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The stochastic motions of a diffusing particle contain information concerning the particle’s interactions
with binding partners and with its local environment. However, an accurate determination of the underlying
diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories
on an individual basis. Here, we introduce the maximum-likelihood estimator (MLE) for confined diffusion
and fractional Brownian motion. We demonstrate that this MLE yields improved estimation over traditional
mean-square displacement analyses. We also introduce a model selection scheme (that we call mleBIC)
that classifies individual trajectories to a given diffusion mode. We demonstrate the statistical limitations
of classification via mleBIC using simulated data. To overcome these limitations, we introduce a version
of perturbation expectation-maximization (pEMv2), which simultaneously analyzes a collection of particle
trajectories to uncover the system of interactions that give rise to unique normal and/or non-normal diffusive
states within the population. We test and evaluate the performance of pEMv2 on various sets of simulated particle
trajectories, which transition among several modes of normal and non-normal diffusion, highlighting the key
considerations for employing this analysis methodology.
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I. INTRODUCTION

Single-particle tracking (SPT) provides the ability to probe
noninvasively at subdiffraction-limit resolution the spatiotem-
poral motions of individual fluorescently labeled proteins
(FPs) inside living cells. Because the different interactions
that a FP undergoes inside a cell give rise to different types of
diffusive motion, SPT data encode each FP’s interactions with
other particles and with its local environment: Biochemical
binding interactions can lead to different diffusivities if the FP
can bind to different substrates [1], while interactions with the
cellular medium can give rise to anomalous diffusion [2–4]
or can lead to confined motions [5,6]. Thus, important goals
of SPT measurements are (i) to infer these interactions from
an analysis of protein trajectories, and (ii) to determine the
spatiotemporal kinetics of each interaction.

To uncover the desired information, we must infer from the
observed protein trajectories the number of unique diffusive
states, each state’s diffusion mode, and its diffusion properties,
along with which portions of each trajectory correspond to
a given diffusive state. Successfully accomplishing this task
would allow for the determination of the underlying transition
kinetics and the spatiotemporal locations of particular diffusive
states and their transitions within the cell.

Previous work [7–16] that seeks to assess dynamic het-
erogeneity in tracking data has been reviewed by us in
Ref. [17]. The traditional approach for analyzing the diffusive
properties of individual particle trajectories is by fitting
each trajectory’s time-averaged mean-square displacement
(taMSD) to a corresponding diffusion model [18]. However,
the way in which the taMSD is usually calculated results in a
statistically complex representation of the underlying diffusion
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process, especially for short trajectories (see the Supplemental
Material [19]), rendering the taMSD unreliable. Thus, an
unweighted least-squares regression against the taMSD yields
a statistically inefficient estimation of the diffusion model
parameters. Improved estimation can be achieved by analyzing
longer trajectories, albeit the same interaction must persist
throughout the duration of the trajectory, which is an increas-
ingly unlikely condition in the complex environment inside
living cells. Alternatively, ensemble-averaging taMSD curves
across particle trajectories, which share the same underlying
diffusive properties, are another route for bolstering the
statistics and thus better representing the underlying diffusive
behavior. However, because the diffusive properties of each
trajectory are not known a priori, how to sort trajectories into
groups that share diffusive properties, and therefore may be
averaged together, is not straightforward.

Because of the drawbacks of taMSD analysis, a num-
ber of alternatives have emerged for determining diffu-
sion parameters, namely the maximum-likelihood estimator
(MLE) [20], optimal least-squares fitting (OLSF) [21], and
the covariance-based estimator (CVE) [22]. These approaches
have demonstrated improved estimation in comparison with
traditional taMSD analysis. Importantly, however, to date these
approaches, which do properly account for localization noise
sources, have only been shown to be applicable to particle
trajectories undergoing normal diffusion.

Recently, systems-level analyses, namely variational
Bayes single-particle tracking (vbSPT) [1] and perturbation
expectation-maximization (pEM) [17], have demonstrated
that the limited statistics of individual particle trajectories
can be augmented by simultaneously analyzing a population
of particle trajectories to uncover the number of unique
diffusive states and their corresponding diffusive properties.
However, both of these methods have their own limitations.
While vbSPT allows for transitions between different diffusive

2470-0045/2016/94(5)/052412(15) 052412-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.052412


PETER K. KOO AND SIMON G. J. MOCHRIE PHYSICAL REVIEW E 94, 052412 (2016)

states, it fails to properly account for experimental noise
sources, compromising vbSPT’s ability to reliably extract the
correct number of diffusive states and each state’s diffusive
properties in some situations [17]. On the other hand, while
pEM properly accounts for experimental noise sources, it
assumes that diffusive properties are constant throughout
the duration of each trajectory. Thus, pEM is only suitable
to analyze particle tracks sampled at sufficiently short time
scales that transitions between different diffusive states may
be neglected. In addition, both methods make a short-
time diffusion approximation, thereby effectively assuming
that every particle trajectory undergoes normal diffusion. In
fact, however, diffusing proteins interact with the complex
environment in living cells, which can lead to non-normal
diffusive behavior, including, for example, confined diffusion
within focal adhesions [6] and membrane corals [5], in which
a labeled protein is tethered to a particular fixed location
within a cell, and subdiffusive behavior in the bacterial
cytoplasm [2–4], which may be the result of the complex
viscoelastic properties of this medium [2]. Thus, the short-
time diffusion approximation made by pEM and vbSPT
does not necessarily hold on experimentally relevant time
scales.

In the present paper, we present an overall methodol-
ogy comprising a number of advances that overcome these
limitations: First, we extend Berglund’s MLE framework
to determine the diffusion parameters for canonical modes
of non-normal diffusion, namely confined diffusion and
fractional Brownian motion (fBm). Second, we introduce a
model selection scheme, that we term mleBIC, which classifies
individual trajectories to a given diffusion model. Third, we
extend the pEM framework to be able to uncover non-normal
diffusion modes and transitions between different diffusive
states within particle trajectories. We also give empirical
guidelines for the sort of data likely to be necessary to
successfully apply our methodology.

Specifically, in Sec. II A, we demonstrate the improved
performance of MLE against traditional taMSD analysis on
various sets of simulated particle trajectories undergoing
non-normal diffusion across a wide parameter spectrum. Since
the diffusion mode of each experimental particle track is not
known a priori, in Sec. II B we introduce a model selection
scheme, based on the Bayesian information criterion (BIC),
that we call mleBIC, for classifying individual trajectories to
a given diffusion model. By applying mleBIC to synthetic
trajectories undergoing various modes of non-normal diffu-
sion, both without and with localization noise, we illustrate,
by example, the statistical limits of mleBIC’s classification.
In general, we find that, even though MLE estimation is quite
reliable for determining diffusion parameters, classification
to determine the correct underlying diffusion model depends
strongly on the length of the trajectory, and it is only accurate
for sufficiently long trajectories. Moreover, resolving the level
of heterogeneity within a population of trajectories that realize
different diffusion modes remains challenging. Consequently,
the SPT analysis goals defined above—specifically, uncov-
ering the number of diffusive states and their properties
and transitions—cannot generally and reliably be achieved
from an analysis that treats individual particle trajectories
independently.

Therefore, in Sec. II C, we turn to a systems-level
analysis: We present a major extension of the pEM framework,
that we call pEM version 2 (pEMv2 [23]), that seeks to
uncover the system of diffusive behaviors arising from distinct
physical interactions by (i) identifying the number of unique
diffusive states (normal or non-normal diffusion modes), (ii)
determining the diffusive properties of each diffusive state, and
(iii) classifying individual trajectories to particular diffusive
states to reveal the spatiotemporal dynamics of each diffusive
behavior in reference to the cell. In addition to now being appli-
cable to non-normal modes of diffusion, importantly, pEMv2
eases the other important constraint on pEM, namely that the
diffusive state remain the same throughout the trajectory. It
accomplishes this by splitting long trajectories into equally
sized bins of smaller trajectories, thus enabling transitions
between different diffusive states to be accounted for. We test
the performance of pEMv2 on various sets of synthetic particle
trajectories to gain better intuition concerning its capabilities
and limitations in reference to the free parameters in the
analysis. We show that in many cases, pEMv2 is indeed able to
uncover and characterize normal/non-normal diffusion modes
and the transitions between them. Thus, pEMv2 represents
a powerful analysis tool for accurately characterizing the
interactions of diffusing proteins in live cells, and it brings us
a major step closer to being able to understand spatiotemporal
biochemistry inside living cells via SPT.

II. RESULTS AND DISCUSSION

A. Maximum-likelihood framework

The one-dimensional (1D) stochastic increments of a
diffusing particle undergoing a stationary Gaussian process
are given according to [25]

x(i + 1) = x(i) + �(i,j )1/2W (j ), (1)

where x(i) is the x coordinate of the particle’s position at
time step i, W (j ) is a standard Brownian motion with the
properties 〈W (j )〉 = 0 and 〈W (i),W (j )〉 = δi,j , where δi,j is
the Kronecker delta, and �(i,j ) is the covariance matrix of the
particle’s x-displacements at time steps i and j . Equation (1)
employs the Einstein summation convention in which a sum
over j is implied. Throughout this paper, we use parentheses
to indicate the elements of a vector or matrix. Additional
dimensions, such as a track index, are indicated using a
subscript.

It follows from Eq. (1) that the likelihood function,
P (�x|�), is given by a multivariate Gaussian distribution
according to

P (�x|�) = 1

(2π )N/2|�|1/2
exp

[
− 1

2
�xT �−1�x

]
, (2)

where �x represents the vector of the N particle track
displacements, {�x(n)}Nn=1, and �xT is its transpose. |�|
is the determinant of the covariance matrix, and �−1 is its
inverse. Equation (2) is the likelihood function that we seek to
maximize. The dependence of the covariance matrix in Eq. (2)
on model parameters for several canonical modes of diffusion
is give in Table I.

For normal diffusion, the presence of experimental noise
sources, namely static localization noise, which is the
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TABLE I. Analytical covariance matrix of particle track displacements separated in time by �t for canonical diffusion models, namely
normal diffusion, confined diffusion, fractional Brownian motion, and an immobile model with localization noise corrections, assuming that
the camera exposure time equals the frame duration, �t . D is the diffusion coefficient, L is the confinement size for confined diffusion, and α

is the anomalous exponent for fBm.

Mode Covariance matrix (μm2)

Normal �normal(i,j ) =

⎧⎪⎨
⎪⎩

2D�t + 2σ 2 − 2
3 D�t, j = i

−σ 2 + 1
3 D�t, j = i ± 1

0 otherwise

Confined �confined(i,j ) = �̃confined(i,j ) +

⎧⎪⎨
⎪⎩

2σ 2 − 1
6 (2�̃confined(i,i) − 2�̃confined(i,i + 1)), j = i

−σ 2 − 1
6 (2�̃confined(i,j ) − �̃confined(i,j − 1) − �̃confined(i,j + 1)), j = i ± 1

− 1
6 (2�̃confined(i,j ) − �̃confined(i,j − 1) − �̃confined(i,j + 1)) otherwise,

where

�̃confined(i,j ) =

⎧⎪⎪⎨
⎪⎪⎩

L2

6 − 16L2

π4

∑∞
k=1,odd

1
k4 �(1), j = i

−L2

12 + 8L2

π4

∑∞
k=1,odd

1
k4 �(1)[2 − �(1)], j = i ± 1

8
π4

∑∞
k=1,odd

1
k4 [−2�(j − i + 1) + �(j − i) + �(j − i + 2)] otherwise,

where �(n) = exp
[
−(

kπ

L

)2
Dn�t

]

fBm [24] �fBm(i,j ) =

⎧⎪⎨
⎪⎩

2D�tα

(α+2)(α+1) [A(1) − 2] + 2σ 2, j = i

D�tα

(α+2)(α+1) [A(2) − 2A(1) + 2] − σ 2, j = i ± 1
D�tα

(α+2)(α+1) [A(|j − i + 1|) − 2A(|j − i|) + A(|j − i − 1|)] otherwise,
where A(n) = (n + 1)α+2 + (n − 1)α+2 − 2nα+2

Immobile �immobile(i,j ) =

⎧⎪⎨
⎪⎩

2σ 2, j = i

−σ 2, j = i ± 1

0 otherwise

uncertainty due to a finite number of photons emitted from
a fluorophore during a camera’s exposure time, and dynamic
localization noise, which is the uncertainty caused by the
motions of the fluorophore during a camera’s exposure
time [26], has been shown to contribute nearest-neighbor
covariance terms [20]. In the Supplemental Material [19], these
calculations are extended to incorporate static localization
noise into the covariance terms for non-normal diffusion with
the result that

�static(i,j ) =
⎧⎨
⎩

2σ 2, j = i,

−σ 2, j = i ± 1,

0 otherwise.
(3)

Assuming that the camera exposure time equals �t , which
is the usual situation in SPT measurements, the dynamic
localization noise contribution to the covariance matrix for
normal diffusion and confined diffusion may be shown to be
given approximately by

�dynamic(i,j )

≈ − 1
6 (2�̃(i,j ) − �̃(i + 1,j ) − �̃(i,j + 1)), (4)

where �̃ is the covariance matrix in the absence of noise (Ap-
pendix). A derivation of Eq. (4) is given in the Supplemental
Material [19]. For fBm, the contribution of dynamic localiza-
tion noise to the covariance matrix is derived in Ref. [24].
As also shown in the Supplemental Material [19], corrections
for static localization noise, �static, and dynamic localization

noise, �dynamic, contribute additively to the covariance matrix:

� = �̃ + �static + �dynamic. (5)

Analytical results for the covariance matrix, incorporating
localization noise corrections, for three canonical modes of
diffusion, including an immobile particle model, are given in
Table I. The likelihood function is maximized numerically as
described in Sec. IV C.

To validate the performance of our maximum-likelihood
framework, we generated various sets of synthetic particle
trajectories, corresponding to different modes of diffusion,
as described in Sec. IV. For confined diffusion, trajectories
were simulated with a number of confinement sizes from
0.25 to 5 μm. For fBm, trajectories were simulated with
a number of anomalous exponents from 0.25 to 1.75. For
confined diffusion, the trajectories were simulated with a
diffusion coefficient of Dsim = 0.3 μm2 s−1. For fBm, the
trajectories were simulated with a “diffusion coefficient” of
Dsim = 0.3 μm2 s−α . Dynamic localization noise was added
by first simulating particle positions separated by “micro” time
steps of δt = �t/32, and then by averaging blocks of 32 of
these positions together to produce positions separated by time
steps of �t = 32 ms. The net effect is to mimic experimental
motion-blurred positions, corresponding to a camera exposure
time equal to the frame duration of �t = 32 ms. Static local-
ization noise was included by adding a normally distributed
random number with zero mean and variance, σ 2

sim, to each
motion-blurred position, where σsim = 0.04 μm (Sec. IV). For

052412-3



PETER K. KOO AND SIMON G. J. MOCHRIE PHYSICAL REVIEW E 94, 052412 (2016)

each set of diffusion parameters, we generated sets of particle
trajectories with track lengths N = {30,60,120,240} steps. To
maintain the same level of positional information across all sets
of synthetic particle trajectories, the total number of particle
positions across each simulation set was constant at 12 000
total steps.

We have compared the performance of MLE and taMSD
analyses using synthetic particle trajectories both without
localization noise (Figs. S1 and S2) and with localization
noise (Figs. S3 and S4). The detailed procedures involved
in the MLE analysis and the taMSD analysis are given in
Sec. IV. For confined diffusion (Figs. S1 and S3), MLE
outperforms taMSD. Even though both the MLE and the
taMSD diffusivity estimates exhibit a positive bias in their
estimations of the diffusion coefficient, both the bias and the
error are significantly less for MLE than for taMSD, especially
in the presence of localization noise. When analyzing synthetic
particle trajectories with localization noise, taMSD-based
estimates of the confinement length are erratic. By contrast,
even with localization noise, MLE yields reasonable con-
finement size estimates, provided the reduced confinement
size (Lreduced = L√

12D�t
) is sufficiently small. As could be

expected, the range of reduced confinement sizes for which
MLE provides reasonable estimates increases with increasing
track length, because the increased errors for larger reduced
confinement sizes are associated with each particle’s limited
sampling of its confinement, which is inevitable for short
tracks. For the MLE analyses, the static localization noise
estimate was slightly negatively biased with a decreasing bias
for increasing track length.

For fBm (Figs. S2 and S4), MLE is superior to taMSD. In
this case, MLE and taMSD estimates both appear unbiased
when particle tracks do not contain localization noise. How-
ever, the MLE estimates show noticeably lower errors. In the
presence of localization noise, both MLE and taMSD estimates
for the diffusivity, anomalous exponent, and static localization
noise become biased. However, both the bias and the error
are considerably less for MLE than for taMSD. As expected,
the bias and the error are reduced for longer trajectories both
without and with localization noise.

These collected results unambiguously demonstrate that
MLE improves upon taMSD estimates for non-normal diffu-
sion modes, in each case reliably characterizing the underlying
diffusion model over a broader range of parameter space.
They also emphasize that the presence of static localization
noise reduces the quality of both taMSD- and MLE-based
estimation, and in some cases it may introduce a bias,
underscoring the importance of properly incorporating the
effect of localization noise. As expected, bias and errors are
reduced for longer (but fewer) individual trajectories, even for
a fixed total number of time steps.

B. Performance of Bayesian model selection to classify
individual particle trajectories

For experimental particle trajectories, the underlying mode
of diffusion is in general unknown a priori. Therefore, some
criterion must be imposed to select the best model, i.e., to
statistically assess which diffusion model best describes any
given particle trajectory.

According to Bayesian model selection, classification can
be made by inferring the probability of the kth diffusion
model, Mk , from a trajectory, P (Mk|�x), where �x rep-
resents the vector of displacements from a particle trajec-
tory. According to Bayes’ rule, the probability of diffusion
model k is as follows: P (Mk|�x) = P (�x|Mk)P (Mk)

P (�x) , where
P (Mk) is the model prior, P (�x) may be viewed as a
normalization constant, given by

∑
i∈M P (�x|Mi)P (Mi),

and P (�x|Mk) is the model evidence given by P (�x|Mk) =∫
P (�x|θ,Mk)P (θ |Mk)dθ , where P (�x|θ,Mk) is the like-

lihood distribution and P (θ |Mk) is the prior distribution of
the parameters, θ , of model k.

Although the model prior, P (Mk), may be specified to
express a preference for a particular model, we elect to take
an agnostic approach and assume that all diffusion models are
equally probable. In this manner, the model evidence is the
only term of interest as the normalization absorbs all other
contributions. However, the priors of each model, P (θ |Mk),
may introduce a bias that becomes more pronounced when the
peak of the likelihood distribution is not sharp. A representative
likelihood distribution for confined diffusion (Fig. S5) and fBm
(Fig. S6), calculated using simulated data for various track
lengths, demonstrates that the likelihood distribution for these
non-normal diffusion modes is indeed broad near its global
maximum.

To minimize the influence from priors, we employ a
Laplace approximation to the model evidence and assume a
broad multivariate Gaussian prior with a full rank covariance
matrix, which leads via standard manipulations to the Bayesian
information criterion (B) given according to [27,28]

B = ln P (�x|Mk) = ln P (�x|θ̂ ,Mk) − Nparams

2
ln M, (6)

where θ̂ are the maximum-likelihood parameters of model k,
Nparams is the number of free parameters, and M is the number
of particle track displacements.

In summary, for a given trajectory, the MLE is found for
each candidate diffusion model, according Sec. IV, yielding
the parameter estimates and ln-likelihood value, from which
the BIC can be calculated [Eq. (6)]. The model probability for
each diffusion model can be subsequently calculated according
to

P (Mk|�x) = exp (Bk − B)∑K
i=1 exp (Bk − B)

, (7)

where B is the maximum BIC value across K candidate
diffusion models. Thus, classification is determined by the
diffusion model that yields the highest model probability.
Henceforth, this analysis pipeline is referred to as mleBIC.

To understand the statistical limits of classification under
ideal circumstances, namely particles that have constant dif-
fusion properties throughout the duration of their trajectories,
we employed mleBIC across various sets of synthetic particle
trajectories with static and dynamic localization noise for
each canonical diffusion mode (Fig. 1). For short particle
trajectories undergoing normal diffusion [Fig. 1(a)], a normal
diffusion model was favored with a high probability when
Dreduced = D�t

σ 2 > 1. When Dreduced < 1, the underlying static
localization noise dominates the underlying diffusion, which
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FIG. 1. Classification probability via mleBIC of simulated particle trajectories with localization noise for various particle track lengths,
undergoing (a) normal diffusion for various underlying diffusivities, (b) confined diffusion for various reduced confinement sizes, and (c)
fractional Brownian motion for various anomalous exponents. Each row represents a different particle track length: first row, N = 30 steps;
second row, N = 60 steps; third row, N = 120 steps; and last row, N = 240 steps. The probability of each model was calculated on the basis
of the fraction of tracks classified to that model at each point in parameter space, and it is specified by a unique marker and color: immobile
(cyan cross), normal diffusion (blue circles), confined diffusion (red squares), and anomalous diffusion (green diamonds). Error bars represent
the observed standard deviation.

leads mleBIC to favor an immobile model. Thus, more
statistics are necessary to reject the simpler immobile model.

For particle trajectories undergoing confined diffusion
[Fig. 1(b)], when confinement sizes are small, a confined
diffusion model is favored. As the confinement size increases, a
normal diffusion model becomes favored. At this confined-to-
normal crossover, a small preference for anomalous diffusion
is found. As expected, longer trajectories provide more
opportunities to explore the boundaries of confinement, result-
ing in a wider region of parameter space for which a confined
diffusion model is favored.

For particle trajectories undergoing fBm [Fig. 1(c)], a
normal diffusion model is mostly favored when particle
trajectories are short (N � 60). A fBm diffusion model is not

consistently favored until trajectories contain 240 steps, albeit
only when the anomalous exponent is below 0.7 or greater
than 1.3. As expected, when particle trajectories contain
minimal localization noise errors, mleBIC yields improved
estimation for fBM (Fig. S7). Thus, the presence of localization
noise requires even longer tracks for proper classification,
even though MLE can determine reliable estimates for the
underlying diffusivity and anomalous exponent (Fig. S4).
BIC’s built-in parsimony causes it to favor a normal diffusion
model when there are not enough data to support a non-normal
diffusion model, even when the correct model corresponds to
non-normal diffusion. This behavior seems not undesirable.

Similar to taMSD analysis, mleBIC does not take into
account transitions between diffusive states. While analyzing
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subsets of the data may allow for different diffusive states
within a particle trajectory, Figs. 1 and S7 illustrate that
accurate classification cannot be made for wide ranges of
parameter space, even in the most ideal circumstances. As
the trajectories become longer, the statistical power grows,
thereby allowing for improved mleBIC classification over a
wider parameter space, and misclassification gradually re-
duces. However, longer particle trajectories that have constant
diffusion properties becomes increasingly unlikely, especially
when a particle is diffusing in a complex environment such as
a living cell. Thus, while mleBIC is certainly an improvement
over taMSD analysis, the statistical power of classification by
analyzing particle trajectories on an individual basis remains
limited.

C. Systems-level analysis of a collection of particle trajectories

To augment the limited statistics provided by individual
particle trajectories, pEM simultaneously analyzes a collection
of trajectories by employing a systems-level likelihood func-
tion to account for a finite number of unique diffusive states,
each of which we envision to arise as a result of particular
interactions within the cell. Here, we extend the original
pEM framework [17] to now include non-normal modes of
diffusion, i.e., we lift the short-time-diffusion approximation.
A powerful aspect of this version of pEM is that it is essentially
a model-free approach in that no prior assumptions need to be
made concerning which types of diffusion mode are present in
the data at hand.

To implement our version of pEM, we first write the
systems-level log-likelihood function:

lnL(�x̂|π̂ ,�̂) =
M∑

m=1

ln

{
K∑

k=1

πkP (�xm|�k)

}
, (8)

where M is the total number of tracks, which collectively
realize K distinct underlying diffusive states, �xm represents
the vector of N displacements for particle trajectory m, and
�xm = {�xm(n)}Nn=1. �x̂ = {�xm}Mm=1 is the set of all particle
track displacements. π̂ = {πk}Kk=1 is the set of variables that
represent the fraction of the population of trajectories that
realize diffusive state k, which is bounded and normalized:
0 � πk � 1 and

∑K
k=1 πk = 1, and �̂ = {�k}Kk=1 is the set of

covariance matrices that define each diffusive state.
Importantly, the theoretical covariance matrix for any

diffusion mode that undergoes a stationary Gaussian process,
including in the presence of localization noise, has a symmetric
Toeplitz form (Table I), so that the element (i,j ) of the
covariance matrix depends only on |i − j |. We can impose
the requirement that the covariance matrix for each diffusive
state, �k , take on such a symmetric Toeplitz form by averaging
the diagonal, one-off-diagonal, two-off-diagonal, etc. elements
of the empirical covariance matrix for particle track m

to obtain the experimental covariance matrix elements for
track m: Cm(i,j ) = Cm(|i − j |) = 〈�xm(l)�xm(l + |i − j |)〉,
where the average is taken over all possible values of l for track
m.

Furthermore, because the covariance structure of each
diffusion mode decreases rapidly to zero for increasing
separation between displacements—i.e., with increasing |i −

j |—we can reasonably restrict the number of informative
covariance matrix elements that we include in the analysis
by setting Cm(|i − j |) = 0 for |i − j | > f , where f is the
number of off-diagonal covariance matrix elements included
in the analysis. If f = 0, only the diagonal elements of the
covariance matrix are permitted to be nonzero, reproducing
the theoretical structure of the covariance matrix for simple
diffusion in the absence of localization noise. For f = 1, a one-
off-diagonal element is included, permitting the covariance
matrix to properly account for localization noise sources. In
principle, different diffusive states, which are characterized
by unique diffusion properties, may be distinguished on the
basis of different values of the covariance matrix elements.
The inclusion of additional off-diagonal terms introduces
additional information to help distinguish diffusive states
that undergo confined diffusion, fBm, or other modes of
non-normal diffusion.

Because pEM discovers the values of these covariance
matrix elements for each diffusive state, it is not necessary
to specify ahead of time what diffusion modes are present,
beyond specifying f . It is in this sense that this version of
pEM is model-independent. In the case of K diffusive states,
insisting that the covariance matrix must be a symmetric
Toeplitz matrix and limiting the number of off-diagonal matrix
elements to f means that the number of model parameters is
equal to K(1 + f ) + K − 1. (There are K − 1 independent
population fractions.)

Maximizing Eq. (8) with respect to {�k,πk}Kk=1 naturally
yields the expectation-maximization (EM) algorithm [29].
In the expectation step, the posterior probability, γmk , that
particle trajectory m realizes diffusive state k, given the current
estimates for �k and πk , is calculated according to

γmk = πkP (�xm|�k)∑K
j=1 πjP (�xm|�j )

. (9)

In the maximization step, the posterior probability is used to
update the parameter estimates of each diffusive state:

�k = 1

Mk

M∑
m=1

γmkCm, (10)

πk = Mk

M
, (11)

where Cm(i,j ) = 〈�xm(i)�xm(j )〉 and Mk = ∑M
m=1 γmk . The

EM algorithm solves these equations iteratively until the
change in the ln-likelihood becomes smaller than a set
threshold [29].

The extension to higher dimensions than 1 is carried out
as follows. We calculate the expectation step by averaging
the posterior probability over each dimension using the
same parameter estimates. For the maximization step, the
maximized parameter estimates are calculated separately for
each dimension and then averaged. At each step in the
iteration procedure, the complete ln-likelihood is calculated
by summing the ln-likelihood from each dimension.

Although the EM algorithm guarantees convergence to
a maximum [29], convergence to the global maximum is
not guaranteed, depending on the initial parameter values.
However, as described in detail in Ref. [17] and summarized
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in Sec. IV, suitably perturbing the likelihood surface, namely
pEM, is a computationally efficient means to reach the global
maximum likelihood.

Since the number of diffusive states is not known a
priori, we repeat the pEM procedure for different numbers
of diffusive states, finding the maximum likelihood in each
case. To maintain model parsimony, we again employ the
Bayesian information criterion to penalize for the inclusion
of additional diffusive states via a systems-level extension of
Eq. (6). Specifically, we select the model with the largest value
of the systems-level BIC, where now lnL is the systems-level
likelihood function [Eq. (8)], the number of free parameters
is Nparams = K(1 + f ) + K − 1, and M is the total number of
particle track displacements across the population of tracks.

The procedure described so far makes the assumption
that the diffusive properties remain constant throughout the
duration of each trajectory. To extend pEM so that it can be
applied to trajectories containing transitions between different
diffusive states, we split each trajectory into equal-sized bins,
such that each bin contains B sequential steps. The assumption
of a constant covariance matrix is still assumed to hold within
each such bin, but different bins can realize different diffusive
states. In this way, pEMv2 is able to account for transitions
between different diffusive states within the overall trajectory.
Each bin is treated as a Markovian measurement of the
diffusive state, Eq. (2). The temporal resolution corresponds
to the bin size.

To summarize, our enhanced version of pEM, which
we call pEMv2, examines a population of binned particle
trajectories, each containing B steps, to determine the number
of unique covariance matrices contained in the population. It
accomplishes this goal by classifying each binned trajectory
to a particular diffusive state, based on similarities in the
covariance structure among trajectories. Using the resultant
classification, pEMv2 then updates the parameter estimates for
each diffusive state. Iteration of this process allows pEMv2
to learn in an unsupervised manner what unique covariance
structures, i.e., what diffusive states, are realized within
the population of binned trajectories. Since the number of
diffusive states is intrinsically handled by the BIC [Eq. (6)],
the user-controllable parameters for pEMv2 are the number of
off-diagonal elements to include in the covariance matrix, f ,
and the bin size, B.

1. Dependence on the number of covariance terms

To investigate the performance of pEMv2, we have gen-
erated a number of sets of synthetic particle trajectories
containing different numbers of diffusive states and different
degrees of similarity between the covariance terms across
diffusive states. Table II specifies the four sets of diffusion
parameters (cases 1–4), which were used to generate the
synthetic data sets. There are no transitions among different
diffusive states for cases 1 and 2, i.e., the transition probability
matrix (A) is given by A = δi,j . However, for cases 3 and 4,
transitions are permitted with the corresponding matrices of
transition probabilities given by

A3 =
⎛
⎝0.995 0.001 0.004

0.001 0.995 0.004
0.015 0.015 0.970

⎞
⎠ (12)

TABLE II. Simulation parameters for synthetic particle trajecto-
ries generated for cases 1, 2, 3, and 4.

1 2 3 4

Mode Confined Normal fBM fBM
Dsim

k (μm2 s−1) 0.05 0.15 0.25 0.4
Lsim

k (μm) 0.13

C
as

e
1

αsim
k 1 1 0.9 0.6

σ sim
k (μm) 0.04 0.04 0.04 0.04
π sim

k 0.25 0.25 0.25 0.25

Mode Confined Normal
Dsim

k (μm2 s−1) 0.06 0.06
Lsim

k (μm) 0.1
αsim

k 1 1
σ sim

k (μm) 0.04 0.04

C
as

e
2

π sim
k 0.4 0.6

Mode Confined Confined Normal
Dsim

k (μm2 s−1) 0.005 0.1 0.3
Lsim

k (μm) 0.05 0.2
αsim

k 1 1 1

C
as

e
3

σ sim
k (μm) 0.04 0.04 0.04
π sim

k 0.33 0.33 0.34

Mode Normal fBM Normal fBM
Dsim

k (μm2 s−1) 0.001 0.03 0.2 0.45
Lsim

k (μm)

C
as

e
4

αsim
k 1 0.7 1 0.9

σ sim
k (μm) 0.04 0.04 0.04 0.04
π sim

k 0.25 0.25 0.25 0.25

for case 3, and

A4 =

⎛
⎜⎝

1 − 3p p p p

p 1 − 3p p p

p p 1 − 3p p

p p p 1 − 3p

⎞
⎟⎠ (13)

for case 4, where p is input into the simulation selected from
one of {0,0.003,0.005,0.01,0.015,0.02,0.03}.

The covariance matrix elements of different diffusive states
must be sufficiently distinct in order for pEMv2 to resolve
them as separate diffusive states. First, therefore, we sought to
explore the effect of the number of off-diagonal covariance
matrix elements (f ) that are included in pEMv2 analysis.
Figure 2 shows the measured probability distributions of the
average covariance matrix elements, 〈C(i,j )〉 for |i − j | = 0,
1, 2, and 6, determined from populations containing 1500
synthetic trajectories, realizing four diffusive states with
diffusion parameters corresponding to case 1 (top row),
and 1500 synthetic trajectories, realizing two diffusive states
with diffusion parameters corresponding to case 2 (bottom
row). To recapitulate the variability found experimentally, the
trajectory lengths were distributed according to an exponential
probability distribution with a characteristic length of 25 steps,
with a minimum cutoff of 15 steps and a maximum cutoff of
60 steps. In addition, because there are no transitions in our
analyses of cases 1 and 2, we analyzed each complete trajectory
as a whole, as in the original version of pEM, without splitting
into bins. Case 1 corresponds to four diffusive states—two
normal diffusion, one fBM, and one confined diffusion—but
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FIG. 2. Empirical probability distributions of the mean covariance matrix elements, 〈C(i,j )〉, for j = i, j = i ± 1, j = i ± 2, and j = i ± 6
for case 1 (top row), where states 1, 2, 3, and 4 are shown in red (second darkest gray), green (second lightest gray), blue (darkest gray), and
cyan (lightest gray), respectively, and for case 2 (bottom row), where states 1 and 2 are shown in green (light gray) and blue (dark gray),
respectively. Vertical dashed lines indicate the theoretical values with a color/grey value corresponding to each diffusive state.

their diffusion coefficients are well-separated from each other.
Case 2 corresponds to two diffusive states with the same
diffusion coefficient, one corresponding to normal diffusion
and the other to confined diffusion.

For both cases 1 and 2, the means of the distributions
of 〈C(i,i)〉 and 〈C(i,i ± 1)〉 for each diffusive state are well
separated. For case 1, however, the means of 〈C(i,i ± 2)〉 are
all very similar to each other and are close to zero, with the
exception of state 4 (cyan). By contrast, for case 2, the means
of 〈C(i,i ± 2)〉 for state 1 and state 2 remain distinguished
from each other. For cases 1 and 2, the means of 〈C(i,i ± 6)〉
for each diffusion state are all very similar to each other and
are all close to zero, albeit their widths remain distinct.

Figure 3 shows the ln-probability of each model size,
determined on the basis of BIC score [Eq. (7)], as a function
of model size for different numbers of nonzero off-diagonal
covariance matrix elements between f = 1 and 13. For case
2, the correct number of diffusive states is found (K = 2),
irrespective of f . For case 1, where K = 4, pEMv2 is able to
successfully determine the correct numbers of diffusive states,
as indicated by the maximum ln-probability, except when
f = 13, for which a three-diffusive-state model is favored
for three out of the five data sets analyzed.

A visual representation of how successfully pEMv2 deter-
mines the correct diffusive state is given in Fig. 4, which shows
1500 synthetic particle trajectories corresponding to case 1 (top
row) and case 2 (bottom row). In the left column, each trajec-
tory is depicted using a color corresponding to the known, sim-
ulated diffusive state of the track. In the right column, each tra-
jectory is depicted using a color corresponding to the diffusive
state that realizes the maximum posterior probability for that
track, determined using f = 6 off-diagonal covariance matrix
elements for cases 1 and 2. Although there are a few misclassi-
fied trajectories, the overwhelming majority of the trajectories
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FIG. 3. ln-probability (base e) as a function of the number of
diffusive states (model size) for (a) case 1 and (b) case 2, determined
by pEMv2 analysis using f = 1, 2, 4, 6, 9, and 13 off-diagonal
covariance matrix elements. The inset key shows the correspondence
between color (gray-scale) value and the value of f . Each data set
consists of five sets of simulated particle tracks (shown as a different
curve) for each f [shown as a different color (gray-scale) value].
The inset panel shows a zoomed-in representation near the maximum
ln-probability.
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Case 1 Simulated Tracks Case 1 Classified Tracks

Case 1 Classified TracksCase 2 Simulated Tracks

FIG. 4. Representations of 1500 synthetic particle trajectories for
case 1 (top row) and case 2 (bottom row). In the left column, each
trajectory is depicted using a color (gray-scale) value, corresponding
to the known, simulated diffusive state of the track. In the right
column, each trajectory is depicted using a color (grey-scale) value,
corresponding to the diffusive state, that yields maximum posterior
probability, determined on the basis of pEMv2 using f = 6 off-
diagonal covariance matrix elements. The starting position of each
trajectory is on a two-dimensional grid, separated one from another
by 1 μm (top row) and 0.4 μm (bottom row). In both cases, the scale
bar represents 5 μm.

are correctly classified, demonstrating that pEMv2 is capable
of reliably uncovering the diffusive states in these cases.

Figure 5 shows the fraction of correctly classified trajec-
tories as a function of the number of off-diagonal covariance
matrix elements, confirming that pEMv2 reliably classifies
trajectories to the correct diffusive state. The classification
accuracy shows only a modest dependence on the number
of off-diagonal covariance matrix elements included in the
analysis: For case 1, the accuracy of classification is uniformly
high for f between 1 and 9, suggesting that the first off-
diagonal covariance matrix element (f = 1) is decisive in that
case. The decrease in classification accuracy for f = 13 may
be because of the inclusion in this case of a large number
of noisy off-diagonal matrix elements, suggesting that it is
preferable to not include too many off-diagonal covariance
matrix elements. For case 2, the accuracy noticeably improves
as f increases from 1 to 4, and it remains high thereafter,
suggesting that off-diagonal covariance matrix elements up to
f = 4 are informative for classification in this case.

The classified covariance matrix elements and the classified
taMSD are shown in Fig. 6 for each diffusive state corre-
sponding to case 1. In this instance, using either f = 1 or 6
in the analysis leads to the characterization of each diffusive
state with high fidelity, with the measured covariance matrix
elements and measured taMSDs for each diffusive state, shown
as the data points and the solid lines in the figure, almost
exactly matching the corresponding true covariance matrix
elements and true taMSDs, shown as the dashed lines, which
are very nearly coincident with the solid lines. In comparison
with mleBIC, which was unable to reliably classify 60-step
trajectories undergoing fBm with anomalous exponents of

1

0.8

0.6
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0.95

0.9

3 7 11
f

Fr
ac
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rr
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t

Case 1
Case 2

FIG. 5. Fraction of trajectories classified into the correct diffusive
state as a function of the number of off-diagonal covariance matrix
elements used in the pEMv2 analysis of case 1 (top) and case 2
(bottom). Error bars represent the observed standard deviation across
five different sets of simulated particle tracks.

either α = 0.9 or even α = 0.6, it is striking that pEMv2
is not only able to identify these two diffusive states (states
3 and 4 of case 1) and to accurately categorize individual
trajectories into these states (Fig. 4), it is also able to accurately
capture the anomalous behavior of their taMSDs (Fig. 6).
Thus, the systems-level strategy employed by pEMv2 can find
subtle deviations from non-normal diffusive behavior that are
statistically challenging to uncover if trajectories are analyzed
on an individual basis.

These observations show that the particular value of f used
is not critical. In practice, we suggest that a reasonable way to
pick f is on the basis of the average covariance matrix elements
themselves (see Fig. 6): we suggest picking f to correspond
to the off-diagonal term of the ensemble-averaged covariance
matrix elements that has essentially converged to zero. This
choice should ensure that all informative covariance matrix
elements are included in the analysis, but that unnecessary
noise is excluded. We ascribe the failure to select the correct
model for f = 13 to be the result of including unnecessary
noise. For the simulations in this paper, f = 6 is a reasonable
choice.

2. Uncovering transitions by splitting tracks

A population of experimental trajectories that realizes
multiple diffusive states is likely to contain at least a subset of
trajectories that contain transitions among the diffusive states.
The prevalence of transitions depends on their underlying
kinetics, i.e., on the transition rates. Our concept for extending
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FIG. 6. Average covariance matrix elements and average taMSD from maximum posterior classification as a function of time lag for
(a) states 1 (red, bottom curve), 2 (green, second from bottom curve), 3 (blue, second from top curve), and 4 (cyan, top curve) of case
1, and (b) states 1 (red, bottom curve) and 2 (blue, top curve) of case 2. The nth covariance matrix element is calculated according to
〈[x(i + n + 1) − x(i + n)][x(i + 1) − x(i)]〉 and the nth taMSD is calculated according to 〈[x(i + n) − x(i)]2〉 for each time lag, n�t , where
n = 0,1, . . . ,9. Each data point represents the average over five different sets of simulated particle tracks, where the ensemble taMSD and
covariance matrix elements were calculated for each state based on classification by pEMv2 using f = 1 (left column) and f = 6 (right
column). The solid lines linking the data points are guides to the eye. The error bars correspond to the standard deviation of the mean across
five trials. Shown as the dashed curves are the true matrix elements and the true ensemble-averaged taMSD for each state, determined using
the known diffusive states of trajectories, while the shaded bands represent its standard deviation.

our methodology to permit analysis of trajectories with
transitions is to split these trajectories into shorter pieces.
If the duration of the resultant short trajectories is less than
the typical lifetimes of relevant diffusive states, then each
short trajectory will with high probability realize a single
diffusive state throughout, and the methods described above
remain applicable to determine the diffusive states within the
population of these short trajectories.

To investigate the feasibility of this concept, we simulated
particle tracks with three diffusive states, corresponding to case
3 in Table II, that transition among each other with transition
rate matrix A3 [Eq. (12)]. The protocol used for generating
transitions is described in Sec. IV. The corresponding lifetimes
of states 1, 2, and 3 are 200 (∼6.4 s), 200 (∼6.4 s), and
33 (∼1 s) steps, respectively. We then divided the simulated
trajectories into sets of short trajectories containing 5, 10, 15,
20, 25, 30, 60, 90, or 120 steps, respectively, while keeping the
total number of steps and hence the total positional information
constant at 12 000 total steps across all trajectories. We
then applied the pEMv2 methods described above to each
population of different-length short trajectories, implicitly
assuming that each short trajectory remains in the same
diffusive state throughout. The number of off-diagonal matrix
elements used in the analysis was fixed at f = 6.

Figure 7(a) shows the BIC-based ln-probability of various
model sizes for simulated tracks with lengths 15, 30, 60, 90,
and 120 steps. The ln-probability selects the correct number of
diffusive states (K = 3) only when N = 15 steps. For trajec-
tories containing 30 or more steps, the BIC-based probability
incorrectly favors a four-diffusive-state model, presumably in
an effort to describe trajectories containing transitions. Given
that the three-state model is correct, Figure 7(b) shows the

fraction of the total number of steps that are assigned to the
correct diffusive state for each set of short trajectories, plotted
as a function of the track length of each set. Evidently, the
fraction of steps correctly assigned decreases as the trajectories
became longer. This trend is surely due to the fact that
longer trajectories provide more opportunities to transition,
as indicated by the increasing number of transitions per track
with increasing trajectory length, shown in Fig. 7(c).

To permit pEMv2 to deal with tracks containing transitions,
we implemented a procedure that splits long trajectories into
shorter trajectories. For the 120-step data set, Fig. 7(d) shows
that the ln-probability of various model sizes for tracks, split
into 5, 10, 15, 20, or 30 steps, yields the correct model (K = 3)
for bin sizes less than 30 steps, in agreement with Fig. 7(a).
Given that the three-state model is correct, Fig. 7(e) shows
the fraction of the total number of steps that are assigned
to the correct diffusive state as a function of the bin size.
Evidently, this procedure yields a significant improvement in
the fraction of steps correctly assigned compared to analysis
of the 120-step data set, shown in Fig. 7(b), presumably as a
result of decreasing the number of transitions per track from
∼1.1 per track for the 120-step data set to ∼0.1 transitions per
track for the bin size of 10 steps (Fig. 7). Moreover, pEMv2 is
now able to provide a significant improvement in the quality
of the estimates for the covariance elements and taMSD for
each diffusive state (Fig. 8), as well as reasonable estimates of
the transition matrix (Fig. S8).

Is there an optimal bin size? Indeed, Fig. 7(e) shows that
the fraction of steps correctly assigned exhibits a maximum
at a bin size of 10 steps and decreases for smaller and larger
bin sizes. It turns out that using smaller bin sizes may render
the results of pEMv2 more susceptible to misclassification
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FIG. 7. Performance of pEMv2 on particle tracks that transition
between diffusive states given by case 3. ln-probability (base e)
determined by pEMv2 analysis for five sets of simulated particle
tracks (each shown as a different curve) with diffusive states given
according to case 3 with (a) track lengths of 15, 30, 60, 90, and 120
steps, and (d) track lengths of 5, 10, 15, 20, and 30 steps created by
splitting the 120-step data set in (a). Each simulation set is shown in a
different color (grey-scale) value. Average fraction that the classified
diffusive states matches the simulated diffusive state for (b) various
track lengths and (e) various bin sizes. For the purposes of this
comparison, when a bin contains a transition, the “true” diffusive state
is chosen to be the state with the highest number of displacements.
Average transition rate per track for (c) various track lengths and (f)
various bin sizes. (b), (c), (e), and (f) Error bars represent the observed
standard deviation across the five data sets.

(Fig. S9). Since information of confinement manifests as
anticovariances between neighboring displacements each time
a particle “bounces” off of the confinement barrier—if the bin
size is too small, then this information is only contained in the
few bins that capture such a “bouncing” event, while other bins
would follow an apparent normal diffusion. On the other hand,
although including more steps in the bin size allows for more
anticovariance “bouncing” events, a large bin size also has the
undesirable effect of increasing the number of transitions per
track, which can also lead to poorer performance. Thus, the
bin size should be chosen to be as large possible, subject to the
constraint that the mean number of transitions per trajectory
should not be too large. In this example of case 3, satisfactory
results are obtained by using a level of binning that yields an
average of 0.2 transitions per trajectory.

(a) (b)
B=120 Bin = 10

0.04 0.24 0.44
Time lags (s)

0.04 0.24 0.44
Time lags (s)

FIG. 8. Average covariance matrix elements and average taMSD
from maximum posterior classification as a function of time lag
for states 1 (red, bottom curve), 2 (green, middle curve), and 3
(blue, top curve) with a bin size of (a) 120 steps and (b) 10
steps. The nth covariance matrix element is calculated according to
〈[x(i + n + 1) − x(i + n)][x(i + 1) − x(i)]〉 and the nth taMSD is
calculated according to 〈[x(i + n) − x(i)]2〉 for each time lag, n�t ,
where n = 0,1, . . . ,9. Each data point represents the average over
five different sets of simulated particle tracks, analyzed using pEMv2
using f = 6. The solid lines linking the data points are guides to
the eye. The error bars correspond to the standard deviation of the
mean across five trials. Shown as the dashed curves are the true
matrix elements and the true ensemble-averaged taMSD for each
state, determined using the known diffusive states of trajectories,
while the shaded bands represent their standard deviations.

3. Determining the optimal bin size

To further elucidate how pEMv2’s performance depends
on the level of transitions and how to determine the optimal
bin size in an unsupervised manner, we generated a number
of data sets containing 3000 synthetic particle tracks with
diffusive states given according to case 4 (Table II), and
with varying mean numbers of transitions per track (R =
{0,0.36,0.6,1.2,1.8,2.4,3.6} transitions per track). All of the
track lengths were constant with N = 120 steps. For each data
set, we applied pEMv2 with bin sizes ranging from 5 to 30
steps. The mean number of transitions per trajectory for each
bin size is shown as a function of bin size in Fig. 9(a).

By applying pEMv2 to each of these data sets, the BIC’s
ln-probability found the correct model size (K = 4) when
the transition rates were low (R < 0.6 transitions per track),
irrespective of the bin size used (Fig. S10). Even when the
transition rates increase (R = 2.4 and 3.6 transitions per track),
the BIC continues to favor the correct four-diffusive-state
model for smaller bin sizes. However, the BIC favors an
incorrect five-diffusive-state model when analyzing data that
use bins containing 30 steps.

Assuming the correct model size (K = 4), Fig. 9(b) shows
the average maximum-likelihood values as a function of the
bin size for each data set. When transition rates are low, the

052412-11



PETER K. KOO AND SIMON G. J. MOCHRIE PHYSICAL REVIEW E 94, 052412 (2016)

Bin Size (steps)
0 10 20 30

1.4

1.5

1.6

Bin Size (steps)
0 10 20 30

0

0.4

0.8

R=0.0
R=0.4
R=0.6
R=1.2
R=1.8
R=2.4
R=3.6

Transitions per track
0 1 2 3

O
pt

im
al

 B
in

 (
st

ep
s)

15

20

25

30

Transitions per track
0 1 2 3

F
ra

ct
io

n 
C

or
re

ct

0.8

0.85

0.9

0.95

1

T
ra

ns
iti

on
s 

pe
r 

tr
ac

k
ln

-L
ik

el
ih

oo
d 

(p
er

 s
te

p)

(b)

(c) (d)

(a)

FIG. 9. Dependence of the optimal bin size on transition rate.
(a) Average number of transitions per track vs bin size for various
transition rates, R = {0,0.36,0.6,1.2,1.8,2.4,3.6} transitions per
track [each shown in a different color (gray-scale) value]. (b) Average
ln-likelihood value per step vs bin size for various transition rates.
(c) Optimal bin size vs the mean number of transitions per track,
determined by the maximum ln-likelihood per per step. (d) Average
fraction that the classified diffusive state matches the simulated
diffusive state as a function of the mean number of transitions per
track. Each error bar represents the observed standard deviation across
five different sets of simulated particle tracks.

average ln-likelihood per step increases monotonically with
bin size, suggesting that in these cases the optimal bin size
is larger than the maximum binning used. For larger numbers
of transitions per track, however, a maximum ln-likelihood
per step is observed within the range of bin sizes examined.
Figure 9(c) shows that the optimal bin size, determined as the
maximum ln-likelihood per step from Fig. 9(b), decreases as
the number of transitions per track increases. Not surprisingly,
the more transitions that are present, the smaller the bin size
should be. Figures S12 and S13 show the pEMv2 classification
of representative trajectories of the R = 3.6 data set for various
bin sizes. When the bin size is five steps, spurious transitions
are frequently found, which we ascribe to the relatively larger
statistical fluctuations that necessarily accompany smaller bin
sizes. As the bin size becomes larger, statistical fluctuations
are reduced. However, if the bin size becomes too large
(B = 30), the corresponding higher rate of transitions per track
limits pEMv2’s ability to classify diffusive states accurately.
Evidently, the optimal bin size balances the accuracy of the
covariance matrix elements, which become better-determined
with larger bin sizes, against the number of transitions per
track, which mix the covariance matrix elements of different
diffusive states, leading to poorer pEMv2 performance.

Although pEMv2, using the optimal bin size, is able to un-
cover the correct numbers of diffusive states and characterize
each diffusive state reliably (Fig. S11), the overall accuracy of
pEMv2’s classification decreases as the number of transitions
per track increases, as is indicated by the fraction of correctly
classified steps, plotted in Fig. 9(d). Even though the optimal

bin size lowers the effective number of transitions per track,
the decreased performance may be due to the higher absolute
number of transitions for the data sets with higher R [Fig. 9(a)].
Notwithstanding, the ensemble behavior of each diffusive state
can still be captured accurately when the optimal bin size
determined by the maximum likelihood per displacement is
used (Fig. S11).

III. CONCLUSIONS

In this paper, we introduced the likelihood functions for
two canonical modes of non-normal diffusion, namely con-
fined diffusion and fractional Brownian motion. We showed
that the maximum-likelihood estimates provide a significant
improvement in comparison with traditional MSD analysis.
We introduced a model selection scheme, namely mleBIC, to
determine the underlying diffusion model that best represents
the motions of a diffusing particle. We demonstrated that
while mleBIC is quite successful at classifying tracks without
localization noise; classification of tracks with localization
noise was limited, especially for short trajectories. Although in
this paper we restricted consideration to particles undergoing
normal diffusion, confined diffusion, and fBm and immobile
particles, extensions to other diffusion models can be added
easily by incorporating these models into mleBIC once the
likelihood functions are known.

To take advantage of a systems-level approach, we intro-
duced an updated version of pEM analysis, namely pEMv2,
that determines the number of unique covariance structures
within a population of particle trajectories, thereby bolstering
the statistics of individual trajectories. A key output from the
pEMv2 algorithm is the posterior probability, γmk , that particle
trajectory m realizes diffusive state k. For the selected model,
one simple and useful way to categorize a particular trajectory
to a particular diffusive state is to assign the trajectory to the
diffusive state that realizes the largest posterior probability, as
in Fig. 4.

When analyzing simulated trajectories that transition be-
tween different normal/non-normal diffusive states, pEMv2
was able to determine the covariance structure of each diffusive
state quite reliably. We also demonstrated the rationales for the
selection of the free parameters in pEMv2, which includes the
number of covariance features and the bin size. The number
of off-diagonal covariance matrix elements to include can be
set to the value for which the observed ensemble-averaged
covariance matrix elements have just decayed to zero, thereby
only including informative covariance terms in the analysis.
We have shown that an optimal bin size may be determined
by rerunning pEMv2 for various bin sizes, and selecting
the bin size that yields the highest likelihood for a given
model size. In practice, because the model size is unknown
a priori for experimental data, we envision running pEMv2
for different model sizes and different bin sizes to find these
conditions. Importantly, pEMv2 is rooted in physical princi-
ples of stochastic processes. Applying nonphysical clustering
methods to the same data, such as k-means clustering, led to
poor characterization of the underlying diffusive states [17].

Since pEMv2 does not make any intrinsic assumptions of
the underlying diffusion model other than that it follows a
Gaussian process, pEMv2 is essentially a diffusion-model-free
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approach. Characterization of each covariance structure to
determine the diffusion mode and properties can then be
performed post hoc. Specifically, traditional analyses can
then be applied for each diffusive state, such as calculation
of the ensemble-average taMSD and the ensemble-average
velocity autocorrelation function. Such a procedure provides
a more reliable representation of the diffusive behavior
compared to individual trajectories, which suffer from limited
statistics.

One drawback to pEMv2 is that information of the diffusive
state across every bin is treated independently. Thus, when
the bin size becomes small, spurious states may occur more
frequently. A key benefit of a hidden Markov model (HMM)
approach is that spurious transitions can be intrinsically
penalized by maximizing a likelihood function that includes a
transition matrix. We envisage that, in the future, pEMv2 can
be extended to a HMM of multivariate Gaussians to mitigate
spurious transitions. In turn, this approach will improve the
temporal resolution by making it possible to reduce the bin
sizes. However, if transition rates are inhomogeneous across
the cell, any HMM approach that assumes a single transition
matrix for the entire cell would not be able to properly
capture that inhomogeneity. Notwithstanding, current HMMs
applied to SPT data, namely vbSPT and HMM-SPT [9],
apply a HMM of univariate Gaussians, which is equivalent
to using a bin size of two steps (f = 0) and thus only using
information of the first covariance term. Thus, these HMM
analyses overlook localization noise, which introduces cor-
relations between nearest-neighbor displacements, rendering
each displacement non-Markovian. Moreover, neither method
can properly account for non-normal diffusion models such as
confined diffusion and fBM.

Unfortunately, there is no strict rule concerning how many
tracks are needed for pEMv2 to return accurate results. Rather,
the amount of data needed depends on the complexity of
the diffusive states involved, as discussed previously [17]. In
practice, we recommend that pEMv2 users complement their
SPT analysis of experimental data with an analogous analysis
of simulated tracks that recapitulate the diffusive complexity
determined by pEMv2. In this way, the user can determine the
reliability of pEMv2 for the data at hand, and thereby gain
confidence in the results provided by pEMv2.

With the ability to handle normal/non-normal diffusive
states that contain transitions between different diffusive states,
we envision that pEMv2 can help to uncover more accurate
information regarding the diffusive states that occur inside live
cells with single-molecule resolution. This analysis sets the
benchmark for all future single-particle tracking analyses to
begin to understand the spatiotemporal biochemistry of diffus-
ing particles inside live cells with single-molecule resolution.

IV. METHODS

A. Simulation procedure

Synthetic particle trajectories undergoing normal diffusion
are generated using the recursion given by Eq. (1), with
�(i,j ) = 2D�tδi,j and x(0) = 0. To generate synthetic parti-
cle trajectories undergoing normal diffusion confined in a finite
square geometry with size −L to L, we simulate displacements

that follow normal diffusion. At each time step, if the new
position falls outside of the finite domain, then the simulated
position is set such that the difference between the proposed
position and the boundary is reflected, i.e., the Neumann
boundary condition, but the total distance traveled remains
the same as if the wall were not present. Here, the starting
position of each trajectory is at the center of the confinement
boundary.

Synthetic particle trajectories undergoing fractional Brow-
nian motion are generated using the recursion given by Eq. (1)
with v = 0 and � given by Appendix. Here, the square root
of the covariance matrix is determined with the Cholesky
decomposition, i.e., � = LLT , where L is the Cholesky lower
triangular matrix. We then generate a vector of normally
distributed random numbers W = {W (d)}Dd=1, where D is the
number of displacements of the particle trajectory, and we
apply a matrix multiplication according to �x = LW. The
positions are then reconstructed by calculating the cumulative
sum of the displacements x(i) = x(0) + ∑i

j=1 �x(j ), with
x(1) = 0. For each particle trajectory, the process is carried
out separately for two spatial dimensions, which are then
combined to form the true two-dimensional (2D) positions
of the synthetic particle trajectory.

To incorporate transitions between diffusive states within
each trajectory, we first generated a random Markov chain with
a known transition matrix, A, to specify the state sequence
of each particle track displacements. For each state, the
displacements are simulated according to the properties of
the diffusive state. The positions of the particle trajectories
are then reconstructed by calculating the cumulative sum of
the displacements x(i) = x(0) + ∑i

j=1 �x(j ), with x(1) = 0.
Each time the Markov state goes to a confined diffusion state,
the confinement boundaries are reset with the initial position at
the center. When the Markov state switches to another diffusive
state, information of the confinement boundaries is forgotten.

Dynamic localization noise is incorporated into the posi-
tions by simulating 32 microstep displacement (δt = �t/32)
time steps and averaging 32 successive positions. The net effect
is an exposure time equal to the frame duration of 32 ms.
Static localization noise is included by adding a normally
distributed random number with zero mean and variance,
σ 2

sim, to each motion-blurred position. To generate a collection
of particle trajectories, the population fractions are used to
determine the number of particle trajectories that are initialized
to each diffusive state. Here, population fractions serve as
the percentage with which the initial state of each trajectory
begins.

B. MSD analysis

For a stationary sequence of T 2D particle positions,
x = {x(t),y(t)} for t = 1 through T , each separated one from
the next by a time, �t , the taMSD is given according to
[5,30]

δ(�n,T ) = 1

T − �n

T −�n∑
t=1

[x(t + �n) − x(t)]2

+[y(t + �n) − y(t)]2,
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TABLE III. MSD models for canonical modes of diffusion.

Mode MSD model

Normal 4D�t + 4σ 2
0 − 2

3 D�t

Confined L2

3 − 32L2

π4

∑∞
k=1,odd

1
k4 exp

[−(
kπ

L

)2
Dn�t

] + 4σ 2

fBm 4D�tα + 4σ 2

where δ(�n,T ) is the taMSD for the nth time lag, �n = n�t ,
and the bar on top of δ(�n,T ) is used to distinguish the time
average.

We generate the taMSD for the first 14 time lags, and
we employ an unweighted nonlinear least-squares fit with
diffusion models given in Table III, where σ0 represents the
static localization noise and σ represents the combined static
and dynamic localization noise terms.

C. MLE analysis

For a given diffusion model, the maximum likelihood, or
equivalently the minimum negative ln-likelihood, is found by
employing a constraint, gradient-based, numerical optimiza-
tion algorithm in MATLAB (Mathworks), namely fmincon. At
each optimization step, however, the ln-likelihood function
requires the calculation of the ln-determinant and the inverse
of the covariance matrix. When particle tracks are long or
the elements of the covariance matrix are very small, the
ln-determinant of the covariance matrix can run into numerical
underflow issues. To make this optimization procedure more
robust, we employ an eigenvalue decomposition of the covari-
ance matrix, � = P�P T , where P is a matrix of the eigen-
vectors with their corresponding eigenvalues given along the
diagonal of �. The ln-determinant is given by the product of the
eigenvalues or equivalently the sum of the ln-eigenvalues, i.e.,
ln det(�) = ln

∏D
i λ(i) = ∑D

i ln λ(i). The inverse is given
by �−1 = P�−1P T .

In summary, for a given single-particle trajectory,
maximum-likelihood estimation yields the parameter esti-
mates, ln-likelihood value, and Hessian for each candidate
diffusion model. From this information, the BIC [Eq. (6)] can
be calculated for each diffusion model. Once the BIC for each
diffusion model has been calculated, the model probability for
each diffusion model can be calculated according to Eq. (7).

Classification is determined by the diffusion model, which
yields the highest model probability.

D. pEMv2 analysis

pEMv2 analysis was performed with the MATLAB script
provided in the Supplemental Material [19]. Briefly, our
pEMv2 procedure employs the EM algorithm on the original
set of particle trajectories with random initial parameter values.
pEMv2 then reemploys the EM on a Monte Carlo bootstrap
set of the original particle trajectories, which serves to perturb
the likelihood surface with the aim that a local maximum may
no longer be a maximum in the perturbed likelihood surface.
Upon completion of a perturbation trial, we verify whether
a higher likelihood has truly been found by calculating the
likelihood using the pEMv2-converged parameters with the
original dataset. If the pEMv2-converged parameters indeed
yield a higher likelihood, then the EM parameters are updated
by reemploying the EM algorithm initialized with the new
pEMv2 parameter estimates on the original dataset. Otherwise,
the pEMv2 estimates remain unchanged. This process is
repeated until a predetermined number of perturbations have
been executed and yield no advance.

To generate each set of random initial values, K random
numbers between 0 and 1 are drawn from a uniform distri-
bution. The initial population fractions, {π0

k }Kk=1, are given
by normalizing these random numbers so that the sum is
equal to 1. The first covariance values are set using the
initial randomly chosen population fractions and the empirical
cumulative covariance distribution function. By dividing the
cumulative distribution function into K regions proportional to
the initial population fractions, the initial covariance value of
diffusive state k is then picked as the diffusivity corresponding
to the midpoint of region k of the cumulative probability

distribution, namely to
∑k−1

j=1 π0
j + π0

k

2 . Particle tracks are
then classified to each diffusive state by their distance to the
first covariance values. The remaining covariance values for
each diffusive state are selected by averaging the classified
covariance terms. Thus, we achieve an initialization that
serves as a nonparametric method to randomly sample from
the observed distribution of diffusion coefficients. We found
that this method produces better random initializations than
a k-means clustering over the whole covariance matrix. In
practice, we found k-means clustering converges to similar
values over a wide range of parameter space. In addition,

TABLE IV. Analytical covariance matrix of particle track displacements separated in time by �t for canonical diffusion modes, namely
normal diffusion, confined diffusion, and fractional Brownian motion, with D the diffusion coefficient, L the confinement size, and α the
anomalous exponent. The hat, �̃, represents the covariance matrix without localization error corrections.

Mode Covariance matrix (μm2 s−1)

Normal �̃normal(i,j ) = 2D�tδi,j

Confined �̃(i,j )confined =

⎧⎪⎪⎨
⎪⎪⎩

L2

6 − 16L2

π4

∑∞
k=1,odd

1
k4 �(1), j = i

−L2

12 + 8L2

π4

∑∞
k=1,odd

1
k4 �(1)[2 − �(1)], j = i ± 1

8
π4

∑∞
k=1,odd

1
k4 [−2�(j − i + 1) + �(j − i) + �(j − i + 2)]otherwise,

where �n = exp
[−(

kπ

L

)2
Dn�t

]
fBM �̃fBM(i,j ) = D�tα(|j − i + 1|α + |j − i − 1|α − 2|j − i|α)
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k-means tends to weed out diffusive states with low population
fractions, when two diffusive states are close in proximity.

To improve pEMv2’s performance, we applied five random
initialization trials of the EM and used the parameters of
the trial that yielded the highest likelihood value. We then
applied 100 perturbation trials. This was done for each
diffusive state starting from K = 1 and incrementing K

until pEMv2 finds a lower BIC value. Upon completion
of pEMv2, the returned parameters include the popula-
tion fractions and covariance matrices of each diffusive
state, along with the posterior probabilities of each particle
trajectory.
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APPENDIX: COVARIANCE MATRIX FOR PARTICLE
TRACK DISPLACEMENTS WITHOUT

LOCALIZATION NOISE

Table IV presents the analytical covariance matrices for
particle track displacements without localization noise.
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