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Abstract

Background: Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable
genomic medicine results, leaving a large patient population without effective treatments options when their disease
inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard
clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates
molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments.

Methods: Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug
screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified
a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into
mouse models and used to validate the personalized two-drug combination.
Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a
single patient’s epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions.
The heterogeneity-consensus combination was validated in a xenograft model derived from the patient’s primary tumor.
Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen;
computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This
combination was validated in vitro via a cell regrowth assay.

Results: Our computational modeling approach addresses three major challenges in personalized cancer therapy:
synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer
model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a
human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a
human and canine cancer model).
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Conclusions: These proof-of-concept studies support the use of an integrative functional approach to personalized
combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and
without actionable DNA sequencing-based therapy.

Keywords: Personalized therapy, Combination therapy, Artificial intelligence and machine learning, Pediatric cancer,
Sarcoma, Drug screening, High-throughput sequencing, Computational modeling

Background
Despite decades of advancements in cancer treatment,
over 600,000 patients with solid tumors die annually in
North America [1], including approximately 5000
sarcoma-related deaths. The population of high-risk,
late-stage, recurrent, rare or refractory cancer patients
who have exhausted standard clinical pathways and lack
further treatment options represents a major unmet clin-
ical need. Currently, DNA sequencing of tumors for drug-
gable mutations leaves approximately 60% of patients
without an actionable result [2, 3]. Additionally, in many
cases, single drug therapy fails to provide sustainable dis-
ease control [4]. A critical missing element in personalized
cancer therapy design is the lack of effective methodolo-
gies for model-based prediction, design, and prioritization
of patient-specific drug combinations, especially in the
presence of limited tumor tissue material.
Numerous approaches to computational modeling of

drug sensitivity and therapy assignment exist, in part to
address ambiguity in DNA sequencing results [2, 5].
These approaches are primarily based on gene expres-
sion [6], or a combination of genomic and epigenomic
data [7]. For instance, 1) integrative genomic models
using Elastic Net regression techniques have been de-
veloped from large datasets such as the Cancer Cell
Line Encyclopedia (CCLE) [8] database; 2) integrative
models using Random Forests with Stacking [9, 10] to
integrate multiple genetic data sets for sensitivity
prediction; and 3) a team science based sensitivity pre-
diction challenge produced independent models inte-
grating multiple data types for sensitivity prediction
[11]; despite 44 individual models and a “wisdom of
crowds” approach merging the top-ranked predictive
models together, none of the approaches surpassed 70%
predictive accuracy [11] falling short of a reasonable ac-
curacy threshold for clinical utility. Some recent work
has focused on the use of functional data for therapy
selection, such as 1) the use of microfluidics to test
multiple drugs efficiently on primary patient samples
[12], 2) the use of shRNA libraries to predict drug com-
binations for heterogenous tumor populations [13], and
3) a re-analysis of the CCLE database used machine
learning models integrating functional response data to
improve sensitivity prediction accuracy over molecular

data-based Elastic Net models [14]. Integration of func-
tional data may improve overall predictive accuracy
over solely molecular data-based predictive models, es-
pecially for individual patient samples, emphasizing the
need for improved drug sensitivity prediction to enable
patient-specific therapy design.
To address the need for accurate prediction of drug

sensitivity and design of multi-drug combinations, we
previously developed a functional drug sensitivity-based
modeling approach termed Probabilistic Target Inhib-
ition Maps (PTIMs) [14–17]. The base PTIM method-
ology integrates quantified drug-target inhibition
information (EC50 values) and log-scaled experimental
drug sensitivities (IC50 values) to identify mechanistic
target combinations explaining drug sensitivity data.
PTIM modeling improved predictive accuracy over Elas-
tic Net models from the CCLE dataset [14], and has
guided in silico validation experiments from primary ca-
nine osteosarcoma cell models [14, 16–18] and in vitro
validation experiments [19] on diffuse intrinsic pontine
glioma (DIPG) cell models. Herein, we present proof-of-
concept validation experiments of the integrative PTIM
pipeline (Fig. 1) using soft tissue sarcoma as a paradigm.
Each validation experiment applies PTIM combination
therapy design to address one of three critical unmet
needs in cancer treatment: 1) selection of functional
evidence-based synergistic drug combinations, validated
in murine alveolar rhabdomyosarcoma (aRMS); 2) con-
sensus modeling of multi-site drug sensitivity data to
overcome intra-tumor heterogeneity, validated in epithe-
lioid sarcoma (EPS); and 3) resistance abrogation by tar-
geting of parallel biological pathways, validated in
undifferentiated pleomorphic sarcoma (UPS).

Methods
Cell model establishment
The mouse primary tumor cell culture U23674 was
established from a tumor at its site of origin in a genet-
ically engineered Myf6Cre,Pax3:Foxo1,p53 mouse bear-
ing alveolar rhabdomyosarcoma (aRMS) as previously
described [20]. In brief, the tumor was minced and
digested with collagenase (10 mg/ml) overnight at 4 °C.
Dissociated cells were then incubated in Dulbecco’s
Modified Eagle’s Medium (DMEM) (11995–073;
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Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS)
(26,140,079; Thermo Fisher Scientific) and 1% penicil-
lin-streptomycin (15140–122; Thermo Fisher Scientific)
in 5% CO2 at 37 °C.
The human epithelioid sarcoma (EPS) sample PCB490

was collected from a patient undergoing planned surgi-
cal resection. Tumor tissue was partitioned into 5 dis-
tinct regions, minced and digested with collagenase type
IV (10 mg/ml) overnight at 4 °C. The dissociated cells

were then incubated in RPMI-1640 (11875–093; Thermo
Fisher Scientific, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin in 5% CO2 at 37 °C. Sections 3,
4, and 5 (PCB490–3, PCB490–4, PCB490–5) successfully
grew in culture. Samples from each region were also
sent to The Jackson Laboratory (JAX) for patient-de-
rived xenograft (PDX) model establishment. Cultures
were maintained at low passage to minimize biological
variation from the original patient tumor. Remaining

Fig. 1 Schematic representation of experimental and computational approach to personalized combination targeted therapy predictions. Following
tumor extraction and culture establishment, biological data is generated (e.g., chemical screening, transcriptome sequencing, exome sequencing, siRNA
interference screening and phosphoproteomic analysis) and used as input for PTIM modeling. To briefly explain the graphical model representation,
targets A and B denote two independent single points of failure. Targets C and D denote parallel targets, which independently are not predicted to be
effective, but together will be synergistic and lead to significant cell growth inhibition. Targets A, B, and the C-D parallel block are in series and may target
independent pathways. Series blocks, when inhibited together, may abrogate cancer resistance mechanisms by knockdown of independent pathways.
Model sensitivity scores for gene target combinations are used to design and rank follow-up in vitro validation and in vivo validation experiments. The
“Exome-Seq” representative images was adapted from an image on the Wikipedia Exome sequencing article originally created by user SarahKusala and
available under Creative Commons 3.0 license. An unaltered portion of the image was used. The mouse image used is public domain and accessed
through Bing image search at the following weblink: http://img.res.meizu.com/img/download/uc/27/83/20/60/00/2783206/w100h100
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tumor pieces were snap frozen for future DNA, RNA
and protein isolation.
The human EPS sample PCB495 was received through

the CCuRe-FAST tumor bank program. To create the
cell cultures from the PCB495 primary tumor, the tumor
was minced and digested with collagenase (10 mg/ml)
overnight at 4 °C. The dissociated cells were then incu-
bated in RPMI-1640 media supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin in
5% CO2 at 37 °C.
The human undifferentiated pleomorphic sarcoma (UPS)

PCB197 was received through the CCuRe-FAST tumor
bank program. To create the cell cultures from the PCB197
primary tumor, the tumor was minced and digested with
collagenase (10mg/ml) overnight at 4 °C. The dissociated
cells were then incubated in RPMI-1640 media supple-
mented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin in 5% CO2 at 37 °C.
All human tissue samples were acquired through the

Childhood Cancer Registry for Familial and Sporadic Tu-
mors (CCuRe-FAST) tumor banking program. All patients
enrolled in CCuRe-FAST provided informed consent. All as-
pects of the study were reviewed and approved by the Ore-
gon Health & Science University (OHSU) Institutional
Review Board (IRB). Patient data and clinical and pathologic
information are maintained in a de-identified database.
The canine UPS sample S1–12 was obtained from

Oregon State University’s (OSU) College of Veterinary
Medicine. OSU Institutional Animal Care and Use
Committee (IACUC) approval was obtained for procure-
ment of the tissue. To establish S1–12 cell culture, tumor
tissue was minced and digested with collagenase (10mg/
ml) overnight at 4 °C. The dissociated cells were then incu-
bated in RPMI-1640 media supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin in 5%
CO2 at 37 °C.

Immunoblotting of PCB490
Tumor tissue and cells from PCB490–1,2, and 5 were lysed
in radioimmunoprecipitation (RIPA) buffer containing both
protease and phosphatase inhibitors (Sigma Aldrich, St.
Louis, MO). Lysates were homogenized and clarified by
centrifugation at 14,000 rpm for 10min. Thirty μg of pro-
tein was electrophoresed in 7.5% polyacrylamide gels, trans-
ferred to PVDF membranes for immunoblot analysis with
mouse anti-BAF47 antibody (cat. 612,110, BD Biosciences,
San Jose, CA) and mouse anti-β-actin antibody (cat. A1978,
Sigma Aldrich), and developed by chemiluminescence (cat.
170–5061, BioRad Clarity Western ECL Substrate,
Hercules, CA) per the manufacturer’s protocol.

Cell lines
The VA-ES-BJ (Accession CVCL_1785) cell line was pur-
chased commercially (cat# CRL-2138, ATCC, Manassas,

VA). The cell line VA-ES-BJ has been validated before
shipment by STR profile and mycoplasma testing. The cell
line was used for the experiments directly after reception
of the cell line.
The ESX cell line was provided by author TT [21].

The FU-EPS-1 (Accession CVCL_E311) cell line was
provided by author JNishio [22].
Neither ESX nor FU-EPS-1 have available STR valid-

ation profiles, and so comparison to a standard STR pro-
file cannot be performed. However, both cell lines were
checked for INI1 loss consistent with EPS cell lines. Cell
lines were tested for mycoplasma with the Lonza
MycoAlert Plus test kit. Cat. LT07–703, Lonza Bio-
science, Singapore).

Patient derived xenograft (PDX) model development
All aspects of cancer tissue sharing for model development
were reviewed and approved by the Oregon Health &
Science University Institutional Review Board. The PCB490
PDX model was generated at JAX (model number
J00007860) by implanting surgical human tumor tissue into
4–6-week-old female immunodeficient NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ (NSG) mice without prior in vitro culturing
of the tumor cells. Time from surgery to implantation was
approximately 24 h. Once a xenografted tumor reached ~
1000mm3, the tumor was harvested and divided into 3–5
mm3 fragments. Fragments were implanted into five 6–
8-week-old female NSG mice for expansion to P1. Other
fragments were sent for quality control assessment (see
below). The remaining fragments were cryopreserved in
10% DMSO. When P1 tumors reached 1000mm3 they were
harvested and divided into quarters: ¼ for quality control,
¼ snap frozen for genomics, ¼ placed into RNALater
(Ambion) for RNA-seq, and the remaining ¼ divided into
3–5mm3 pieces and cryopreserved in 10% DMSO.
The quality control procedures employed for PDX

model development included testing the patient tumor
for LCMV (lymphocytic choriomeningitis virus), bacter-
ial contamination, and tumor cell content. The engrafted
tumors at P0 and P1 were DNA fingerprinted using a
Short Tandem Repeat (STR) assay to ensure model prov-
enance in subsequent passages.
Model details available online at:
http://tumor.informatics.jax.org/mtbwi/pdxDetails.

do?modelID=J000078604
Immunohistochemistry (IHC) for human CD45

(IR75161–2, Agilent Technologies) was performed on
paraffin embedded blocks of engrafted tumors to identify
cases of lymphomagenesis which have been reported
previously in PDXs. IHC for human ki67 (IR62661–2,
Agilent Technologies) was used to ensure the propa-
gated tumors were human in origin. H&E sections of
engrafted tumors were reviewed by a board-certified
pathologist (RGE) to evaluate concordance of the
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morphological features of the engrafted tumor to the
patient tumor. Further, tissue was stained with vimen-
tin (IR63061–2, Agilent Technologies) to confirm
human origin.
Model information is publicly accessible at: http://

tumor.informatics.jax.org/mtbwi/pdxSearch.do

Chemical screens
Four chemical screens were used to generate functional
drug screening data. The first screen was a custom 60
agent chemical screen of well-characterized target inhib-
itors denoted the Pediatric Preclinical Testing Initiative
Screen Version 2.1 (PPTI screen). Chemical concentra-
tions of agents in all chemical screens were either [10
nM, 100 nM, 1 μM, 10 μM] or [100 nM, 1 μM, 10 μM,
100 μM] depending on compound activity range.
Fifty-four of the 60 drugs on the chemical screen have a
published quantified drug-target inhibition profile.
The second screen was a custom 60 agent chemical

screen denoted Drug Screen V3 consisting of a variety of
small molecule kinase inhibitors, epigenetic target inhib-
itors, and cell cycle inhibitors. Fifty-two of 60 drugs on
the chemical screen have a published drug-target in-
hibition profile.
The third chemical screen was a GlaxoSmithKline

open access Orphan Kinome-focused chemical screen
(denoted GSK screen) consisting of 402 novel and newly
characterized tool compounds [23] with target inhibition
profiles quantified by Nanosyn Screening and Profiling
Services. Drug-target interaction was assayed over 300
protein targets for each of the 402 compounds. The
compounds were tested at 100 nM and 10 μM concen-
trations to bracket the drug-target EC50 values. The final
EC50 values used for analysis of the chemical screen
results were inferred from the available data using hill
curve fitting to predict the 50% inhibition point.
The final screen was a Roche-developed open access

chemical screen (denoted Roche screen) consisting of 223
novel kinase inhibitor compounds [24]. Roche screen
compounds had a mixture of quantified or qualified
drug-target inhibition profiles, though drug-target inhib-
ition profiles were made available only for sensitive
compounds.
Cell cultures were plated in 384-well plates at a seeding

density of 5000 cells per well onto gradated concentra-
tions of drug screen compounds. Cells were incubated in
model-specific culture media at 37 °C, with 5% CO2, for
72 h. Cell viability was assessed by CellTiter-Glo®
Luminescent Cell Viability Assay (cat. G7570, Promega,
Madison, WI) per manufacturer’s protocol. Luminescence
was measured using a BioTek Synergy HT plate reader
(BioTek, Winooski, VT). Single agent IC50 values were
determined using a hill curve-fitting algorithm with
variable hill slope coefficients performed in Microsoft

Excel. Manual curation and re-fitting of the results was
performed before results were finalized.
U23674 primary tumor culture was assayed via three

drug screens: PPTI drug screen, GSK drug screen, and
the Roche drug screen (Additional files 1, 2, 3: Figures
S1-S3 and Additional files 15, 16, 17, 18, 19, 20, 21:
Tables S1-S7). S1–12 primary tumor culture was
screened using the PPTI screen (Additional file 36: Table
S22). PCB197 primary tumor culture was screened using
the PPTI screen (Additional file 36: Table S22).
PCB490–3, PCB490–4, PCB490–5 primary cultures
were screened with Drug Screen V3 and the Roche drug
screen (Fig. 3, Additional files 30, 31: Tables S15 and
S16). Cell lines ESX, FU-EPS-1, and VA-ES-BJ were
screened with Drug Screen V3 (Additional file 35: Table
S21). PCB495 primary culture was screened with Drug
Screen V3 (Additional file 35: Table S21).

U23674 drug combination studies and calculation of
combination index (CI)
U23674 drug combination validation experiments
were guided by GlaxoSmithKline chemical screen
PTIM models. Single agent validations to calculate in-
dependent drug efficacy were performed at dosages in
the range of 5 nM to 100 μM to bracket IC50 and IC25

dosage values; for combination experiments, the IC25

dosage for one agent was tested in combination with
gradated dosages (5 nM to 100 μM) of the comple-
mentary agent, and vice versa. Single agent and com-
bination agent validation experiments were performed
at passage 5.
CI values were generated using the CompuSyn software

tool. Effect values for CompuSyn monotherapy and
combination therapy were determined by mean cell death
based on n = 3 technical replicates with n = 4 replicates for
the following treatment conditions: OSI-906, GDC-0941,
OSI-906 + GDC-0941 (OSI-906 at IC25 + GDC-0941 at
varying dosage, OSI-906 at varying dosage + GDC-0941 at
IC25). CompuSyn CI values were calculated using the
non-constant combination setting [25] (Additional file 28:
Table S14).
We performed low-dose validation experiments to

verify PTIM-identified synergistic mechanisms of ac-
tion; reduced dosages of the combination agents were
set to 5 times the EC50 value for the predicted target
(175 nM OSI-906, 50 nM GDC-0941). CompuSyn CI
values to validate the mechanism of synergy were
calculated using the non-constant combination setting
[25] (Additional file 28: Table S14).
In both regular dose and low dose experiments, CI

values are reported only for functionally relevant
dosages, i.e. dosages between the drug target’s EC50 and
the drug’s maximum achievable human clinical dosage
(Cmax). For OSI-906, the functional range is
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approximately [10 nM, 5 μM] (mouse pharmacokinetics:
~ 16 μM Cmax, 6.16 μM Css; human pharmacokinetics: ~
1.481 μM Cmax, 720 nM Css). For GDC-0941, the func-
tional range is approximately [5 nM, 1 μM] (mouse
pharmacokinetics: ~ 12 μM Cmax, 1.59 μM Css, human
pharmacokinetics: ~ 1.481 μM Cmax, 720 nM Css). CI
values outside these ranges are denoted as N/A in
Additional file 28: Table S14.

U23674 exome sequencing analysis
Somatic point mutations were identified using the
Genome Analysis Toolkit [26] (GATK, version 3.5.0)
from the Broad Institute. Captured DNA libraries were
sequenced with the Illumina HiSeq 1000 in paired-end
mode. The reads that passed the Illumina BaseCall chas-
tity filter were used for subsequent analysis. The mate
pairs were pooled and mapped as single reads to the
NCBI GRCm38/mm10 reference genome using the
Burrows-Wheeler Aligner [27] (version 0.7.12), with
shorter split hits marked as secondary to ensure com-
patibility with downstream tools. Identified PCR dupli-
cates, defined as reads likely originating from the same
original DNA fragments, were removed using Picard
Tools MarkDuplicates (version 1.133). Mapping artifacts
introduced during initial mapping are realigned using
the GATK IndelRealigner, and base quality score recali-
bration to empirically adjust quality scores for variant
calling was performed by the GATK BaseRecalibrator
tool. The same process was used to process both the
tumor sample and the matched normal tail sample.
Variant discovery was performed by MuTect2 [28], with
the NCBI GRCm38/mm10 dbSNP database used to filter
known polymorphisms present in the paired sample.
Variant annotation and effect prediction was performed
using SnpEff [29] using the GRCm38.81 database. Only
medium and high impact effect variants are considered
for the purpose of downstream analysis and reporting in
figures. Exome analysis protocol is based on the GATK
Best Practices protocol.
VarScan2 was used for copy number variation analysis of

the paired tumor-normal data [30]. The Burrows-Wheeler
Aligner was used to align the tumor and normal samples
to NCBI GRCm38/mm10 reference genome as described
previously. Samtools (version 0.1.19) mpileup tool with
minimum mapping quality of 10 was used to generate the
pileup file required by the VarScan2 copycaller function;
log2 exon coverage ratio data from copycaller was seg-
mented using DNAcopy with the undo.splits = “sdundo”
parameter, and deviation from the null hypothesis set
above 3 standard deviations. Genes in segments with
segment mean above 0.25 or below − 0.25 and with
p-value below 1e-10 were called as gained or lost, respect-
ively. Copy number variation analysis protocol was partly
based on the VarScan2 user manual [31].

U23674 RNA deep sequencing analysis
RNA sequencing was performed on a low-passage U23674
culture, and on the control sample consisting of regenerat-
ing mouse muscle tissue following cardiotoxin injury in
vivo. The paired-end raw reads were aligned to the NCBI
GRCm38/mm10 reference mouse genome using TopHat
version 2.0.9 [32] using Bowtie2 as the short-read aligner.
Up to two alignment mismatches were permitted before a
read alignment was discarded. The aligned reads were as-
sembled into transcripts using Cufflinks version 2.1.1 [33].
Differential gene expression of tumor sample vs. control
was performed by Cuffdiff using standard parameters.
RNA analysis protocol was largely based on the approach
described in the Tophat2 publication [34]. Quantified gene
expression is provided in Additional file 23: Table S9.

PCB490 exome sequencing analysis
Somatic point mutations were identified using the
Genome Analysis Toolkit [26] (GATK, version 3.8.0)
from the Broad Institute. Captured DNA libraries were
sequenced in paired-end mode via the BGISeq 500
system at Beijing Genomics Institute. The reads that
passed the Illumina BaseCall chastity filter were used for
subsequent analysis. The mate pairs were pooled and
mapped as single reads to the NCBI GRCh38 reference
genome using the Burrows-Wheeler Aligner [27]
(version 0.7.12), with shorter split hits marked as
secondary to ensure compatibility with downstream
tools. Identified PCR duplicates, defined as reads likely
originating from the same original DNA fragments, were
removed using Picard Tools MarkDuplicates (version
1.133). Mapping artifacts introduced during initial
mapping are realigned using the GATK IndelRealigner,
and base quality score recalibration to empirically adjust
quality scores for variant calling was performed by the
GATK BaseRecalibrator tool. The same process was
used to process both the tumor sample and the matched
normal sample. Variant discovery was performed by
MuTect2 [28], with the NCBI GRCh38 dbSNP database
used to filter known polymorphisms present in the
paired sample. Variant annotation and effect prediction
was performed using SnpEff [29] using the GRCh38.87
database. Only medium and high impact variants are
considered for the purpose of downstream analysis and
reporting in figures. Exome analysis protocol is based on
the GATK Best Practices protocol.
VarScan2 was used for copy number variation analysis of

the paired tumor-normal data [30]. The Burrows-Wheeler
Aligner was used to align the tumor and normal samples
to NCBI GRCh38 reference genome as described previ-
ously. Samtools (version 1.6) mpileup tool with minimum
mapping quality of 10 was used to generate the pileup file
required by the VarScan2 copycaller function; log2 exon
coverage ratio data from copycaller was segmented using

Berlow et al. BMC Cancer          (2019) 19:593 Page 6 of 23



DNAcopy with the undo.splits = “sdundo” parameter, and
deviation from the null hypothesis set above 3 standard de-
viations. Genes in segments with segment mean 2 standard
deviations above or below ±0.5 and with p-value below
1e-10 were called as gained or lost, respectively. Copy
number variation analysis protocol was partly based on the
VarScan2 user manual [31].

PCB490 RNA deep sequencing analysis
The PCB490 transcriptome library was sequenced with
the Illumina HiSeq 2500 in paired-end mode. The reads
that passed the chastity filter of Illumina BaseCall soft-
ware were used for subsequent analysis. The paired-end
raw reads for each RNA-seq sample were aligned to the
UCSC hg38 reference human genome using Bowtie2 as
the short-read aligner [32] using, allowing up two align-
ment mismatches before a read alignment was discarded.
The aligned reads were assembled into transcripts using
Cufflinks version 2.1.1 [33] and quantification was per-
formed with Cuffquant [33]. RNA analysis protocol was
adapted from the approach described in the original
TopHat2 publication [34] (Additional file 33: Table S19).

RAPID siRNA screen of U23674
U23674 underwent functional single gene knockdown
(siRNA interference screen, Additional file 24: Table
S10), however siRNA results were inconsistent with drug
screening data (Additional file 25: Table S11) and are
thus relegated to the supplement.
To assess the contribution of individual receptor tyro-

sine kinases to survival of U23674, we performed RAPID
siRNA knockdown screening of U23674. Efficacy of sin-
gle target knockdown of 85 members of the mouse tyro-
sine kinase family was performed as previously described
[35]. Target sensitivity was determined by resulting cell
viability quantified using an MTT assay (M6494; Thermo
Fisher Scientific, Waltham, MA, USA). Targets with via-
bility two standard deviations below the mean were
identified as high-importance targets [35] (Additional
file 24: Table S10).

Phosphoproteomic screen of U23674
U23674 underwent phosphoproteome quantification
(Kinexus phosphoproteomics analysis, Additional file 26:
Table S12), however phosphoproteomics results were in-
consistent among sample replicates and are thus rele-
gated to the supplement.
To identify differentially phosphorylated protein tar-

gets, phosphoproteomics assays (Kinexus, Vancouver,
British Columbia, Canada) were used to compare two
duplicate cell lysates from U23674 against two duplicate
cell lysates from regenerating muscle tissue acting as
normal control. To perform the phosphoproteomics
analyses, 50 μg of protein lysate from each sample was

covalently labeled with a proprietary fluorescent dye.
Free dye molecules were removed by gel filtration. After
blocking non-specific binding sites on the array, an incu-
bation chamber was mounted onto the microarray to
permit the loading of related samples side by side on the
same chip. Following sample incubation, unbound pro-
teins were washed away. Each array produces a pair of
16-bit images, which are captured with a Perkin-Elmer
ScanArray Reader laser array scanner. Signal quantifica-
tion was performed with ImaGene 8.0 from BioDiscov-
ery with predetermined settings for spot segmentation
and background correction. The background-corrected
raw intensity data are logarithmically transformed. Z
scores are calculated by subtracting the overall average
intensity of all spots within a sample from the raw inten-
sity for each spot, and dividing it by the standard devia-
tions (SD) of all of the measured intensities within each
sample (Additional file 26: Table S12).

Probabilistic target inhibition maps
The Probabilistic Target Inhibition Map (PTIM) ap-
proach considers that the underlying mechanism for
sensitivity to targeted drugs can be represented by a
combination of parallel target groups (all parallel targets
need to be inhibited to slow or stop tumor proliferation,
similar to Boolean ‘AND’ logic) and series target groups
(inhibiting any all targets in any target group will slow
or stop tumor proliferation, similar to Boolean ‘OR’
logic). For estimating the series and parallel targets, we
analyze cancer cell response to multi-target single agent
drugs with overlapping but distinct target sets. For in-
stance, drugs having the same selective target (such as
pelitinib and erlotinib, which are potent inhibitors of the
kinase target EGFR) can show different sensitivity in
vitro which can be attributed to the biologically relevant
side targets of the drugs. Our framework considers pri-
mary and secondary drug targets and generates logical
groupings of targets (as single-target or multi-target
blocks) that best explain chemical screen response data.
We now incorporate secondary information to refine
PTIM models.

PTIM circuit models
PTIM models are visually represented as circuit models.
Each “block” in the circuit represents a combination of
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two or more gene targets that explain sensitivity of a set
of single agent compounds. The drug set represented by
an individual block is determined by the PTIM objective
function and feature selection algorithm [14, 16], and
depends on the biological data inputs to the PTIM
algorithm.
PTIM circuits consist of multiple blocks. Generally,

only target combinations of one to four targets are con-
sidered during PTIM modeling. Blocks of one target
(represented as single inhibitor symbol, T1) are called
“single points of failure”, i.e. single targets which alone
explain the sensitivity of one or more drug screen
agents. Combinations of two targets are visually repre-
sented by a rectangular block with two inhibitor symbols
(block T2 – T3). Combinations of three targets are visu-
ally represented by a circular block with three inhibitor
symbols (block T4 – T5 – T6). Combinations of four tar-
gets are visually represented by a circular block with
four inhibitor symbols (block T7 – T8 – T9 – T10). Each
block has an associated score value (e.g. 0.825, 0.800,
0.775, 0.750, respectively) that represents the scaled sen-
sitivity of all drug screen agents grouped in the block’s
target combination [14, 16]. In brief, all single agent sen-
sitivities (as IC50 values) are log10 scaled and converted
to [0,1] sensitivity values via the following equation:

sensitivity ¼ log maxTestedDoseð Þ− log IC50ð Þ
log maxTestedDoseð Þ ; IC50 > Cmax

1; IC50≤Cmax

8
><

>:

Thus, the lower the IC50, the higher the sensitivity
score. The score assigned to each block is a determined
by the sensitivity of the drug screen agents assigned to
the block following several correction factors [14, 16].
The shape of blocks in PTIM circuits are meant to serve
as a convenient visual representation; ordering of PTIM
circuit blocks are determined by overall score, with high-
est scored blocks on the left descending to lowest scored
blocks on the right. The general PTIM algorithm is pre-
sented in previously published work [14, 16–18].
Methods for integration of secondary biological data are
provided in the methods sections for modeling of
U23674 and modeling of PCB490.

Synergy, heterogeneity, and resistance via PTIM models
PTIM circuit models are also designed to visually repre-
sent the clinical challenges PTIM modeling seeks to
address. Synergistic drug combinations can be selected
for any block with two or more targets by selecting two
(or more) drugs which inhibit all targets in the block;
the selected combination should kill cancer cells while
monotherapy treatment would not. For example, based
on (block T2 – T3), a drug inhibiting T2 and a drug

inhibiting T3 will individually not slow tumor growth for
the sample patient, while the combination T2 + T3 will.
Drug screening multiple spatially-distinct sites from a

solid tumor can result in heterogeneous single agent
sensitivity. Target group blocks identified as common
amongst PTIM models from each distinct region can be
used to design a drug combination that should slow or
stop tumor growth across the entire heterogeneous
tumor. Multi-site PTIM models can thus define
heterogeneity-aware drug combinations.
Each block in a PTIM circuit represents a set of effect-

ive treatment options; effective options on parallel bio-
logical pathways represent multiple distinct treatment
options which can individually slow tumor growth. A
drug combination which inhibits multiple parallel bio-
logical pathway blocks can shut down potential survival
mechanisms for cancer cells, thus abrogating develop-
ment of resistance. Series PTIM blocks can thus define
resistance abrogating drug combinations.

Integrative nonlinear Boolean modeling for U23674
Probabilistic Target Inhibition Maps (PTIMs) were used
for integrative analysis of U23674 biological data [16–18].

RNA-seq integration
For targets common to both RNA expression data and
drug-target interaction data, we use gene expression data
to eliminate possible false positives from chemical screen
results and to narrow down the true positives among
relevant targets identified by the PTIM approach. False
positives are defined here as targets that are inhibited by
effective drugs but are not expressed in cancer cells at
levels above matched normal cells. Note that we con-
sider the effect of a molecularly-targeted drug is to in-
hibit the target when it is expressed, thus under-
expressed drug targets will have limited impact on drug
response. Here, over-expression is determined as gene
expression in the tumor sample 50% greater than that in
the control sample. The RNA-seq target set is used for
PTIM creation via the published model development
algorithms.
Formally, RNA-seq data is integrated as below:

T≔targets inhibited in drug screen

G≔targets with RNA−seq expression in tumor and normal cells

Tumor xð Þ≔gene expression of target x in tumor sample

Normal xð Þ≔gene expression of target x in normal sample

∀x∈T∩G Ratio xð Þ≔Tumor xð Þ=Normal xð Þ

∀x∈T∩G
if Ratio xð Þ≥1:5; keep target x for consideration

if Ratio xð Þ < 1:5; remove target x from consideration

�
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∀x∉T∩G keep target x for consideration

Exome-seq integration
We use exome sequencing data to identify targets likely im-
portant in the biological function of tumor cells. We assume
that genetic variants may explain the behavior of com-
pounds inhibiting the mutated/altered targets. Depending
on the available evidence for mutations and variations, tar-
gets are incorporated into the model search or final PTIM
model via the published model development algorithms.
Formally, exome-seq data is integrated as below:

T≔targets inhibited in drug screen

G≔targets with RNA−
seq expression in tumor and normal cells

Mut xð Þ≔mutation=indel status of target x
low=med=high impact mutation=indelð Þ

CNV xð Þ≔copy number status of target x gain=lossð Þ

∀x∈T∩G

if Mut xð Þ ¼ high AND CNV xð Þ ¼ gain; include target x
in model

if Mul xð Þ ¼ med AND CNV xð Þ ¼ gain; add target x
to initial search conditions

if Mut xð Þ ¼high; add target x to initial search conditions
if Mut xð Þ ¼ med OR CNV xð Þ ¼ gain; keep target x

in model once added otherwise; do nothing

8
>>>>>>>>>><

>>>>>>>>>>:

∀x∉T∩G keep target x for consideration

RAPID siRNA screen integration
RAPID screen results identify high sensitivity single target
mechanisms of cancer cell growth inhibition; identified hit
targets were set as “required” (forced inclusion) in the
RAPID siRNA PTIM model effective as sensitive siRNA
targets may explain drug sensitivity of agents inhibiting the
siRNA targets. Targets not identified by RAPID screening
could still have effect in multi-target combinations, and
thus were retained for consideration. The RAPID target set
is used for PTIM creation via the published model develop-
ment algorithms.
Formally, RAPID siRNA data is integrated as below:

T≔targets inhibited in drug screen

G≔targets with RAPID siRNA viability data

RAPID xð Þ≔cell viability following siRNA knockdown of target x

μ; σð Þ≔mean and standard deviation of RAPID siRNA dataset

∀x∈T∩G
if RAPID xð Þ þ 2σ < 1:5; add target x to PTIM model

if RAPID xð Þ þ 2σ≥1:5; nothing

�

∀x∉T∩G keep target x for consideration

Kinexus phosphoproteomics screen integration
The phosphoproteomics screen results identify differentially
phosphorylated targets and associated pathways, phosphor-
ylation of these targets may be pushing the system towards
a particular phenotype, and intervention in the form of
changing phosphorylation status might result in significant
changes to the system. Targets identified as overactive in
tumor compared to normal are included in the target set
for the PTIM model. The phosphoproteomics target set is
used for PTIM creation via the published model develop-
ment algorithms.

T≔targets inhibited in drug screen

G≔targets with RAPID siRNA viability data

P1 xð Þ≔z−score ratio of target x
in U23674 replicate 1 vs normal

P2 xð Þ≔z−score ratio of target x
in U23674 replicate 2 vs normal

∀x∈T∩G
if P1 xð Þ≥1 and jP1 xð Þ−P2 xð Þj≤0:5½ �;
add target x to PTIM model
if P1 xð Þ≥1 and jP1 xð Þ−P2 xð Þj > 0:5½ �; nothing

8
<

:

∀x∉T∩G keep target x for consideration

Integrative nonlinear Boolean modeling for PCB490
Probabilistic Target Inhibition Maps (PTIMs) were used
for integrative analysis of heterogeneous PCB490 bio-
logical data [16–18].

RNA-seq integration
RNA sequencing data for PCB490–5 was used to eliminate
under-expressed targets from consideration for PTIM
model development, reducing the potential number of
models. Due to possessing only tumor tissue for PCB490,
RNA sequencing was performed only on the tumor sample;
targets with quantified expression above the first quantile
were retained for PTIM model development. The RNA-seq
target set is used for PTIM creation via the published
model development algorithms.
Formally, RNA-seq data is integrated as below:

T≔targets inhibited in drug screen

G≔targets with RNA−seq expression in tumor and normal cells

Tumor xð Þ≔gene expression of target x in tumor sample

Q1≔first quartile of Tumor �ð Þ data

∀x∈T∩G
if Tumor xð Þ≥Q1; keep target x for consideration

if Tumor xð Þ < Q1; remove target x from consideration

�
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∀x∉T∩G keep target x for consideration

PTIM Ensemble combination optimization
To address tumor heterogeneity concerns, PTIM com-
putational models were generated for each of the drug
screened PCB490 cultures (PCB490–3, PCB490–4, and
PCB490–5). The PCB490–5 PTIM model integrates
RNA sequencing data as above. Combination therapy for
PCB490 was designed by identifying PTIM target blocks
in each of the three different cell models druggable by
the same two-drug combination.

Rewiring experiments for U23674
Untreated U23674 cells were screened using the Roche
Orphan Kinome Screen and concurrently used to estab-
lish 6 additional independent cultures grown in culture
media at 37 °C with 5% CO2. Upon reaching 70% conflu-
ence, low dosage single agents and drug combinations
(DMSO vehicle, 175 nM OSI-906, 50 nM GDC-0941,
175 nM OSI-906 + 50 nM GDC-0941) were added to
culture plates and incubated for 72 h (Additional file 10:
Figure S10). Cell plates were then washed in Phosphate
Buffered Saline (PBS, Gibco, Grand Island, New York),
trypsonized with Trypsin-EDTA (0.25%) (25,200,056,
Thermo Fisher Scientific), and screened using the Roche
Orphan Kinome Screen (Additional file 11: Figure S11,
Additional file 29: Table S15). Rewiring data was used to
generate PTIM models to identify post-intervention
changes to U23674 survival pathways (Additional file 12:
Figure S12, Additional file 27: Table S13).

Resistance abrogation experiments for PCB197 and S1–12
PCB197 PPTI screen data and S1–12 PPTI screen data
were used to generate PTIM models to identify canine and
human cross-species mechanistic targets for undifferenti-
ated pleomorphic sarcoma. Consensus targets were chosen
for their appearance in human and canine PTIM models;
two drugs (obatoclax, an MCL1 inhibitor and panobinostat,
a pan-HDAC inhibitor) that most effectively inhibited
PTIM-identified blocks at clinically achievable concentra-
tions were selected for validation.
Potential for resistance abrogation by targeting 2 blocks

common to both human and canine PTIM models directed
a six-arm proof-of-principle experiment to show that inhib-
ition of multiple blocks inhibited could abrogate tumor cell
resistance. PCB197 and S1–12 cell cultures were seeded in
quadruplicate on 6-well plates (6 plates per cell model) with
10,000 cells per well. Cells were plated 24 h prior to incuba-
tion with any drug. The drug concentrations chosen were
1.5 times the EC50 of the PTIM target of interest. The drug
selection was based on desired targets, as well as requiring
drug concentration for reaching 1.5 times target Kd must

also be less than the maximum clinically achievable
concentration.
One plate per cell model was assigned to each of the 6

treatment arms: 1) vehicle control; 2) obatoclax for 6 days;
3) panobinostat for 6 days; 4) obatoclax for 3 days, wash,
then panobinostat for 3 days; 5) panobinostat for 3 days,
wash, then obatoclax for 3 days; 6) obatoclax + panobinostat
simultaneously for 6 days. After 6 days, culture plates were
washed with PBS and fresh DMEM with 10% FBS was
placed in each well. Wells were monitored until confluency
was observed. The primary study endpoint was days to well
confluency as determined by a single user. Cells were also
counted manually with a hemocytometer and photographed
to confirm consistency of the user’s definition of confluency.
If after 100 days the cells did not reach confluency, the
remaining cells are counted and the study concluded. The
experimental design and results are available in Fig. 5.

Orthotopic allograft studies for U23674
We orthotopically engrafted adult SHO (SCID/hairless/out-
bred) mice (Charles River, Wilmington, Massachusetts)
with 106 U23674 cells. Engraftment was performed after in-
juring the right gastrocnemius muscle by cardiotoxin injec-
tion as previously described [35]. Mice were assigned to
treatment arms randomly without a specific assignment
strategy. Treatment commenced 2 days after engraftment;
mice were treated with vehicle control (tartaric acid +
TWEEN80/methylcellulose), 50mg/kg OSI-906, 150mg/kg
GDC-0941, and combination 50mg/kg OSI-906 plus 150
mg/kg GDC-0941. Each arm was assigned n = 8 mice per
arm. Sample size was selected to provide 90% power for the
statistical tests. The GDC-0941 arm lost one mouse during
oral gavage; the corresponding data point was censored.
Dosing schedule was once daily by oral gavage up to day 5,
at which time dosing was performed every other day due to
weight loss on day 4. The change in dosing schedule stabi-
lized weight loss. The endpoint considered for the study
and survival analysis was tumor volume = 1.4 cc. All drug
studies in mice were performed after receiving approval
from the IACUC at Oregon Health and Science University.
Variances between compared groups were similar per
Greenwood’s Formula. No blinding was performed during
in vivo experiments. No adverse events were noted. All ani-
mal procedures were conducted in accordance with the
Guidelines for the Care and Use of Laboratory Animals
and were approved by the Institutional Animal Care and
Use Committee at the Oregon Health & Science University.
At conclusion of the study, mice were sacrificed via isoflur-
ane overdose followed by cervical dislocation.

Patient derived xenograft (PDX) model testing for PCB490
Adult female stock mice (Envigo Foxn1nu Athymic
nudes) were implanted bilaterally with approximately
5x5x5mm fragments subcutaneously in the left and right

Berlow et al. BMC Cancer          (2019) 19:593 Page 10 of 23



flanks with JAX PDX model of Human Epithelioid Sar-
coma (J000078604 (PCB490) – JAX-001). After the tu-
mors reached 1–1.5 cm3, they were harvested and the
viable tumor fragments approximately 5x5x5 mm were
implanted subcutaneously in the left flank of the female
study mice (Envigo Foxn1nu Athymic nudes). Each animal
was implanted with a specific passage lot and documented.
J000078604 (PCB490) – JAX-001) was P4. Tumor growth
was monitored twice a week using digital calipers and the
tumor volume (TV) was calculated using the formula
(0.52 × [length × width2]). When the TV reached approxi-
mately 150–250mm3 animals were matched by tumor size
and assigned into control or treatment groups (3/group for
J000078604 (PCB490) – JAX-001). Dosing was initiated on
Day 0. After the initiation of dosing, animals were weighed
using a digital scale and TV was measured twice per week.
For J000078604 (PCB490) – JAX-001, sunitinib (reconsti-
tuted in 5% DMSO + corn oil) was administered PO QD for
21 days at 30.0mg/kg/dose and BEZ235 (reconstituted in
10% N-Methyl-2-pyrrolidone [NMP] + 90% polyethylene gly-
col 300) was administered PO QD for 21 days at 25.0mg/kg/
dose alone and in combination. No adverse events were
noted. At conclusion of the study, mice were sacrificed via
isoflurane overdose followed by cervical dislocation.

Statistics
Spearman correlation coefficients for Epithelioid sar-
coma drug screen response data were calculated in SAS,
correlating drug screen IC50 values between all samples.
Statistical comparison of correlation coefficients between
separate groups was performed in SAS using two-tailed
student’s T-test.
The Kaplan-Meier curves for the U23674 in vivo ortho-

tropic allograft studies were generated and compared with
logrank statistical tests. No blinding was performed. Ana-
lysis was performed by an external group of statisticians
(MWG, BH, JM, SG).
P-values for the PCB490 PDX experiment were generated

using a repeated measures linear model of tumor size in
terms of group, time, and the group by time interaction
based on an autoregressive order 1 correlation assumption
with SAS Version 9.4 for Windows (SAS Institute, Cary,
NC). Analysis was performed by an external group of statis-
ticians (MWG, BH, JM).

Results
Computational analysis of functional and molecular data
via PTIM analysis
The key PTIM modeling assumption is that in vitro drug
sensitivity in cancer cells is driven by a small subset of
key gene targets uniquely determined by the patient’s
biology, and that patient-specific drug sensitivity is most
accurately predicted by multivariate modeling of autolo-
gous drug sensitivity data. The PTIM pipeline requires

drug screening data from multiple (60+) monotherapy
agents with quantified drug-target EC50 values (Fig. 1,
Testing Step). PTIM modeling specifically takes advantage
of the promiscuity of targeted compounds by incorporating
main-target and off-target EC50 values during modeling.
Correspondingly, PTIM models will better represent the
underlying biology of individual cancer samples when
complete drug-target interaction EC50 information is avail-
able. Integration of additional patient-specific molecular
data (e.g., exome-seq, RNA-seq, phosphoproteomics,
siRNA-mediated gene knockdown, Fig. 1, Testing Step)
identifies targets of interest to further refine target selection
during model creation.
Drug sensitivity data and secondary molecular data are

provided as inputs to the PTIM computational framework
[14–19], which provides as output a mathematical model
quantifying expected sensitivity of multi-target inhibition of
the patient’s cancer cells. The model approaches sensitivity
prediction as a feature selection machine learning problem,
where the “features” are the gene targets inhibited by indi-
vidual drugs. The objective of the PTIM analysis approach
is to find feature sets which group sensitive and insensitive
drugs together into binary “bins”, representing a set of
inhibited targets. A feature set where drugs in the same bin
have similar sensitivity values is considered more optimal
than a feature set where bins have high variance. The
addition of molecular sequencing data can eliminate certain
features from consideration if they are absent in the tumor
(e.g. no expression of the gene per RNA-seq data) or can
increase likelihood of a feature being included in the model
if the feature is of high interest (e.g. highly expressed per
RNA-seq, or mutated per exome-seq). The full details of in-
tegration of molecular is available in the methods section,
including a detailed description of integration of molecular
data to drug screening data for validation experiments pre-
sented in this manuscript.
Multi-target sensitivity mechanisms are represented

graphically as “tumor cell survival circuits” (Fig. 1, Mod-
eling Step) where target combinations are denoted as
“blocks” (e.g. Figure 1, Modeling Step inhibitor symbols
A, B, C + D). The value in the center of each PTIM
block represents expected scaled sensitivity following in-
hibition of associated block targets. The resulting PTIM
model enables combination therapy assignment via
matching of targets in high-sensitivity PTIM blocks to
drugs in clinical investigation or clinical use. A single
block denotes monotherapy (e.g. A, B) or combination
therapy (synergistic targets, e.g. C + D), while multiple
blocks represent independent treatments which can be
leveraged to abrogate cancer cell resistance.
If PTIM models from spatially-distinct tumor sites are

available, consensus therapy can be selected from distinct
models to mitigate potential intra-tumor heterogeneity.
When available, additional patient tumor tissue can be used
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to validate PTIM-predicted combination therapy in vitro or
in vivo (Fig. 1, Validation Step). PTIM modeling is the foun-
dation of our personalized therapy pipeline built with the
goal to address the unmet clinical needs of the 600,000 pa-
tients dying from cancer every year [1].
The MATLAB package to generate basic PTIM

models was published in conjunction with a previous
publication [16] and is available online (http://www.
myweb.ttu.edu/rpal/Softwares/PTIM1.zip).

Proof-of-concept of synergy prediction by PTIM modeling
Chemical screening, biological interrogation, and PTIM
modeling of a genetically engineered mouse model
(GEMM)-origin aRMS
For our 2-drug synergy proof-of-concept study, we used a
low passage primary tumor cell culture of a GEMM-origin
aRMS tumor designated U23674 [36] as a pilot study of the
PTIM personalized therapy pipeline. From our previous
work [35, 37] we reasoned that kinases would be funda-
mental to the biology of aRMS, thus we interrogated
U23674 drug sensitivity via three kinase inhibitor com-
pound libraries: the GlaxoSmithKline (GSK) Open Science
Orphan Kinome Library (GSK screen), the Roche Orphan
Kinome Screen Library (Roche screen), and a custom
Pediatric Preclinical Testing Initiative Drug Screen Version
2.1 (PPTI screen).
The GSK screen [38] consists of 305 compounds with ex-

perimentally quantified drug-target interaction EC50 values.
Of the 305 screened compounds, 40 (13%) caused at least
50% cell growth inhibition at or below maximum tested in
vitro dosage in U23674, hereafter defined as a compound
“hit” (Additional file 1: Figure S1 and Additional files 15
and 16: Tables S1 and S2). The Roche screen consists of
223 novel kinase inhibitor compounds, most with quanti-
fied drug-target interactions; 21 of 223 compounds (9.4%)
were hits on U23674 (Additional file 2: Figure S2 and Add-
itional files 17, 18 and 19: Tables S3, S4 and S5). The PPTI
screen consists of 60 preclinical- or clinical-stage targeted
agents; 28 of 60 compounds (46.7%) were hits on U23674
(Additional file 3: Figure S3 and Additional files 20 and 21:
Tables S6 and S7).
Additionally, U23674 primary tissue was sequenced to

enhance therapy design (tumor whole exome sequencing,
matched normal whole exome sequencing, and whole
transcriptome sequencing, Additional files 22 and 23: Ta-
bles S8 and S9). Exome sequencing of U23674 did not
identify any druggable targets both mutated and amplified
(Additional file 4: Figure S4 and Additional files 22 and
23: Tables S8 and S9); six genes possessed activating muta-
tions (Fat4, Gm156, Mtmr14, Pcdhb8, Trpm7, Ttn, Zfp58)
and one gene possessed a high-impact frameshift indel
(Ppp2r5a); none of these seven gene targets are druggable.
No gene with a mutation or indel is druggable. Four drug-
gable gene targets show evidence of copy number gain

(Gsk3a, Epha7, Psmb8, Tlk2). Gsk3a, Psmb8, and Tlk2 all
show neutral expression or underexpression by RNA-seq.
Gsk3a inhibitors were effective in 12 of 72 inhibitors
(16.667%) across three screens, suggesting Gsk3a is not
critical for cancer cell survival in U23674. Psmb8 inhib-
ition showed in vitro efficacy in nearly all tested cell cul-
tures across multiple tumor types (unpublished internal
data) and, along with lack of overexpression, was thus
treated as an in vitro screening artifact; furthermore, clin-
ical response of solid tumors to proteasome inhibitors has
been limited [39]. Tlk2 has no published inhibitor com-
pounds. While overexpressed, the Epha7 inhibitor on the
PPTI drug screen was ineffective against U23674. Therapy
assignment via exome sequencing alone would thus have
limited clinical utility for U23674.

Probabilistic target inhibition map (PTIM) modeling
identifies 2-drug combinations with synergy in vitro
The high average level of target coverage (24 compounds/
target), the inclusion of both typical and atypical kinase tar-
get combinations, and the thorough characterization of
drug-target interactions made the GSK screen the most
complete dataset available and was thus selected to guide in
vitro and in vivo validation experiments. Baseline (chemical
screen data only), RNA-seq informed-, exome-seq in-
formed, siRNA interference informed-, and phosphoproteo-
mics informed-PTIM models were generated from the
GSK screen data (Fig. 2a-c, Additional file 5: Figure S5,
Additional files 24, 25, 26, 27: Tables S10–S13).
PTIM-identified targets were consistent with known targets
of interest in aRMS [40, 41] and identified gene targets in-
volved in established protein-protein interactions [42]
(Additional file 6: Figure S6). As multi-drug combinations
impart toxicity concerns and dosing limitations, we focus
on PTIM blocks (combinations of two or more targets)
treatable by at most two drugs. Baseline and genomics-in-
formed PTIM models were also generated for the PPTI
and Roche screens (Additional file 7: Figure S7, Additional
file 27: Table S13), however no validation experiments
based on PPTI or Roche PTIM models were performed
due to focus on the GSK screen results.
We selected two combinations for in vitro synergy valid-

ation: 1) the RNA-seq-informed target combination Igf1r &
Pik3ca (Fig. 2b) with combination therapy OSI-906 +
GDC-0941 (a Pik3ca inhibitor selective against Akt/mTOR),
and 2) The baseline target combination Igf1r & Insr & Pka
with combination therapy OSI-906 (an Igf1r and Insr in-
hibitor) + SB-772077-B (Pka inhibitor, denoted GSK-PKA in
figures). All compounds were selected based solely on se-
lectivity of interaction with the PTIM-identified targets.
We selected the RNA-seq-informed drug combination

due to high block sensitivity, targetability by a two-drug
combination, and our previous work showing higher correl-
ation between transcriptome status and drug sensitivity
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[14]. The baseline combination was selected due to target-
ability by a two-drug combination, higher score compared
to other two-drug options, and to serve as a comparison
between baseline PTIM models and molecularly-informed
models. In vitro validation experiments for OSI-906 +
GDC-0941 (Fig. 2d-e) demonstrated synergy as determined
by non-constant ratio Combination Index [43] (CI) values
(Additional file 28: Table S14). Low-dose combination
experiments were also performed to confirm PTIM-pre-
dicted drug mechanism of action (Additional file 8: Figure
S8, Additional file 28: Table S14). Both full-dose and
low-dose OSI-906 + SB-772077-B in vitro validation exper-
iments (Additional file 9: Figure S9) demonstrated
non-constant ratio Combination Index synergy (Additional
file 28: Table S14), though overall cell viability of was
OSI-906 + SB-772077-B than higher the RNA-seq-in-
formed combination. In vitro results support the potential
of baseline and molecularly-informed PTIM modeling to
discover synergistic target combinations, though inclusion
of molecular data may narrow focus on targets which are
overexpressed and/or aberrant and thus more likely to re-
spond to drug treatment.

Tumor cell rewiring following synergy-focused combination
therapy
To explore tumor rewiring (activation of secondary sig-
naling pathways to improve chance of survival) following
synergy-focused intervention, we treated U23674 cell
populations with low-dose monotherapy or combination
therapies defined in initial in vitro validation experi-
ments, and subsequently screened the populations via
the Roche screen (Additional files 10 and 11: Figures
S10 and S11 and Additional file 29: Table S15). Unsur-
prisingly, the cell populations showed evidence of rewir-
ing within hours of monotherapy or combination
therapy intervention (Additional file 12: Figure S12,
Additional files 27 and 28: Tables S13 and S14), empha-
sizing the importance of simultaneous, multi-pathway
drug combinations at full therapeutic doses. While
PTIM modeling currently focuses on 2-drug combina-
tions to minimize toxicity concerns, PTIM-predicted

combinations of three or more drugs are possible with
sufficient evidence of safety and efficacy.

Probabilistic target inhibition map (PTIM) modeling predicts
2-drug combination with in vivo efficacy
Having demonstrated in vitro synergy, we next validated
OSI-906 +GDC-0941 in vivo. We designed a four-arm
orthotopic allograft study (Fig. 2f) comparing vehicle,
OSI-906 (50mg/kg), GDC-0941 (150mg/kg), and OSI-906
(50mg/kg) +GDC-0941 (150mg/kg). Kaplan-Meier sur-
vival analysis (Fig. 2g) showed improvement in mouse life-
span from combination treatment (under Bonferroni
correction: Vehicle – Combo, p = 0.005, OSI-906 – Combo,
p = 0.014, GDC-0941 – Combo, p = 0.079. In all cases, p <
0.05 uncorrected). Survival of mice treated with either
OSI-906 or GDC-0941 alone was indistinguishable from
treatment by vehicle (p > 0.5, both corrected and uncor-
rected). Since a PTIM block represents targets which are
weak independently but synergistic together, U23674 in
vivo data supports the hypothesis underlying our modeling
approach: synergistic combination targets can be identified
through computational modeling of monotherapy chemical
agents.

Proof-of-concept of heterogeneity-consensus 2-drug
combinations predicted by PTIM modeling
Development of heterogeneous cell models of Epithelioid
Sarcoma (EPS)
EPS is a soft tissue sarcoma of children and adults for
which chemotherapy and radiation provides little im-
provement in survival [44]. Effective options beyond
wide surgical excision are presently undefined [45], mak-
ing EPS a viable test case for developing targeted per-
sonalized therapies.
We have developed several new heterogeneous EPS pre-

clinical resources: three new unpublished cell cultures, as
well as (to our knowledge) the first reported patient-derived
xenograft (PDX) model of EPS derived from a 22-year-old
female with a large proximal (shoulder) EPS tumor (Fig.
3a). The tumor sample was obtained from surgical resec-
tion and was assigned the internal identifier PCB490. Due
to the size of the acquired tumor sample and the potential

(See figure on previous page.)
Fig. 2 Probabilistic Target Inhibition Maps (PTIMs) and experimental in vitro and in vivo results for U23674 alveolar rhabdomyosarcoma (aRMS) drug
combinations. Targets with adjacent asterisks indicate targets selected for in vitro validation. Values in the center of PTIM blocks represent expected scaled
sensitivity following inhibition of associated block targets. a Abbreviated baseline chemical screen-informed PTIM. b Abbreviated chemical screen RNA-
seq + informed PTIM. c Abbreviated chemical screen + exome-seq informed PTIM. The values within the target blocks indicate scaled drug sensitivity for
the given target combination [16] when the targets are inhibited via one or more chemical compounds. More information can be found in prior
publications [16, 18]. In (d-e), results are based on n= 3 technical replicates with n= 4 replicates per treatment condition. d Dose response curve for OSI-
906 varied dosage + GDC-0941 fixed dosage. The response for GDC-0941 at varied dosages is included. e Dose response curve for GDC-0941 varied
dosage + OSI-906 fixed dosage. The response for OSI-906 at varied dosages is included. f Schematic representation of in vivo experiment design. g Kaplan-
Meier survival curves for in vivo orthotropic mouse experiment. Mice were treated with vehicle (n= 8 mice, black line), 50mg/kg OSI-906 (n= 8 mice, blue
line), 150mg/kg GDC-0941 (n= 7 mice, red line), or combination 50mg/kg OSI-906 + 150mg/kg GDC-0941 (n= 8 mice, purple line). The medicine bottle
image is public domain, provided by user Kim via clker.com (http://www.clker.com/clipart-blank-pill-bottle-3.html)
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for heterogeneity in solid tumors [46], we divided the ~3
cm2 resected tumor mass into five spatially-distinct regions
(designated PCB490–1 through PCB490–5) and cultured
each region to develop heterogeneous cell models (Fig. 3a).
PCB490 cultures were maintained at low passage to
minimize biological drift from the original patient samples.
To confirm EPS diagnosis, three of five tumor sites (1,
2, and 5) were validated by western blot for INI1 pro-
tein, which is absent in 93% of EPS samples (Fig. 3b)
[44] as well as in published cell lines [21, 22]. Multiple
sites were submitted to The Jackson Laboratory for
establishment of PDX models; PCB490–5 PDX devel-
oped a passageable tumor that matched the original
PCB490–5 sample by both histology and INI1 immuno-
histochemical staining (Fig. 3c-f ).

Drug screening, sequencing, and comparison of
heterogeneous EPS cell cultures
Cell cultures PCB490–3, PCB490–4, and PCB490–5
grew to sufficient populations (minimum 3 × 106 cells) at
low passage (passage 2 or below) to allow for drug
screening via the investigator-selected 60-agent screen
denoted Drug Screen V3 (Fig. 3g, Additional file 30:
Table S16) and the previously described Roche screen
(Additional file 31: Table S17). Drug screen endpoints
were per-drug IC50 values.
PCB490 primary tissue was sequenced for tumor

whole exome sequencing, matched normal whole exome
sequencing, and whole transcriptome sequencing (Add-
itional file 13: Figure S13, Additional files 32 and 33: Ta-
bles S18 and S19). Sequencing identified germline and
tumor amplified, expressed, high-impact druggable vari-
ants in two genes (ABL1, NOTCH1) and expressed,
medium impact variants in three additional genes
(MDM4, PAK4, MAP4K5). All five variants were
identified in both tumor and normal (germline) samples.
The ABL1 variant was previously identified in the 1000
Genomes Project [47]. The ABL1, NOTCH1, MDM4 and
PAK4 variants were previously submitted to the dbSNP
database [48]. All variants are of unknown clinical
significance (Additional file 34: Table S20) [48, 49].
PCB490 drug screening results revealed no pathway-
specific drug sensitivity of mutated genes (Additional file
14: Figure S14) suggesting therapy assignment via exome
sequencing alone would likely have limited clinical utility
for PCB490.
To compare drug sensitivity of PCB490 with other

EPS models, three cell lines (ESX, FU-EPS-1, and
VA-ES-BJ), a second human-derived cell culture
(PCB495), and the SkMc skeletal myoblast cell line were
assayed with Drug Screen V3 (Fig. 3g, Additional file 35:
Table S21). Drug Screen V3 responses were compared
by calculating Spearman correlation coefficients (Fig. 3h)

to quantify the similarity between the new EPS models
and existing EPS cell models. For the purpose of this
analysis, we treat the PCB490 cultures from different re-
gions as independent samples. Correlation within pri-
mary cell cultures (PCB490 sites and PCB495) was
significantly higher than correlation between primary
cultures and cell lines (μ = 0.6466 vs. μ = 0.4708, p <
0.01), suggesting EPS primary cultures may be biologic-
ally distinct from EPS cell lines. PCB490 drug screen re-
sponse differed between sample locations millimeters
away from each other, reflective of biological differences
arising from spatial tumor heterogeneity. Nonetheless,
correlation between chemical screen results from
PCB490 cultures was significantly higher than correl-
ation between PCB490 cultures and PCB495 cultures/
EPS cell lines (μ = 0.7671 vs. μ = 0.4601, p < 0.001), sug-
gesting that treatments for PCB490 may be better de-
fined solely by PCB490 biological data.

PTIM modeling guides heterogeneity-consensus in vivo drug
combination
Highly correlated yet heterogeneous PCB490 drug sensi-
tivity data guided us towards PTIM modeling to design
a heterogeneity-consensus personalized drug combin-
ation therapy for PCB490. PTIM models of PCB490–3
(Fig. 4a, Additional file 27: Table S13), PCB490–4 (Fig.
4b, Additional file 27: Table S13), and PCB490–5 with
integrated RNA-seq data (Fig. 4c, Additional file 27:
Table S13) indicated common efficacious mechanisms
across the heterogeneous tumor sites: epigenetic modi-
fiers (HDAC, EHMT), PI3K/mTOR inhibition, and
VEGF (KDR) signaling inhibition. We focused on
high-scoring PTIM blocks treatable by a two-drug com-
bination, resulting in selection of BEZ235 (PI3K/mTOR
inhibitor) and sunitinib (poly-kinase inhibitor, including
KDR and AXL). BEZ235 + sunitinib was selected solely
based on PTIM modeling data, agnostic to previous use
of sunitinib in EPS [50].
To replicate potential clinical conditions for personal-

ized combination therapy, we bypassed in vitro valid-
ation and directly initiated in vivo testing of BEZ235 +
sunitinib in the PCB490 PDX model. Though the
PCB490 PDX model originates from the PCB490–5 re-
gion, heterogeneity of PCB490 suggests the tumor
section used to establish the PCB490 PDX can be con-
sidered a unique heterogeneous region. PDX testing of
BEZ235 + sunitinib demonstrated significant slowing of
tumor growth over vehicle control (92% slower tumor
growth at Day 19, p = 0.01) (Fig. 4d). In statistical ana-
lysis restricted to treated animals at Day 19, BEZ235 +
sunitinib significantly slowed PDX tumor growth com-
pared to both BEZ235 (p = 0.01) and sunitinib (p = 0.01)
alone (Fig. 4d).

Berlow et al. BMC Cancer          (2019) 19:593 Page 15 of 23



Fig. 3 (See legend on next page.)
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Proof-of-concept of resistance-abrogating 2-drug
combinations predicted by PTIM modeling
PTIM modeling of undifferentiated pleomorphic sarcoma
(UPS) samples guides cross-species resistance-abrogating
drug combination in vitro
The previously discussed U23674 rewiring experiment
emphasized the need for multi-pathway targeting when
developing personalized treatments. The PTIM model-
ing approach identifies mechanisms driving in vitro drug
sensitivity by identifying effective target combination
“blocks”; two blocks operating on different biological
pathways represent two independent treatment mecha-
nisms. We reasoned that two-block inhibition could

result in resistance-abrogating combination treatments,
thus we validate a drug combination designed from two
PTIM blocks representing independent biological path-
ways. PTIM modeling of PPTI screen data from a UPS
derived from a 75-year-old man (PCB197, Fig. 5a,
Additional file 36: Tables S22) and a canine-origin UPS
(S1–12, Fig. 5b, Additional file 36: Table S22) identified
species-consensus drug sensitivity mechanisms target-
able by a 2-block, 2-drug combination (Fig. 5c, d, Add-
itional file 27: Table S13): panobinostat (pan-HDAC
inhibitor, HDAC7 block) and obatoclax (MCL1 inhibi-
tor). The combination of panobinostat + obatoclax was
predicted to abrogate resistance mechanisms and

(See figure on previous page.)
Fig. 3 New cell cultures and patient-derived xenograft model of EPS with chemical space characterization. a PCB490 biopsy sample divided into
distinct regions to create different primary tumor cell cultures for study. b Western blot demonstrating loss of INI1 in multiple primary tumor sites and
in published EPS cell lines. c Histology of surgical biopsy of PCB490. d Immunohistochemical staining of PCB490 for INI1 shows absence in tumor cells
(black arrow) but presence in co-mingled non-cancerous cells. e Histology of PCB490 patient-derived xenograft. f INI1 absence (black arrow) in
immunohistochemical staining of PCB490 patient-derived xenograft. g Drug Screen V3 results from primary EPS cell cultures, published EPS cell lines,
and a normal myoblast cell line. The heat values indicate drug sensitivity as IC50 values, scaled between 10 nM (red) and 10 μM (white, representing
no IC50 achieved) h Heatmap of Pearson correlation coefficients of 60-agent drug screen results between a normal myoblast cell line (SkMC), three EPS
cell lines (ESX, VA-ES-BJ, FU-EPS-1), three sites from PCB490 (PCB490–3, PCB490–4, PCB490–5), and an additional EPS patient-derived culture (PCB495).
The heat values correspond to Pearson correlation coefficients between drug sensitivities of different cell models

Fig. 4 Probabilistic Target Inhibition Maps (PTIMs) of Drug Screen V3 and Roche screen results for spatially-distinct epithelioid sarcoma tumor regions. Values in
the center of PTIM blocks represent expected scaled sensitivity following inhibition of associated block targets. a-c PTIMs informed by Roche Orphan Kinase
Library and V3 screens. Targets of sunitinib are highlighted red, targets of BEZ235 are highlighted blue. a Abbreviated PTIM for PCB490–3. b Abbreviated PTIM
for PCB490–4. c Abbreviated PTIM from PCB490–5 with integrated RNA-seq data. d Results from PCB490–5 patient-derived xenograft in vivo validation studies
presented as group-wide tumor volumes following vehicle treatment (n=3 mice, green line), treatment by 30.0mg/kg sunitinib (n= 3 mice, red line),
treatment by 25.0mg/kg BEZ235 (n=3 mice, blue line), and treatment by 25.0mg/kg BEZ235+ 30.0mg/kg sunitinib (n=3 mice, purple line)
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Fig. 5 Undifferentiated pleomorphic sarcoma (UPS) Probabilistic Target Inhibition Map (PTIM)-guided resistance abrogation experiments. Values in the
center of PTIM blocks represent expected scaled sensitivity following inhibition of associated block targets. a Histology of PCB197 human UPS sample
(20x magnification). b Histology of S1–12 canine UPS sample (20x magnification). c Abbreviated PTIM model for the pediatric preclinical testing initiative
(PPTI) screen of PCB197 human UPS sample. d Abbreviated PTIM model built from the PPTI screen of S1–12 canine UPS sample. e Schematic of
experimental design for resistance abrogation experiments. f Cellular regrowth of PCB197 human UPS sample over 100 days following treatment by
single and multi-agent compounds in sequence and in combination. g Cellular regrowth of S1–12 canine UPS sample over 100 days following treatment
by single and multi-agent compounds in sequence and in combination. Data in (f-g) is based on n= 4 replicate experiments
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prevent cancer cell rewiring and regrowth; furthermore,
the cross-species nature of the experiment supports the
resistance-abrogation effect not being model specific.
To validate in vitro resistance abrogation across species,

we performed identical six-arm in vitro trials for PCB197
and S1–12. Each arm represented a different combination
method for the cross-species combination: vehicle
treatment, monotherapy treatment, serial monotherapy
treatment (panobinostat then obatoclax, obatoclax then
panobinostat), and simultaneous combination treatment
(concurrent panobinostat + obatoclax) (Fig. 5e). Resistance
abrogation in each arm was determined by cellular re-
growth over 100 days following treatment. Rewiring and
regrowth was expected for all monotherapy and serial
treatment modalities. All arms except the simultaneous
combination treatment arm experienced cellular regrowth,
indicating the development of resistance. In both cultures,
the simultaneous combination treatment arm showed no
cellular regrowth over 100 days, indicating the combination
potentially addressed resistance mechanisms (Fig. 5f, g).

Discussion
The work presented here represents validation experiments
for three aspects of PTIM-guided personalized cancer ther-
apy design: drug sensitivity and synergy prediction in a
GEMM-origin aRMS, heterogeneity-consensus drug
combination design and validation in the first-reported EPS
PDX model, and mitigation of cancer cell resistance mecha-
nisms in cross-species in vitro validation experiments. Our
studies suggest the high value of combining functional
screening data with secondary molecular data (especially
RNA-seq data) in the design of personalized drug combina-
tions as a supplement to or alternative to DNA
sequencing-based therapy assignment. While increased ef-
fort is required to generate functional data, the additional
information and evidence may prove useful in designing
therapeutically effective personalized cancer treatments.
Critically, the timeframe for PTIM-based combination

therapy design is less than the time required for standard
high-throughput sequencing experiments. The PTIM ana-
lysis pipeline can be performed in under 2 weeks and
without the explicit need for sequencing results. Cur-
rently, the time limiting step in integrative PTIM analysis
is exome and RNA sequencing, for which new technology
is rapidly reducing time and monetary cost. Functional
drug screening in standard well plates can be performed
for under $300, and CLIA-certified physical sequencing
experiments are now under $500 per analyte per experi-
ment; the cost of a complete functional and molecular
analysis now represents a fraction of drug cost and may be
accessible to a large population of cancer patients.
The three PTIM-guided validation experiments serve as

proofs-of-concept rather than a full clinical validation.
The current study lacks the large sample size necessary to

reach definite conclusions on the large-scale efficacy of
PTIM-based personalized cancer therapy. Any treatment
strategy, especially a personalized approach, requires a
large population to draw clinically-relevant conclusions.
Increasing the sample size of personalized treatments de-
signed by the PTIM approach is required to demonstrate
clinical use. To that end, the critical next stage in
PTIM-based personalized therapy design will be prospect-
ive evaluation by partnering with physicians and veterinar-
ians to pilot testing of n-of-1 personalized therapies in
individual human patients and animals with spontaneous
cancer. As the cost of analysis is low, the major challenges
will be 1) administration of FDA-approved drugs, very
likely as off-label therapy in combinations potentially not
validated in Phase I trials, and 2) financial costs associated
with modern targeted therapy regimens, which may cur-
rently be prohibitive for some patients.
As drug screen results ultimately guide PTIM modeling,

computational modeling of different disease types will re-
quire designing disease-specific compound screens to
maximize the breadth and depth of disease-relevant
multi-target interactions [15]. Similarly, different types of
secondary molecular data influences target selection dur-
ing PTIM model construction depending on the under-
lying analyte or perturbation, with different secondary
datasets expectedly producing different PTIM models. Se-
lection of secondary datasets to generate for individual
cases will depend on availability of tumor tissue and ex-
pected predictive utility of individual datasets. Based on
widespread clinical utility and published studies, the
current standard secondary datasets for PTIM modeling
are exome sequencing data and RNA sequencing data
[14]. As high-throughput analysis of additional biological
analytes becomes available through CLIA certified proce-
dures, new datatypes will be integrated into PTIM models.
In particular, recent advances in robust generation of pro-
teomics data from patient samples [51–53] may enable
routine integration of proteomics data into PTIM model-
ing beyond the test case presented in this work.
PTIM-based personalized cancer therapy also requires de-

velopment of personalized toxicity and dosing prediction
methods for designing maximally effective, minimally toxic
drug combinations. Research on toxicity prediction is under-
way, as is research on incorporating chemotherapy back-
bone into drug combination predictions. While validated
PTIM models are currently based on low-passage cell cul-
tures (U23674, PCB490, S1–12, PCB197), future application
of PTIM models will use direct-to-plate tumor screening to
best recapitulate the patient’s disease state and to remove
the dependence on cell culture establishment. Finally, we
will pursue expansion of disease-consensus PTIM modeling
[19] to establish new disease-specific drug combinations
based on integrated drug screening and high-throughput
sequencing data.
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Conclusion
PTIM-based personalized combination therapy has been
designed to uniquely leverage patient-specific functional
and biological data to address some of the critical unmet
clinical needs of the 60% of cancer patients for whom
tumor DNA analysis is uninformative [2] and the
600,000 patients lost to cancer every year [1] who have
exhausted clinical options. PTIM modeling can also
meet the needs of cancer patients with rare diseases,
such as the spectrum of 60+ cancers known as
non-rhabdomyosarcoma soft tissue sarcomas (including
EPS) for which effective clinical treatments may not
exist and may never be developed due to a paucity of
disease models for research. These two groups represent
a significant cancer patient population for which PTIM
modeling may provide evidence-based treatment options
where no therapeutic avenues exist.

Additional files

Additional file 1: Figure S1. Heat map of merged chemical
screen, RNA-seq, siRNA, and phosphoproteomics results for
GlaxoSmithKline (GSK) Orphan Kinome screen. Due to the large
number of compounds and protein targets, only a limited scope
of compounds and targets is shown here (for full data, see
Additional file 15: Table S1). Bright red indicates high sensitivity
values, gradating down to white meaning low sensitivity. Gray
indicates no interaction or no available data. Asterisk indicates
targets later validated in vivo. (TIF 38030 kb)

Additional file 2: Figure S2. Heat map of merged Roche Orphan
Kinome chemical screen, RNA-seq, siRNA, and phosphoproteomics results.
Due to the large number of compounds and protein targets, only a
limited scope of compounds and targets is shown here (For full data,
see Additional file 17: Table S3). Bright red indicates high sensitivity
values, gradating down to white meaning low sensitivity. Gray indicates
no interaction or no available data. (TIF 58505 kb)

Additional file 3: Figure S3. Heat map of joint version 2.1 chemical
screen, RNA-seq, siRNA, and phosphoproteomics results. Due to the large
number of compounds and protein targets, only a limited scope of
compounds and targets is shown here (For full data, see Additional file
21: Table S7). Bright red indicates high sensitivity values, gradating down
to white meaning low sensitivity. Gray indicates no interaction or no
available data (TIF 57387 kb)

Additional file 4: Figure S4. Circos plot of U23674 RNA sequencing
and exome sequencing data. The outermost data circle represents
log2-scaled gene expression [log2(expression+ 1), low expression
(white) to high expression (red), with missing values colored black].
The middle circle represents genes with identified mutations or
indels (red) or lack thereof (black). The innermost circle represents
copy number variations (red is amplification, blue is deletion, black
is no variation). (TIF 67243 kb)

Additional file 5: Figure S5. PTIM models developed using
secondary datasets. (A) Chemical screen + siRNA informed PTIM.
Values in the center of PTIM blocks represent expected scaled sensitivity
following inhibition of associated block targets. (B) Chemical screen +
phosphoproteomics informed PTIM. The values within the target blocks
indicate scaled drug sensitivity [16] when block targets are inhibited.
(TIF 22272 kb)

Additional file 6: Figure S6. STRINGdb visualizations of protein-
protein interaction networks implicated by PTIM models. The protein-
protein interaction networks here are derived from targets selected

to define drug sensitivity during PTIM modeling. Edges in the STRINGdb
graph represent confidence of interactions based on data from multiple
published sources. Edges with confidence > 0.9 are represented on the graph.
The asterisk indicates targets validated in vitro. (A) Network of the set of
targets common to the models developed for the GSK Orphan Kinome
screen and the PPTI screen. Enrichment p-value < 0.01. (B) Network of the
targets identified by the GSK Orphan Kinome screen alone. Enricment p-value
< 0.01. (TIF 27210 kb)

Additional file 7: Figure S7. Probabilistic Target Inhibition Map
(PTIM) model of U23674 Roche chemical screen hits. Values in the center of
PTIM blocks represent expected scaled sensitivity following inhibition of
associated block targets. (A) Base chemical screen informed PTIM. (B) RNA-
seq + chemical screen informed PTIM. Roche screen hits include CDK2 inhibi-
tors. However, no CDK inhibitor was a known inhibitor of non-CDK targets,
limiting
development of personalized combinations involving CDK
inhibitors. (TIF 29510 kb)

Additional file 8: Figure S8. Low dose combination validation results
for drug combinations GDC-0941 +OSI-906. Results are based on n= 3
technical replicates with n= 4 replicates per treatment condition. (A) Dose re-
sponse curve for OSI-906 varied dosage + GDC-0941 low fixed dosage. The re-
sponse for GDC-0941 at varied dosages is included. (B) Dose response curve
for GDC-0941
varied dosage + OSI-906 low fixed dosage. The response for OSI-906 at
varied dosages is included. (TIF 10578 kb)

Additional file 9: Figure S9. Combination validation results for
drug combinations SB-772077-B (GSK-PKA) +OSI-906. Results are based on
n= 3 technical replicates with n= 4 replicates per treatment condition. (A)
Dose response curve for OSI-906 varied dosage + SB-772077-B fixed dosage.
Response for SB-772077-B at varied dosages is included. (B) Dose response
curve for OSI-906 varied dosage + SB-772077-B low fixed dosage. (C) Dose re-
sponse curve for SB-772077-B varied dosage + OSI-906 fixed dosage. The re-
sponse for OSI-906 at varied dosages is included. (D) Dose response curve for
SB-772077-B varied dosage + OSI-906 low fixed dosage. The response for OSI-
906 at varied dosages is included. (TIF 67346 kb)

Additional file 10: Figure S10. Schematic of PTIM-informed U23674
rewiring experiment. An initial culture of U23674 is screened using the Roche
screen. The same culture is used to seed 6 new cultures, which are grown
until the cell population is sufficient for drug screening. Five of the 6 cultures
were treated using single agents and drug combinations in low dosages
(75 nM OSI-906, 50 nM GDC-0941) and one culture was left untreated. After
treatment and incubation for 72 h, the compounds were removed the cells
were screened using the Roche Orphan Kinome screen. (TIF 8496 kb)

Additional file 11: Figure S11. Heat map of joint Roche Orphan Kinome
chemical screen, RNA-seq, siRNA, and phosphoproteomics results from the
U23674 Probabilistic Target Inhibition Map (PTIM) rewiring experiment. Due
to the large number of compounds and protein targets, only a limited scope
of compounds and targets is shown here (For full data, see Additional file 28:
Table S14). Bright red indicates high sensitivity values, gradating down to
white meaning low sensitivity. Gray indicates no interaction or no available
data. (TIF 96004 kb)

Additional file 12: Figure S12. Probabilistic Target Inhibition Map (PTIM)
models from U23674 experimental rewiring data. Values in the center of PTIM
blocks represent expected scaled sensitivity following inhibition of associated
block targets. (A) Untreated initial culture PTIM. (B) Untreated secondaryculture
PTIM. (C) OSI-906-treated rewire PTIM. (D) GDC-0941-treated rewire PTIM. (E)
OSI-906 +GDC-0941-treated rewire PTIM. (TIF 41768 kb)

Additional file 13: Figure S13. Circos plot of PCB490 RNA sequencing
and exome sequencing data. ABL1 and NOTCH1 are identified as both
mutated and amplified, though both variants were also identified in the
matched germline sample. The outermost data circle represents log2-
scaled gene expression [log2(expression+ 1), low expression (white) to
high expression (red), with missing values colored black]. The middle
circle represents genes with identified mutations or indels (red) or lack
thereof (black). The innermost circle represents copy number variations
(red is amplification, blue is deletion, black is no variation). (TIF 69008 kb)

Additional file 14: Figure S14. Heat map of IC50 and EC50 values
for Pediatric Preclinical Testing Initiative Version 3 drug screen
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compounds inhibiting mutated and expressed targets in PCB490.
Red in the IC50 and EC50 tables indicates low IC50 and EC50 values,
respectively. No single target or combination of targets showed
uniform efficacy across all PCB490 cultures, suggesting variations
alone or in conjunction with transcriptome sequencing would not
have identified actionable therapeutic targets. Heat values in the IC50
section of the table represent drug sensitivities as IC50 values,
between 1 nM (red) and 6 μM or above (white). Heat values in
the EC50 section of the table represent quantified drug-target
interaction between chemical agents and gene targets, quantified
as 50% inhibitory concentrations between 1 nM (red) and 6 μM or
above (white), with grey representing no interaction. (TIF 13895 kb)

Additional file 15: Table S1. Merged GSK Screen Data - U23674.
(XLSX 271 kb)

Additional file 16: Table S2. GSK Screen Data IC50 Data - U23674.
(XLSX 15 kb)

Additional file 17: Table S3. Roche Screen Merged Data - U23674.
(XLSX 88 kb)

Additional file 18: Table S4. Roche screen hit references. (XLSX 13 kb)

Additional file 19: Table S5. Roche screen IC50 data - U23674.
(XLSX 9 kb)

Additional file 20: Table S6. PPTI screen IC50 data - U23674.
(XLSX 10 kb)

Additional file 21: Table S7. PPTI Screen Merged data - U23674.
(XLSX 130 kb)

Additional file 22: Table S8. Exome Sequencing Data - U23674.
(XLSX 1792 kb)

Additional file 23: Table S9. RNA Sequencing Data - U23674.
(XLSX 2157 kb)

Additional file 24: Table S10. RAPID siRNA Screen data - U23674.
(XLSX 43 kb)

Additional file 25: Table S11. Rapid Screen vs Drug screen - U23674.
(XLSX 10 kb)

Additional file 26: Table S12. Phospho Screen data - U23674.
(XLSX 657 kb)

Additional file 27: Table S13. PTIM Map Scores. (XLSX 14 kb)

Additional file 28: Table S14. Combination Index Values - U23674.
(XLSX 13 kb)

Additional file 29: Table S15. Rewiring Screening Data - U23674.
(XLSX 270 kb)

Additional file 30: Table S16. V3 Drug Screen data - PCB490.
(XLSX 10 kb)

Additional file 31: Table S17. Roche Drug Screen data - PCB490.
(XLSX 14 kb)

Additional file 32: Table S18. Exome Sequencing Data - PCB490.
(XLSX 345 kb)

Additional file 33: Table S19. RNA Sequencing data - PCB490.
(XLSX 3314 kb)

Additional file 34: Table S20. Druggable Exome Targets - PCB490.
(XLSX 11 kb)

Additional file 35: Table S21. EPS Model V3 Drug Screen Data.
(XLSX 11 kb)

Additional file 36: Table S22. PPTI Drug Screening Data – UPS.
(XLSX 9 kb)
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