can serve as a benchmark for future studies as these net-
works continue to be mapped.

We also provided a new graph model (DSC) to generate graphs with a
desired Rent’s exponent, given a module decomposition. This model may
be useful when designing synthetic biocircuits (Nielsen et al., 2016) or in
other engineered network design applications. If a module decomposition
is not available, one can use common network partitioning algorithms (Bas-
sett et al., 2010), though there is no guarantee that these modules will be rel-
evant to actual biological modules. Thus, an important contribution of this
study is that Rentian scaling is found in networks decomposed into func-
tional, not topological, modules and that the DSC model can build networks
that exhibit Rentian scaling using these modules. While our algorithm re-
quires a module decomposition as input, a more sophisticated generator
would also assign proteins to modules during the growth process. How to
evolve such modularity is an important problem (Kashtan & Alon, 2005;
Clune et al., 2013), but one that we do not consider here.

There may also be multiple mechanisms that can generate networks with
Rentian scaling. The DSC graph model under a duplication model can pro-
duce Rentian networks. On the other hand, neither the London Under-
ground railroad nor digital chips likely evolved using a duplication model,
yet both demonstrate Rentian scaling (Sperry et al., 2017). Thus, while we
posit a biological mechanism, we recognize that other mechanisms can pro-
duce Rentian scaling. Yet not every network growth mechanism generates
Rentian networks. For example, the three social and information networks
we studied likely did not evolve using a duplication model, and neither ex-
hibited Rentian scaling. Thus, future work needs to better understand the
theoretical basis underlying which mechanisms can produce Rentian net-
works and which cannot.

It is possible that mechanisms that produce Rentian networks are those
constrained by a cost-performance trade-off. Proteins, for instance, must in-
teract with specific partners with cognate structural domains. Proteins can
also be sequestered into distinct cellular compartments (e.g., the nucleus),
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which limits the number of proteins with which they may interact.
Neuronal circuits, similarly, are neither completely randomly wired nor
minimally wired (Bassett et al., 2010). A biological network, then, must
determine its topology by balancing cost and performance. Rentian scal-
ing might be a by-product of these various constraints (i.e., a spandrel—
Rubinov, 2016), and not an evolutionary adaptation. This would be con-
sistent with our finding that Rentian scaling is absent in three social and
information networks, where the cost of making edges across any distance
within the graph is likely to be much lower than in biological networks.
Future work needs to provide a better theoretical basis for this observation.

Finally, how do the Rent’s exponents calculated here compare with those
observed in digital (e.g., VLSI) circuits? Mid- and large-sized circuits, taken
from circuit repositories from the Microelectronics Center of North Car-
olina and IBM-PLACE (Alpert, 1998), display Rentian scaling with expo-
nents ranging from 0.449 to 0.648 (Yang et al., 2001; Karypis et al., 1999).
Another benchmark VLSI circuit, the ISCAS89 s953, had a higher Rent’s ex-
ponent of 0.730 (Bassett et al., 2010). Overall, these computer circuits have
Rent’s exponents that are typically smaller than that of the PPI networks
studied here. It has been observed that more recent complex circuits have
higher Rent values compared to older designs (Bassett et al., 2010). We also
observed that the Rent’s exponent for the most complex organism studied,
H. sapiens, was larger than that of the other species (see Table 1), though this
may be coincidental.

Overall, the fact that both evolution and the human design process pro-
duced Rentian circuits suggests another close correspondence between bio-
logical and engineered networks (Navlakha & Bar-Joseph, 2011; Del Vecchio
et al., 2016).

Appendix: Supplemental Methods and Results

A.1 Additional Technical Details. Following Bassett et al. (2010), we
removed modules that contained more than N/2 nodes, where N equals the
number of nodes in the network, in order to avoid the Region II boundary
effects of Rentian plots, where a single module contains most of the nodes
in a network. We also excluded nodes that appeared solely in these larger
modules. This Region II has been observed in physical and topological par-
titions for a network (Christie & Stroobandt, 2000), and in VLSI chips, it
refers to the fact that there is a limited number of input-output terminals
at the boundary of the chip (Landman & Russo, 1971; Bassett et al., 2010).
Nonetheless, it is clear from Figures 3, 7, and 8 that a lower threshold may be
needed, as there still appears to be a plateau or turning down of the scaling
relationship for modules with a large number of nodes.

In all randomization procedures, we fixed c (the average number of
external connections per node) to the value found in the corresponding
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empirical network; otherwise, the change in slope was masked by a change
in this value.

A.2 Methodological Limitations. One novelty of this study is that we
use functional, not topological, modules to partition the networks we stud-
ied. This approach, however, comes with some limitations. First, graph par-
titioning approaches used previously (e.g., hMetis used by Bassett et al.,
2010) can be used to study modules over different scales of the topological
hierarchy that allow one to study fractal and other forms of scaling (Song,
Havlin, & Makse, 2005). We studied a functional hierarchy; in the Gene On-
tology, we find modules that vary over one to two orders of magnitude,
with larger modules corresponding to broader biological processes (e.g.,
cellular physiological process) and smaller sized modules corresponding to
more specific processes (e.g., pyrimidine metabolic process). The Gene On-
tology, however, is not structured as a tree but rather as a directed acyclic
graph, which does not provide clear distinctions between levels. Further-
more, there has been extensive prior work in developing graph partitioning
methods to extract topological modules from protein interaction networks
that can be used to predict protein function (Brohee & van Helden, 2006;
Navlakha et al., 2009; Song & Singh, 2009; Sharan et al., 2007); however,
success largely depends on the partitioning algorithm used. Thus, it may
be difficult to compare insights from topological and functional analyses.
Second, nodes (e.g., proteins) in our networks do not have fixed positions
in physical space, but rather diffuse more broadly in cellular components.
These compartments do provide a coarse physical embedding of nodes, but
the embedding is within a limited physical region as opposed to a static
position. Thus, further work is needed to relate Rent’s exponents to typi-
cal notions of wiring economy and embedding when proteins can diffuse
within limited physical regions. Third, Rentian scaling was originally devel-
oped to study nonoverlapping logic blocks (modules); in using functional
modules, a node can be assigned to many modules, which may modify the
interpretation of Rent’s exponent. Fourth, the networks studied here are bi-
nary, whereas many biological networks also have weights indicating the
strength or the confidence of interactions.

A.3 Code and Data Availability. All code and data, in both raw
and processed form, are available online at https://github.com/javierhow
/Rentian-Scaling-NECO-2018.

A.4 Data Sets

A.4.1 Protein interaction networks. We downloaded protein-protein inter-
actions (PPIs) from BioGRID version 3.4.141 for six species: M. musculus,
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S. pombe, H. sapiens, A. thaliana, D. melanogaster, and S. cerevisiae (Stark et al.,
2006). We removed all interactions that were genetic, between genes in dif-
ferent organisms, or found using AffinityCapture RNA or Protein-RNA
assays. We annotated each protein to all significantly enriched Biological
Process GO terms using GOTermFinder (Boyle et al., 2004). We excluded
annotations that were inferred electronically (IEA annotations). We set a
p-value cutoff of 1 to find all associated GO terms for each protein (Boyle
et al., 2004). The items on the list of GO terms and their associated p-values
were then supplied to REVIGO to group GO terms into semantic clusters,
which allowed us to exclude overly redundant modules (Supek et al., 2011).
We used three values for the semantic cutoff parameter in REVIGO—0.5,
0.7, and 0.9—in order to test the robustness of our analysis against mod-
ules of varying sizes and degrees of overlap. When we did not use RE-
VIGO, for computing the Rent plots, we averaged the number of exter-
nal edges for every module of the same size, as done before (Stroobandt,
1998).

We also analyzed Rentian scaling in PPIs from the STRING database
v10, which collects interactions from several sources and assigns each one
a confidence score (Szklarczyk et al., 2015). We kept only interactions that
were annotated as “binding” (physical interactions) and had a score greater
than or equal to 700 (high confidence). We used FlyBase version FB2016_05
to convert the protein IDs for D. melanogaster from the format used by
STRING to one usable by GOTermFinder (Attrill et al., 2016). We used
bioDBnet’s db2db tool to convert the proteins IDs for H. sapiens and M. mus-
culus from their Ensembl Protein ID format to Gene Symbol, which could
be used in GOTermFinder (Mudunuri, Che, Yi, & Stephens, 2009). We also
removed proteins that began with “LOC” and picked the first Gene Sym-
bol when several were provided for one Ensembl Protein ID. We then used
GOTermFinder to annotate the nodes, and REVIGO at three different cut-
offs to reduce semantic redundancy.

A.4.2 Social and Information Networks. The Amazon network was de-
scribed in the main text. The DBLP network represented scientific collab-
orations between authors (nodes) who have coauthored a paper (edges).
Here, publication venues (conferences) serve as the modules (communi-
ties). These modules are highly overlapping (Yang & Leskovec, 2015), much
like the PPI networks, and yet they fail to display Rentian scaling. The
YouTube social network was taken from January 2007, where users (nodes)
were connected to other users they were friends with (edges). Modules in
this network were user-defined groups. For all three networks, only the
top 5000 highest-quality modules were used, where each module was as-
signed a score that corresponded to an average of four goodness metrics
that mathematically describe how module-like it was (Yang & Leskovec,
2015).
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Table 3: PPIs for Six Species Using Topological Modules Display Poorer Rentian
Scaling.

Species REVIGO Rent Exponent R2

Fly 0.5 0.907 0.78
0.7 0.882 0.77
0.9 0.869 0.91

Human 0.5 0.826 0.34
0.7 1.039 0.25
0.9 0.943 0.24

Mouse 0.5 0.679 0.98
0.7 0.744 0.77
0.9 0.915 0.87

Plant 0.5 0.745 0.80
0.7 0.753 0.83
0.9 0.816 0.72

Fission Yeast 0.5 0.667 0.85
0.7 0.844 0.85
0.9 0.857 0.84

Baker’s Yeast 0.5 0.726 0.67
0.7 0.964 0.61
0.9 0.906 0.78

Note: All Rent’s exponents are larger and R2 fits
are poorer from topological modules derived from
hMetis (v.1.5.3) compared to those derived using
functional modules (except for Fission Yeast, where
the fit is higher with topological modules).

A.5 Rentian Scaling Using Topological Modules. Table 3 shows the
Rent’s exponents for modules derived from topological partitions using
hMetis.

A.6 Rentian Scaling Using GoTermFinder. Table 4 and Figure 7
show Rentian scaling for all six species using modules defined with
GoTermFinder (Boyle et al., 2004).

A.7 Rentian Scaling Using STRING Protein Interactions. Table 5
shows the Rent analysis for PPIs of all six species using high-confidence
protein-protein interactions from the STRINGv10 database interactions
(Szklarczyk et al., 2015). Figure 8 shows Rent plots for a REVIGO cutoff
of 0.7. “High confidence” was defined as having a STRING score ≥ 700.

A.8 Analysis of Cell-Type-Specific Regulatory Networks. Tables 6
and 7 show the Rentian analysis for all the mouse and human cell-type spe-
cific regulatory networks.
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Figure 7: Rentian scaling using GOTermFinder. PPIs from six species display
Rentian scaling, even when using overlapping modules defined by several
thousand GO terms.

Figure 8: Rentian scaling using STRING. PPIs from six species display Rentian
scaling, even when using the high-confidence networks with a score greater
than or equal to 700 from the STRING database and a REVIGO cutoff of 0.7.
Note the low R2 for the Human network, which may be due to many missing
proteins and interactions when compared to the BioGRID network.
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