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Abstract Gene expression in all organisms is controlled by cooperative interactions between

DNA-bound transcription factors (TFs), but quantitatively measuring TF-DNA and TF-TF

interactions remains difficult. Here we introduce a strategy for precisely measuring the Gibbs free

energy of such interactions in living cells. This strategy centers on the measurement and modeling

of ‘allelic manifolds’, a multidimensional generalization of the classical genetics concept of allelic

series. Allelic manifolds are measured using reporter assays performed on strategically designed

cis-regulatory sequences. Quantitative biophysical models are then fit to the resulting data. We

used this strategy to study regulation by two Escherichia coli TFs, CRP and s70 RNA polymerase.

Doing so, we consistently obtained energetic measurements precise to ~ 0:1 kcal/mol. We also

obtained multiple results that deviate from the prior literature. Our strategy is compatible with

massively parallel reporter assays in both prokaryotes and eukaryotes, and should therefore be

highly scalable and broadly applicable.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that

minor issues remain unresolved (see decision letter).

DOI: https://doi.org/10.7554/eLife.40618.001

Introduction
Cells regulate the expression of their genes in response to biological and environmental cues. A

major mechanism of gene regulation in all organisms is the binding of transcription factor (TF) pro-

teins to cis-regulatory elements encoded within genomic DNA. DNA-bound TFs interact with one

another, either directly or indirectly, forming cis-regulatory complexes that modulate the rate at

which nearby genes are transcribed (Ptashne and Gann, 2002; Courey, 2008). Different arrange-

ments of TF binding sites within cis-regulatory sequences can lead to different regulatory programs,

but the rules that govern which arrangements lead to which regulatory programs remain largely

unknown. Understanding these rules, which are often referred to as ‘cis-regulatory grammar’

(Spitz and Furlong, 2012), is a major challenge in modern biology.

Measuring the quantitative strength of interactions among DNA-bound TFs is critical for elucidat-

ing cis-regulatory grammar. In particular, knowing the Gibbs free energy of TF-DNA and TF-TF inter-

actions is essential for building biophysical models that can quantitatively explain gene regulation in

terms of simple protein-DNA and protein-protein interactions (Shea and Ackers, 1985; Bintu et al.,

2005; Sherman and Cohen, 2012). Biophysical models have proven remarkably successful at quanti-

tatively explaining regulation by a small number of well-studied cis-regulatory sequences. Arguably,

the biggest successes have been achieved in the bacterium Escherichia coli, particularly in the con-

text of the lac promoter (Vilar and Leibler, 2003; Kuhlman et al., 2007; Kinney et al., 2010;

Garcia and Phillips, 2011; Brewster et al., 2014) and the OR/OL control region of the l phage
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lysogen (Ackers et al., 1982; Shea and Ackers, 1985; Cui et al., 2013). But in both cases, this quan-

titative understanding has required decades of focused study. New approaches for dissecting cis-

regulatory energetics, approaches that are both systematic and scalable, will be needed before a

general quantitative understanding of cis-regulatory grammar can be developed.

Here we address this need by describing a systematic experimental/modeling strategy for dis-

secting the biophysical mechanisms of transcriptional regulation in living cells. Our strategy centers

on the concept of an ‘allelic manifold’. Allelic manifolds generalize the classical genetics concept of

allelic series to multiple dimensions. An allelic series is a set of sequence variants that affect the

same phenotype (or phenotypes) but differ in their quantitative strength. Here we construct allelic

manifolds by measuring, in multiple experimental contexts, the phenotypic strength of each variant

in an allelic series. Each variant thus corresponds to a data point in a multi-dimensional ‘measure-

ment space’. If the measurement space is of high enough dimension, and if one’s measurements are

sufficiently precise, these data should collapse to a lower-dimension manifold that represents the

inherent phenotypic dimensionality of the allelic series. These data can then be used to infer quanti-

tative biophysical models that describe the shape of the allelic manifold, as well as the location of

each allelic variant within that manifold. As we show here, such inference allows one to determine in

vivo values for important biophysical quantities with remarkable precision.

We demonstrate this strategy on a regulatory paradigm in E. coli: activation of the s70 RNA poly-

merase holoenzyme (RNAP) by the cAMP receptor protein (CRP, also called CAP). CRP activates

transcription when bound to DNA at positions upstream of RNAP (Busby and Ebright, 1999), and

the strength of these interactions is known to depend strongly on the precise nucleotide spacing

between CRP and RNAP binding sites (Gaston et al., 1990; Ushida and Aiba, 1990). However, the

Gibbs free energies of these interactions are still largely unknown. To our knowledge, only the CRP-

RNAP interaction at the lac promoter has previously been quantitatively measured (Kuhlman et al.,

2007; Kinney et al., 2010). By measuring and modeling allelic manifolds, we systematically deter-

mined the in vivo Gibbs free energy (DG) of CRP-RNAP interactions that occur at a variety of differ-

ent binding site spacings. These DG values were consistently measured to an estimated precision of

~ 0.1 kcal/mol. We also obtained DG values for in vivo CRP-DNA and RNAP-DNA interactions, again

with similar estimated precision.

The Results section that follows is organized into three Parts, each of which describes a different

use for allelic manifolds. Part 1 focuses on measuring TF-DNA interactions, Part 2 focuses on TF-TF

interactions, and Part 3 shows how to distinguish different possible mechanisms of transcriptional

activation. Each Part consists of three subsections: Strategy, Demonstration, and Aside. Strategy

covers the theoretical basis for the proposed use of allelic manifolds. Demonstration describes how

we applied this strategy to better understand regulation by CRP and RNAP. Aside describes related

findings that are interesting but somewhat tangential.

Results

Part 1. Strategy: Measuring TF-DNA interactions
We begin by showing how allelic manifolds can be used to measure the in vivo strength of TF bind-

ing to a specific DNA binding site. This measurement is accomplished by using the TF of interest as

a transcriptional repressor. We place the TF binding site directly downstream of the RNAP binding

site in a bacterial promoter so that the TF, when bound to DNA, sterically occludes the binding of

RNAP. We then measure the rate of transcription from a few dozen variant RNAP binding sites. Tran-

scription from each variant site is assayed in both the presence and in the absence of the TF.

Figure 1A illustrates a thermodynamic model (Shea and Ackers, 1985; Bintu et al., 2005;

Sherman and Cohen, 2012) for this type of simple repression. In this model, promoter DNA can be

in one of three states: unbound, bound by the TF, or bound by RNAP. Each of these three states is

assumed to occur with a frequency that is consistent with thermal equilibrium, that is with a probabil-

ity proportional to its Boltzmann weight.

The energetics of protein-DNA binding determine the Boltzmann weight for each state. By con-

vention we set the weight of the unbound state equal to 1. The weight of the TF-bound state is then

given by F ¼ ½TF�KF where ½TF� is the concentration of the TF and KF is the affinity constant in

inverse molar units. Similarly, the weight of the RNAP-bound state is P ¼ ½RNAP�KP. In what follows
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we refer to F and P as the ‘binding factors’ of the TF-DNA and RNAP-DNA interactions, respectively.

We note that these binding factors can also be written as F ¼ e
�DGF=kBT and P ¼ e

�DGP=kBT where kB is

Boltzmann’s constant, T is temperature, and DGF and DGP respectively denote the Gibbs free energy

of binding for the TF and RNAP. Note that each Gibbs free energy accounts for the entropic cost of

pulling each protein out of solution. In what follows, we report DG values in units of kcal/mol; note

that 1 kcal/mol = 1:62 kBT at 37 ˚C.
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Figure 1. Strategy for measuring TF-DNA interactions. (A) A thermodynamic model of simple repression. Here,

promoter DNA can transition between three possible states: unbound, bound by a TF, or bound by RNAP. Each

state has an associated Boltzmann weight and rate of transcript initiation. F is the TF binding factor and P is the

RNAP binding factor; see text for a description of how these dimensionless binding factors relate to binding

affinity and binding energy. tsat is the rate of specific transcript initiation from a promoter fully occupied by RNAP.

(B) Transcription is measured in the presence (tþ) and absence (t�) of the TF. Measurements are made for an allelic

series of RNAP binding sites that differ in their binding strengths (blue-yellow gradient). (C) If the model in panel A

is correct, plotting tþ vs. t� for the promoters in panel B (colored dots) will trace out a 1D allelic manifold.

Mathematically, this manifold reflects Equation 1 and Equation 2 computed over all possible values of the RNAP

binding factor P while the other parameters (F, tsat) are held fixed. Note that these equations include a

background transcription term tbg; it is assumed throughout that tbg � tsat and that tbg is independent of RNAP

binding site sequence. The resulting manifold exhibits five distinct regimes (circled numbers), corresponding to

different ranges for the value of P that allow the mathematical expressions in Equations 1 and 2 to be

approximated by simplified expressions. In regime 3, for instance, tþ » t�=ð1þ FÞ, and thus the manifold

approximately follows a line parallel (on a log-log plot) to the diagonal but offset below it by a factor of 1þ F

(dashed line). Data points in this regime can therefore be used to determine the value of F. (D) The five regimes of

the allelic manifold, including approximate expressions for tþ and t� in each regime, as well as the range of

validity for P.

DOI: https://doi.org/10.7554/eLife.40618.002
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The overall rate of transcription is computed by summing the amount of transcription produced

by each state, weighting each state by the probability with which it occurs. In this case we assume

the RNAP-bound state initiates at a rate of tsat, and that the other states produce no transcripts. We

also add a term, tbg, to account for background transcription (e.g., from an unidentified promoter

further upstream). The rate of transcription in the presence of the TF is thus given by

tþ ¼ tsat
P

1þFþP
þ tbg: (1)

In the absence of the TF (F ¼ 0), the rate of transcription becomes

t� ¼ tsat
P

1þP
þ tbg: (2)

Our goal is to measure the TF-DNA binding factor F. To do this, we create a set of promoter

sequences where the RNAP binding site is varied (thus generating an allelic series) but the TF bind-

ing site is kept fixed. We then measure transcription from these promoters in both the presence and

absence of the TF, respectively denoting the resulting quantities by tþ and t� (Figure 1B). Our ratio-

nale for doing this is that changing the RNAP binding site sequence should, according to our model,

affect only the RNAP-DNA binding factor P. All of our measurements are therefore expected to lie

along a one-dimensional allelic manifold residing within the two-dimensional space of (t�, tþ) values.

Moreover, this allelic manifold should follow the specific mathematical form implied by Equations 1

and 2 when P is varied and the other parameters (tsat, tbg, F) are held fixed; see Figure 1C.

The geometry of this allelic manifold is nontrivial. Assuming F � 1 and tbg � tsat, there are five dif-

ferent regimes corresponding to different values of the RNAP binding factor P. These regimes are

listed in Figure 1D and derived in Appendix 4. In regime 1, P is so small that both tþ and t� are

dominated by background transcription, that is tþ » t� » tbg: P is somewhat larger in regime 2, causing

t� to be proportional to P while tþ remains dominated by background. In regime 3, both tþ and t�

are proportional to P with tþ=t� » 1=ð1þ FÞ. In regime 4, t� saturates at tsat while tþ remains propor-

tional to P. Regime five occurs when both tþ and t� are saturated, that is tþ » t� » tsat.

Part 1. Demonstration: Measuring CRP-DNA binding
The placement of CRP immediately downstream of RNAP is known to repress transcription

(Morita et al., 1988). We therefore reasoned that placing a DNA binding site for CRP downstream

of RNAP would allow us to measure the binding factor of that site. Figure 2 illustrates measure-

ments of the allelic manifold used to characterize the strength of CRP binding to the 22 bp site

GAATGTGACCTAGATCACATTT. This site contains the well-known consensus site, which comprises

two palindromic pentamers (underlined) separated by a 6 bp spacer (Gunasekera et al., 1992). We

performed measurements using this CRP site centered at two different locations relative to the tran-

scription start site (TSS): +0.5 bp and +4.5 bp. Note that the first transcribed base is, in this paper,

assigned position 0 instead of the more conventional +1, and half-integer positions indicate center-

ing between neighboring nucleotides. To avoid influencing CRP binding strength, the �10 region of

the RNAP site was kept fixed in the promoters we assayed while the �35 region of the RNAP bind-

ing site was varied (Figure 2A). Promoter DNA sequences are shown in Appendix 1—figure 1.

We obtained t� and tþ measurements for these constructs using a modified version of the colori-

metric b-galactosidase assay of Lederberg (1950) and Miller (1972); see Appendix 2 for details.

Our measurements are largely consistent with an allelic manifold having the expected mathematical

form (Figure 2B). Moreover, the measurements for promoters with CRP sites at two different posi-

tions (+0.5 bp and +4.5 bp) appear consistent with each other, although the measurements for +4.5

bp promoters appear to have lower values for P overall. A small number of data points do deviate

substantially from this manifold, but the presence of such outliers is not surprising from a biological

perspective (see Discussion). Fortunately, outliers appear at a rate small enough for us to identify

them by inspection.

We quantitatively modeled the allelic manifold in Figure 2B by fitting nþ 3 parameters to our 2n

measurements, where n ¼ 39 is the number of non-outlier promoters. The nþ 3 parameters were tsat,

tbg, F, and P1, P2, . . ., Pn, where each Pi is the RNAP binding factor of promoter i. Nonlinear least

squares optimization was used to infer values for these parameters. Uncertainties in tsat, tbg, and F
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were quantified by repeating this procedure on

bootstrap-resampled data points. See Appendix

3 for details.

These results yielded highly uncertain values

for tsat because none of our measurements

appear to fall within regime 4 or 5 of the allelic

manifold. A reasonably precise value for tbg was

obtained, but substantial scatter about our model

predictions in regime 1 and 2 remain. This scatter

likely reflects some variation in tbg from promoter

to promoter, variation that is to be expected

since the source of background transcription is

not known and the appearance of even very

weak promoters could lead to such fluctuations.

These data do, however, determine a highly

precise value for the strength of CRP-DNA bind-

ing: F ¼ 23:9þ3:1
�2:5 or, equivalently,

DGF ¼ �1:96� 0:07 kcal/mol. This allelic manifold

approach is thus able to measure the strength of

TF-DNA binding with a precision of ~ 0.1 kcal/

mol. For comparison, the typical strength of a

hydrogen bond in liquid water is �1.9 kcal/mol

(Markovitch and Agmon, 2007).

We note that CRP forms approximately 38

hydrogen bonds with DNA when it binds to a

consensus DNA site (Parkinson et al., 1996). Our

result indicates that, in living cells, the enthalpy

resulting from these and other interactions is

almost exactly canceled by entropic factors. We

also note that our in vivo value for F is far smaller

than expected from experiments in aqueous solu-

tion. The consensus CRP binding site has been

measured in vitro to have an affinity constant of

KF ~ 10
11 M�1 (Ebright et al., 1989). There are

probably about 103 CRP dimers per cell

(Schmidt et al., 2016), giving a concentration

½CRP� ~ 10�6 M. Putting these numbers together

gives a binding factor of F ~ 10
5. The nonspecific

binding of CRP to genomic DNA and other mole-

cules in the cell, and perhaps limited DNA acces-

sibility as well, might be responsible for this

~ 105-fold disagreement with our in vivo

measurements.

Part 1. Aside: Measuring changes in the concentration of active CRP
Varying cAMP concentrations in growth media changes the in vivo concentration of active CRP in

the E. coli strain we assayed (JK10). Such variation is therefore expected to alter the CRP-DNA bind-

ing factor F. We tested whether this was indeed the case by measuring multiple allelic manifolds,

each using a different concentration of [cAMP] when measuring tþ. These measurements were per-

formed on promoters with CRP binding sites at +0.5 bp (Figure 3A). The resulting data are shown in

Figure 3B. To these data, we fit allelic manifolds having variable values for F, but fixed values for

both tbg and tsat (tbg ¼ 2:30� 10
�3 a.u. was inferred in the prior analysis for Figure 2B; tsat ¼ 15:1 a.u.

was inferred in the subsequent analysis for Figure 5C).

This procedure allowed us to quantitatively measure changes in the RNAP binding factor F, and

thus changes in the in vivo concentration of active CRP. Our results, shown in Figure 3C, suggest a

CRP

+0.5 bp 
or 

+4.5 bp

RNAP

-35
series

± cAMP

Figure 2. Precision measurement of in vivo CRP-DNA

binding. (A) Expression measurements were performed

on promoters for which CRP represses transcription by

occluding RNAP. Each promoter assayed contained a

near-consensus CRP binding site centered at

either +0.5 bp or +4.5 bp, as well as an RNAP binding

site with a partially mutagenized �35 region (gradient).

tþ (or t�) denotes measurements made using E. coli

strain JK10 grown in the presence (or absence) of the

small molecule cAMP. (B) Dots indicate measurements

for 41 such promoters. A best-fit allelic manifold (black)

was inferred from n ¼ 39 of these data points after the

exclusion of 2 outliers (gray ‘X’s). Gray lines indicate

100 plausible allelic manifolds fit to bootstrap-

resampled data points. The parameters of these

manifolds were used to determine the CRP-DNA

binding factor F and thus the Gibbs free energy

DGF ¼ �kBT logF. Error bars indicate 68% confidence

intervals determined by bootstrap resampling. See

Appendix 3 for more information about our manifold

fitting procedure.

DOI: https://doi.org/10.7554/eLife.40618.003
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nontrivial power law relationship between F and [cAMP]. To quantify this relationship, we performed

least squares regression (logF against log ½cAMP�) using data for the four largest cAMP concentra-

tions; measurements of F for the three other cAMP concentrations have large asymmetric uncertain-

ties and were therefore excluded. We found that F / ½cAMP�1:41�0:18, with error bars representing a

95% confidence interval. We emphasize, however that our data do not rule out a more complex rela-

tionship between [cAMP] and F.

There are multiple potential explanations for this deviation from proportionality. One possibility is

cooperative binding of cAMP to the two binding sites within each CRP dimer. Such cooperativity

could, for instance, result from allosteric effects like those described in Einav et al., 2018. Alterna-

tively, this power law behavior might reflect unknown aspects of how cAMP is imported and

exported from E. coli cells. It is worth comparing and contrasting this result to those reported in

Kuhlman et al. (2007). JK10, the E. coli strain used in our experiments, is derived from strain TK310,

which was developed in Kuhlman et al. (2007). In that work, the authors concluded that

F / ½cAMP�, whereas our data leads us to reject this hypothesis. This illustrates one way in which

using allelic manifolds to measure how in vivo TF concentrations vary with growth conditions can be

useful.

Part 2. Strategy: Measuring TF-RNAP interactions
Next we discuss how to measure an activating interaction between a DNA-bound TF and DNA-

bound RNAP. A common mechanism of transcriptional activation is ‘stabilization’ (also called

‘recruitment’; see Ptashne, 2003). This occurs when a DNA-bound TF stabilizes the RNAP-DNA

closed complex. Stabilization effectively increases the RNAP-DNA binding affinity KP, and thus the

binding factor P. It does not affect tsat, the rate of transcript initiation from RNAP-DNA closed

complexes.

A thermodynamic model for activation by stabilization is illustrated in Figure 4A. Here promoter

DNA can be in four states: unbound, TF-bound, RNAP-bound, or doubly bound. In the doubly

bound state, a ‘cooperativity factor’ a contributes to the Boltzmann weight. This cooperativity factor

CRP

+0.5 bp 

RNAP

-35 series

[cAMP]

(     only)

Figure 3. Measuring in vivo changes in TF concentration. (A) Allelic manifolds were measured for the +0.5 bp

occlusion promoter architecture using seven different concentrations of cAMP (ranging from 2.5 mM to 250 mM)

when assaying tþ. (B) As expected, these data follow allelic manifolds that have cAMP-dependent values for the

CRP binding factor F. (C) Values for F inferred from the data in panel B exhibit a nontrivial power law dependence

on [cAMP]. Error bars indicate 68% confidence intervals determined by bootstrap resampling.

DOI: https://doi.org/10.7554/eLife.40618.004
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is related to the TF-RNAP Gibbs free energy of interaction, DGa, via a ¼ e
�DGa=kBT . Activation occurs

when a> 1 (i.e., DGa< 0). The resulting activated transcription rate is given by

tþ ¼ tsat
PþaFP

1þFþPþaFP
þ tbg: (3)

This can be rewritten as

tþ ¼ tsat
a0
P

1þa0P
þ tbg; (4)

where

a0 ¼
1þaF

1þF
(5)

is a renormalized cooperativity that accounts for the strength of TF-DNA binding. As before, t� is

given by Equation 2. Note that a0 � a and that a0
»a when F� 1 and a� 1=F.

As before, we measure both tþ and t� for an allelic series of RNAP binding sites (Figure 4B).

These measurements will, according to our model, lie along an allelic manifold resembling the one

shown in Figure 4C. This allelic manifold exhibits five distinct regimes (when

tsat=tbg � a0 � 1), which are listed in Figure 4D.

Part 2. Demonstration: Measuring class I CRP-RNAP interactions
CRP activates transcription at the lac promoter and at other promoters by binding to a 22 bp site

centered at �61.5 bp relative to the TSS. This is an example of class I activation, which is mediated

by an interaction between CRP and the C-terminal domain of one of the two RNAP a subunits (the a

CTDs) (Busby and Ebright, 1999). In vitro experiments have shown this class I CRP-RNAP interaction

to activate transcription by stabilizing the RNAP-DNA closed complex.

We measured tþ and t� for 47 variants of the lac* promoter (see Appendix 1—figure 1 for

sequences). These promoters have the same CRP binding site assayed for Figure 2, but positioned

at �61.5 bp relative to the TSS (Figure 5A). They differ from one another in the �10 or �35 regions

of their RNAP binding sites. Figure 5B shows the resulting measurements. With the exception of 3

outlier points, these measurements appear consistent with stabilizing activation via a Gibbs free

energy of DGa ¼ �4:05� 0:08 kcal/mol, corresponding to a cooperativity of a ¼ 712
þ102

�83
. We note

that, with F ¼ 23:9 determined in Figure 2B, a0 ¼ a to 4% accuracy.

This observed cooperativity is substantially stronger than suggested by previous work. Early in

vivo experiments suggested a much lower cooperativity value, for example 50-fold (Beckwith et al.,

1972), 20-fold (Ushida and Aiba, 1990), or even 10-fold (Gaston et al., 1990). These previous stud-

ies, however, only measured the ratio tþ=t� for a specific choice of RNAP binding site. This ratio is

(by Equation 4) always less than a and the differences between these quantities can be substantial.

However, even studies that have used explicit biophysical modeling have determined lower coopera-

tivity values: Kuhlman et al. (2007) reported a cooperativity of a » 240 (DGa » � 3:4 kcal/mol), while

Kinney et al. (2010) reported a » 220 (DGa » � 3:3 kcal/mol). Both of these studies, however, relied

on the inference of complex biophysical models with many parameters. The allelic manifold in Fig-

ure 4, by contrast, is characterized by only three parameters (tsat, tbg, a
0), all of which can be approxi-

mately determined by visual inspection.

To test the generality of this approach, we measured allelic manifolds for 11 other potential class

I promoter architectures. At every one of these positions we clearly observed the collapse of data to

a 1D allelic manifold of the expected shape (Figure 5C). We then modeled these data using values

of a and tbg that depend on CRP binding site location, as well as a single overall value for tsat. The

resulting values for a (and equivalently DGa) are shown in Figure 5D and reported in Table 1. As first

shown by Gaston et al. (1990) and Ushida and Aiba (1990), a depends strongly on the spacing

between the CRP and RNAP binding sites. In particular, a exhibits a strong ~ 10.5 bp periodicity

reflecting the helical twist of DNA. However, as with the measurement in Figure 5B, the a values we

measure are far larger than the tþ=t� ratios previously reported by Gaston et al. (1990) and

Ushida and Aiba (1990); see Table 1. We also find tsat ¼ 15:1þ0:6
�0:5 a.u. The single-cell observations of

So et al. (2011) suggest that this corresponds to 13:8� 6:6 transcripts per minute. By pure
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coincidence, the ‘arbitrary unit’ (a.u.) units we use in this paper correspond very closely to ‘tran-

scripts per minute’.

Part 2. Aside: Difficulties predicting binding affinity from DNA
sequence
The measurement and modeling of allelic manifolds sidesteps the need to parametrically model how

protein-DNA binding affinity depends on DNA sequence. In modeling the allelic manifolds in

Figure 5C, we obtained values for the RNAP binding factor, P ¼ ½RNAP�KP, for each variant RNAP

binding site from the position of the corresponding data point along the length of the manifold.
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Figure 4. Strategy for measuring TF-RNAP interactions. (A) A thermodynamic model of simple activation. Here,

promoter DNA can transition between four different states: unbound, bound by the TF, bound by RNAP, or

doubly bound. As in Figure 1, F is the TF binding factor, P is the RNAP binding factor, and tsat is the rate of

transcript initiation from an RNAP-saturated promoter. The cooperativity factor a quantifies the strength of the

interaction between DNA-bound TF and RNAP molecules; see text for more information on this quantity. (B) As in

Figure 1, expression is measured in the presence (tþ) and absence (t�) of the TF for promoters that have an allelic

series of RNAP binding sites (blue-yellow gradient). (C) If the model in panel A is correct, plotting tþ vs. t� (colored

dots) will reveal a 1D allelic manifold that corresponds to Equation 4 (for tþ) and Equation 2 (for t�) evaluated

over all possible values of P. Circled numbers indicate the five regimes of this manifold. In regime 3, tþ »a0
t�

where a0 is the renormalized cooperativity factor given in Equation 5; data in this regime can thus be used to

measure a0. Separate measurements of F, using the strategy in Figure 1, then allow one to compute a from

knowledge of a0. (D) The five regimes of the allelic manifold in panel C. Note that these regimes differ from those

in Figure 1D.
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RNAP has a very well established sequence motif (McClure et al., 1983). Indeed, its DNA binding

requirements were among the first characterized for any DNA-binding protein (Pribnow, 1975).

More recently, a high-resolution model for RNAP-DNA binding energy was determined using data

from a massively parallel reporter assay called Sort-Seq (Kinney et al., 2010). This position-specific

-61.5 bp

RNAPCRP

-10 & -35 series

± cAMP

Figure 5. Precision measurement of class I CRP-RNAP interactions. (A) tþ and t� were measured for promoters

containing a CRP binding site centered at �61.5 bp. The RNAP sites of these promoters were mutagenized in

either their �10 or �35 regions (gradient), generating two allelic series. As in Figure 2, tþ and t� correspond to

expression measurements respectively made in the presence and absence of cAMP. (B) Data obtained for 47

variant promoters having the architecture shown in panel A. Three data points designated as outliers are indicated

by ‘X’s. The allelic manifold that best fits the n ¼ 44 non-outlier points is shown in black; 100 plausible manifolds,

estimated from bootstrap-resampled data points, are shown in gray. The resulting values for a and

DGa ¼ �kBT loga are also shown, with 68% confidence intervals indicated. (C) Allelic manifolds obtained for

promoters with CRP binding sites centered at a variety of class I positions. (D) Inferred values for the cooperativity

factor a and corresponding Gibbs free energy DGa for the 12 different promoter architectures assayed in panel C.

Error bars indicate 68% confidence intervals. Numerical values for a and DGa at all of these class I positions are

provided in Table 1.
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affinity matrix (PSAM) assumes that the nucleotide at each position contributes additively to the

overall binding energy (Figure 6A). This model is consistent with previously described RNAP binding

motifs but, unlike those motifs, it can predict binding energy in physically meaningful energy units (i.

e., kcal/mol). In what follows we denote these binding energies as DDGP, because they describe dif-

ferences in the Gibbs free energy of binding between two DNA sites.

There is good reason to believe this PSAM to be the most accurate current model of RNAP-DNA

binding. However, subsequent work has suggested that the predictions of this model might still

have substantial inaccuracies (Brewster et al., 2012). To investigate this possibility, we compared

our measured values for the Gibbs free energy of RNAP-DNA binding (DGP ¼ �kBT logP) to binding

energies (DDGP) predicted using the PSAM from Kinney et al. (2010). These values are plotted

against one another in Figure 6B. Although there is a strong correlation between the predictions of

the model and our measurements, deviations of 1 kcal/mol or larger (corresponding to variations in

P of 5-fold or greater) are not uncommon. Model predictions also systematically deviate from the

diagonal, suggesting inaccuracy in the overall scale of the PSAM.

This finding is sobering: even for one of the best understood DNA-binding proteins in biology,

our best sequence-based predictions of in vivo protein-DNA binding affinity are still quite crude.

When used in conjunction with thermodynamic models, as in Kinney et al. (2010), the inaccuracies

of these models can have major effects on predicted transcription rates. The measurement and

modeling of allelic manifolds sidesteps the need to parametrically model such binding energies,

enabling the direct inference of Gibbs free energy values for each assayed RNAP binding site.

Part 3. Strategy: Distinguishing mechanisms of transcriptional
activation
E. coli TFs can regulate multiple different steps in the transcript initiation pathway (Lee et al., 2012;

Browning and Busby, 2016). For example, instead of stabilizing RNAP binding to DNA, TFs can

activate transcription by increasing the rate at which DNA-bound RNAP initiates transcription

(Roy et al., 1998), a process we refer to as ‘acceleration’. CRP, in particular, has previously been

-10-35

RNAPCRP

Figure 6. RNAP-DNA binding energy cannot be accurately predicted from sequence. (A) The PSAM for RNAP-

DNA binding inferred by Kinney et al. (2010). This model assumes that the DNA base pair at each position in the

RNAP binding site contributes independently to DGP. Shown are the DDGP values assigned by this model to

mutations away from the lac* RNAP site. The sequence of the lac* RNAP site is indicated by gray vertical bars; see

also Appendix 1—figure 1. A sequence logo representation for this PSAM is provided for reference. (B) PSAM

predictions plotted against the values DGP ¼ �kBT logP inferred by fitting the allelic manifolds in Figure 5C. Error

bars on these measurements represent 68% confidence intervals. Note that measured DGP values are absolute,

whereas the DDGP predictions of the PSAM are relative to the lac* RNAP site, which thus corresponds to DDGP ¼ 0

kcal/mol. The dashed line, provided for reference, has slope 1 and passes through this lac* data point.
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reported to activate transcription in part by acceleration when positioned appropriately with respect

to RNAP (Niu et al., 1996; Rhodius et al., 1997).

We investigated whether allelic manifolds might be used to distinguish activation by acceleration

from activation by stabilization. First we generalized the thermodynamic model in Figure 4A to

accommodate both a-fold stabilization and b-fold acceleration (Figure 7A). This is accomplished by

using the same set of states and Boltzmann weights as in the model for stabilization, but assigning a

transcription rate btsat (rather than just tsat) to the TF-RNAP-DNA ternary complex. The resulting acti-

vated rate of transcription is given by

tþ ¼ tsat
P

1þFþPþaFP
þbtsat

aFP

1þFþPþaFP
þ tbg: (6)

This simplifies to

tþ ¼ b0
tsat

a0
P

1þa0P
þ tbg; (7)

where a0 is the same as in Equation 5 and

b0 ¼
1þabF

1þaF
(8)

is a renormalized version of the acceleration rate b. The resulting allelic manifold is illustrated in

Figure 7C. Like the allelic manifold for stabilization, this manifold has up to five distinct regimes cor-

responding to different values of P (Figure 7D). Unlike the stabilization manifold however, tþ 6¼ t� in

the strong RNAP binding regime (regime 5); rather, tþ »b0
tsat while t� » tsat.

Part 3. Demonstration: Mechanisms of class I activation by CRP
We asked whether class I activation by CRP has an acceleration component. Previous in vitro work

had suggested that the answer is ‘no’ (Malan et al., 1984; Busby and Ebright, 1999), but our allelic

manifold approach allows us to address this question in vivo. We proceeded by assaying promoters

containing variant alleles of the consensus RNAP binding site (Figure 8A). Note that the consensus

RNAP site is 1 bp shorter than the lac* RNAP site (Appendix 1—figure 1, panel C versus panel B).

We therefore positioned the CRP binding site at �60.5 bp in order to realize the same spacing

between CRP and the �35 element of the RNAP binding site that was realized in �61.5 bp non-con-

sensus promoters.

The resulting data (Figure 8B) are seen to largely fall along the previously measured all-stabiliza-

tion allelic manifold in Figure 5B. In particular, many of these data points lie at the intersection of

this manifold with the tþ ¼ t� diagonal. We thus find that b » 1 for CRP at �61.5 bp. To further quan-

tify possible b values, we fit the acceleration model in Figure 7 to each dataset shown in Figure 5B,

assuming a fixed value of tsat ¼ 15:1 a.u. The resulting inferred values for b, shown in Figure 8C, indi-

cate little if any deviation from b ¼ 1. Our high-precision in vivo results therefore substantiate the

previous in vitro results of Malan et al. (1984) regarding the mechanism of class I activation.

Part 3. Aside: Surprises in class II regulation by CRP
Many E. coli TFs participate in what is referred to as class II activation (Browning and Busby, 2016).

This type of activation occurs when the TF binds to a site that overlaps the �35 element (often

completely replacing it) and interacts directly with the main body of RNAP. CRP is known to partici-

pate in class II activation at many promoters (Keseler et al., 2011; Salgado et al., 2013), including

the galP1 promoter, where it binds to a site centered at position �41.5 bp (Adhya, 1996). In vitro

studies have shown CRP to activate transcription at �41.5 bp relative to the TSS through a combina-

tion of stabilization and acceleration (Niu et al., 1996; Rhodius et al., 1997).

We sought to reproduce this finding in vivo by measuring allelic manifolds. We therefore placed a

consensus CRP site at �41.5 bp, replacing much of the �35 element in the process, and partially

mutated the �10 element of the RNAP binding site (Figure 9A). Surprisingly, we observed that the

resulting allelic manifold saturates at the same tsat value shared by all class I promoters. Thus, CRP

appears to activate transcription in vivo solely through stabilization, and not at all through accelera-

tion, when located at �41.5 bp relative to the TSS (Figure 9B).
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The genome-wide distribution of CRP binding sites suggests that CRP also participates in class II

activation when centered at �40.5 bp (Keseler et al., 2011; Salgado et al., 2013). When assaying

this promoter architecture, however, we obtained a 2D scatter of points that did not collapse to any

discernible 1D allelic manifold (Figure 9D). Some of these promoters exhibit activation, some exhibit

repression, and some exhibit no regulation by CRP.

These observations complicate the current understanding of class II regulation by CRP. Our in

vivo measurements of CRP at �41.5 bp call into question the mechanism of activation previously dis-

cerned using in vitro techniques. The scatter observed when CRP is positioned at �40.5 bp suggests

state weight rate

TF

TF

RNAP

  -fold 

stabilization

  -fold 

acceleration

RNAP

TF

TF

TF

RNAP

RNAP

RNAP

Figure 7. A strategy for distinguishing two different mechanisms of transcriptional activation. (A) A TF can activate

transcription in two ways: by stabilizing the RNAP-DNA complex or by accelerating the rate at which this complex

initiates transcripts. (B) A thermodynamic model for the dual mechanism of transcriptional activation illustrated in

panel A. Note that a multiplies the Boltzmann weight of the doubly bound complex, whereas b multiplies the

transcript initiation rate of this complex. (C) Data points measured as in Figure 4C will lie along a 1D allelic

manifold having the form shown here. This manifold is computed using tþ values from Equation 7 and t� values

from Equation 2. Note that regime five occurs at a point positioned b0-fold above the diagonal, where b0 is

related to b through Equation 8. Measurements in or near the strong promoter regime (P>
~

1) can thus be used to

determine the value of b0 and, consequently, the value of b. (D) The five regimes of this allelic manifold are listed.
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that, at this position, the �10 region of the RNAP binding site influences the values of at least two

relevant biophysical parameters (not just P, as our model predicts). A potential explanation for both

observations is that, because CRP and RNAP are so intimately positioned at class II promoters, even

minor changes in their relative orientation caused by differences between in vivo and in vitro condi-

tions or by changes in RNAP site sequence could have a major effect on CRP-RNAP interactions.

Such sensitivity would not be expected to occur in class I activation, due to the flexibility with which

the RNAP aCTDs are tethered to the core complex of RNAP.

Discussion
We have shown how the measurement and quantitative modeling of allelic manifolds can be used to

dissect cis-regulatory biophysics in living cells. This approach was demonstrated in E. coli in the con-

text of transcriptional regulation by two well-characterized TFs: RNAP and CRP. Here we summarize

our primary findings. We then address some caveats and limitations of the work reported here.

Finally, we elaborate on how future studies might be able to scale up this approach using massively

parallel reporter assays (MPRAs), including for studies in eukaryotic systems.

Summary
In each of our experiments, we quantitatively measured transcription from an allelic series of variant

RNAP binding sites, each site embedded in a fixed promoter architecture. Two expression measure-

ments were made for each variant promoter: tþ was measured in the presence of the active form of

CRP, while t� was measured in the absence of active CRP. This yielded a data point, ðt�; tþÞ, in a

two-dimensional measurement space. We had expected the data points thus obtained for each alle-

lic series to collapse to a 1D curve (the allelic manifold), with different positions along this manifold

corresponding to different values of RNAP-DNA binding affinity. Such collapse was indeed observed

in all but one of the promoter architectures we studied. By fitting the parameters of quantitative

-60.5 bp

RNAPCRP

cons. series 
(17 bp spacer)

± cAMP

Figure 8. Class I activation by CRP occurs exclusively through stabilization. (A) tþ and t� were measured for

promoters containing variants of the consensus RNAP binding site as well as a CRP binding site centered at �60.5

bp. Because the consensus RNAP site is 1 bp shorter than the RNAP site of the lac* promoter, CRP at �60.5 bp

here corresponds to CRP at �61.5 bp in Figure 5. (B) n ¼ 18 data points obtained for the constructs in panel A,

overlaid on the measurements from Figure 5B (gray). The value tsat ¼ 15:1 a.u., inferred for Figure 5C, is indicated

by dashed lines. (C) Values for b inferred using the data in Figure 5 for the 10 CRP positions that exhibited greater

than 2-fold inducibility; b values at the two other CRP positions (�66.5 bp and �76.5 bp) were highly uncertain

and are not shown. Error bars indicate 68% confidence intervals.
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biophysical models to these data, we obtained in vivo values for the Gibbs free energy (DG) of a vari-

ety of TF-DNA and TF-TF interactions.

In Part 1, we showed how measuring allelic manifolds for promoters in which a DNA-bound TF

occludes RNAP can allow one to precisely measure the DG of TF-DNA binding. We demonstrated

this strategy on promoters where CRP occludes RNAP, thereby obtaining the DG for a CRP binding

site that was used in subsequent experiments. As an aside, we demonstrated how performing such

measurements in different concentrations of the small molecule cAMP allowed us to quantitatively

measure in vivo changes in active CRP concentration.

In Part 2, we showed how allelic manifolds can be used to measure the DG of TF-RNAP interac-

tions. We used this strategy to measure the stabilizing interactions by which CRP up-regulates tran-

scription at a variety of class I promoter architectures. Our strategy consistently yielded DG values

with an estimated precision of ~ 0:1 kcal/mol. As an aside, we showed how DG values for RNAP-

DNA binding could also be obtained from these data. Notably, these DG measurements for RNAP-

DNA binding were seen to deviate substantially from sequence-based predictions using an estab-

lished position-specific affinity matrix (PSAM) for RNAP. This highlights just how difficult it can be to

accurately predict TF-DNA binding affinity from DNA sequence.

In Part 3, we showed how allelic manifolds can allow one to distinguish between two potential

mechanisms of transcriptional activation: ‘stabilization’ (a.k.a. ‘recruitment’) and ‘acceleration’.

Applying this approach to the data from Part 2, we confirmed (as expected) that class I activation by

CRP does indeed occur through stabilization and not acceleration. As an aside, we pursued this

-41.5 bp

RNAPCRP

-10
series

-40.5 bp

RNAPCRP

-10
series

± cAMP ± cAMP

Figure 9. Surprises in class II regulation by CRP. (A) Regulation by CRP centered at �41.5 bp was assayed using

an allelic series of RNAP binding sites that have variant �10 elements (gradient). (B) The observed allelic manifold

plateaus at the value of tsat ¼ 15:1 a.u. (dashed lines) determined for Figure 5B, thus indicating no detectable

acceleration by CRP. This lack of acceleration is at odds with prior in vitro studies (Niu et al., 1996;

Rhodius et al., 1997). (C) Regulation by CRP centered at �40.5 bp was assayed in an analogous manner. (D)

Unexpectedly, data from the promoters in panel C do not collapse to a 1D allelic manifold. This finding falsifies

the biophysical models in Figures 4A and 7B and indicates that CRP can either activate or repress transcription

from this position, depending on as-yet-unidentified features of the RNAP binding site. Error bars in panel D

indicate 95% confidence intervals estimated from replicate experiments.

DOI: https://doi.org/10.7554/eLife.40618.010

Forcier et al. eLife 2018;7:e40618. DOI: https://doi.org/10.7554/eLife.40618 14 of 28

Research Communication Physics of Living Systems

https://doi.org/10.7554/eLife.40618.010
https://doi.org/10.7554/eLife.40618


approach at two class II promoters. In contrast to prior in vitro studies (Niu et al., 1996;

Rhodius et al., 1997), no acceleration was observed when CRP was positioned at �41.5 bp relative

to the TSS. Even more unexpectedly, no 1D allelic manifold was observed at all when CRP was posi-

tioned at �40.5 bp. This last finding indicates that the variant RNAP binding sites we assayed control

at least one functionally important biophysical quantity in addition to RNAP-DNA binding affinity.

Caveats and limitations
An important caveat is that our DG measurements assume that the true transcription rates (of which

we obtain only noisy measurements) exactly fall along a 1D allelic manifold of the hypothesized

mathematical form. These assumptions are well-motivated by the data collapse that we observed for

all except one promoter architecture. But for some promoter architectures, there were a small num-

ber of ‘outlier’ data points that we judged (by eye) to deviate substantially from the inferred allelic

manifold. The presence of a few outliers makes sense biologically: the random mutations we intro-

duced into variant RNAP binding sites will, with some nonzero probability, either shift the position

of the RNAP site or create a new binding site for some other TF. However, even for promoters that

exhibit clear clustering of 2D data around a 1D curve, the deviations of individual non-outlier data

points from our inferred allelic manifold were often substantially larger than the experimental noise

that we estimated from replicates. It may be that the biological cause of outliers is not qualitatively

different from what causes these smaller but still detectable deviations from our assumed model.

The low-throughput experimental approach we pursued here also has important limitations. Each

of the 448 variant promoters for which we report data was individually catalogued, sequenced, and

assayed for both tþ and t� in at least three replicate experiments. We opted to use a low-throughput

colorimetric assay of b-galactosidase activity (Lederberg, 1950; Miller, 1972) because this approach

is well established in E. coli to produce a quantitative measure of transcription with high precision

and high dynamic range. Such assays have also been used by other groups to develop sophisticated

biophysical models of transcriptional regulation (Kuhlman et al., 2007; Cui et al., 2013). However,

this low-throughput approach has limited utility because it cannot be readily scaled up.

Table 1. Summary of results for class I activation by CRP.

The a and DGa values listed here correspond to the values plotted in Figure 5D. The corresponding

value inferred for the saturated transcription rate is tsat ¼ 15:1þ0:6
�0:5 a.u. Error bars indicate 68% confi-

dence intervals; see Appendix 3 for details. n is the number of data points used to infer these values,

while ‘outliers’ is the number of data points excluded in this analysis. For comparison we show the

fold-activation measurements (i.e., tþ=t�) reported in Gaston et al. (1990) and Ushida and Aiba

(1990); ‘-’ indicates that no measurement was reported for that position.

Position (bp) n Outliers DGa (kcal/mol) a tþ=t� (Gaston) tþ=t� (Ushida)

�60.5 21 0 �2:09� 0:08 29:6þ4:7
�3:5

3.85 -

�61.5 44 3 �4:10� 0:08 763
þ113

�84
9.05 20.6

�62.5 23 0 �2:43� 0:11 51:4þ9:0
�8:5

4.22 -

�63.5 20 1 �0:88� 0:05 4:15þ0:30
�0:37

- -

�64.5 17 0 �1:08� 0:08 5:80þ0:89
�0:67

- -

�65.5 17 0 �0:48� 0:03 2:16þ0:10
�0:11

- -

�66.5 19 1 0:00� 0:04 0:99þ0:07
�0:07

0.78 0.84

�71.5 35 1 �2:88� 0:04 105
þ7

�7
2.50 16.4

�72.5 20 0 �2:73� 0:04 83:0þ5:2
�5:8

3.49 -

�76.5 16 0 �0:15� 0:04 1:27þ0:09
�0:06

0.54 -

�81.5 32 0 �1:53� 0:03 11:9þ0:4
�0:8

- -

�82.5 20 0 �1:82� 0:05 19:0þ1:3
�1:8

- 6.99
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Our reliance on cAMP as a small molecule effector of CRP presents a second limitation. In our

experiments, we controlled the in vivo activity of CRP by growing a specially designed strain of E.

coli in either the presence (for tþ) or absence (t�) of cAMP. This mirrors the strategy used by

Kuhlman et al. (2007), and the validity of this approach is attested to by the calibration data shown

in Appendix 2—figure 1. However, controlling in vivo TF activity using small molecules has many

limitations. Most TFs cannot be quantitatively controlled with small molecules, and those that can

often require special host strains (e.g., see Kuhlman et al., 2007). Moreover, varying the in vivo con-

centration of a TF can affect cellular physiology in ways that can confound quantitative

measurements.

Outlook
MPRAs performed on array-synthesized promoter libraries should be able to overcome both of

these experimental limitations. Current MPRA technology is able to quantitatively measure gene

expression for >
~

104 transcriptional regulatory sequences in parallel. We estimate that this would

enable the simultaneous measurement of ~ 102 highly resolved allelic manifolds, each manifold rep-

resenting a different promoter architecture. Moreover, by using array-synthesized promoters in con-

junction with MPRAs, one can measure tþ and t� by systematically altering the DNA sequence of TF

binding sites, rather than relying on small molecule effectors of each TF. This capability would,

among other things, enable biophysical studies of promoters that have multiple binding sites for the

same TF; in such cases it might make sense to use measurement spaces having more than two

dimensions.

Will allelic manifolds be useful for understanding transcriptional regulation in eukaryotes? Both

Sort-Seq MPRAs (Sharon et al., 2012; Weingarten-Gabbay et al., 2017) and RNA-Seq MPRAs

(Melnikov et al., 2012; Kwasnieski et al., 2012; Patwardhan et al., 2012) are well established in

eukaryotes so, on a technical level, experiments analogous to those described here should be feasi-

ble. The bigger question, we believe, is whether the results of such experiments would be interpret-

able. Eukaryotic transcriptional regulation is far more complex than transcriptional regulation in

bacteria. Still, we believe that pursuing the measurement and modeling of allelic manifolds in this

context is worthwhile. Despite the underlying complexities, simple ‘effective’ biophysical models

might work surprisingly well. Similar approaches might also be useful for studying other eukaryotic

regulatory processes that are compatible with MPRAs, such as alternative splicing (Wong et al.,

2018).

Based on these results, we advocate a very different approach to dissecting cis-regulatory gram-

mar than has been pursued by other groups. Rather than attempting to identify a single quantitative

model that can explain regulation by many different arrangements of TF binding sites (Gertz et al.,

2009; Sharon et al., 2012; Mogno et al., 2013; Smith et al., 2013; Levo and Segal, 2014;

White et al., 2016), we suggest focused studies of the biophysical interactions that result from spe-

cific TF binding site arrangements. The measurement and modeling of allelic manifolds provides a

systematic and stereotyped way of doing this. By coupling this approach with MPRAs, it should be

possible to perform such studies on hundreds of systematically varied regulatory sequence architec-

tures in parallel. General rules governing cis-regulatory grammar might then be identified empiri-

cally. We suspect that this bottom-up strategy to studying cis-regulatory grammar is likely to reveal

regulatory mechanisms that would be hard to anticipate in top-down studies.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic reagent
(E. coli)

JK10 this paper none genotype: DcyaA DcpdA
DlacY DlacZ DdksA

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent pJK47.419 this paper none

cloning vector with BsmBI
cut sites, ccdB cassette, lacZ
reporter gene, kanamycin
resistance, pSC101 origin

Recombinant
DNA reagent

pJK48
and variants

this paper none reporter plasmids cloned
from pJK47.419

Chemical
compound

cAMP Sigma-Aldrich A9501-1G Adenosine 3’,5’-cyclic
monophosphate,
1 gram

Chemical
compound

IPTG Sigma-Aldrich I5502-1G Isopropyl
b-D-1- thiogalactopyranoside,
1 gram

Chemical
compound

ONPG Sigma-Aldrich N1127-5G 2-Nitrophenyl
b-D-galactopyranoside,
5 gram

Commercial
assay or kit

PureLink Genomic
DNA Mini Kit

ThermoFisher K182001 none

Commercial
assay or kit

Nextera XT DNA Library
Preparation Kit Illumina FC-131–1024 24 samples

Other RDM Teknova M2105 growth media: MOPS
EZ Rich
Defined Medium Kit,
5 liter

Other PopCulture
Reagent

MilliporeSigma 71092–4 75 milliliters

Other Breathe-Easier film USA Scientific 9123–6100 sterile, 100 per box

Other Epoch 2 Microplate
Spectrophotometer BioTek EPOCH2C none

Software analysis scripts this paper none Available at https://github.com/jbkinney/17_inducibility
(copy archived at https://github.com/elifesciences-
publications/17_inducibility)

Appendix 1 describes the media, strains, plasmids, and promoters assayed in this work. Appendix 2

describes the colorimetric b-galactosidase activity assay, adapted from Lederberg (1950) and

Miller (1972), that was used to measure expression levels. Appendix 3 provides details about how

quantitative models were fit to these measurements, as well as how uncertainties in estimated

parameters were computed. Supplementary file 1 is an Excel spreadsheet containing the DNA

sequences of all assayed promoters, all tþ and t� measurements used in this work, and all of the

parameter values fit to these data, both with and without bootstrap resampling.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.40618.014

Media, strains, plasmids, and promoters

Appendix 1—figure 1. Promoter sequences used in this study. In all panels, the �35 and �10

hexamers of the RNAP binding site are in bold. CRP binding site centers are indicated by

small triangles. The palindromic pentamers of the core CRP binding site in each construct are

underlined. The transcription start site (TSS) is bold and italicized. Lowercase bases (‘a’,‘c’,‘g’,

and ‘t’) indicate positions synthesized with a 24% mutation rate. The lowercase character ‘n’

indicates completely randomized positions. (A) Occlusion promoters assayed for Figure 2. (B)

Class I promoters assayed for Figure 5. In the main text we refer to the wild-type promoter

with CRP at �61.5 bp as the lac* promoter. The lac* promoter served as the template for all

of the promoters shown here. (C) Strong class I promoters assayed for Figure 8. (D) Class II

promoters assayed for Figure 9.

DOI: https://doi.org/10.7554/eLife.40618.015
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Expression measurements were performed on cells grown in rich defined media (RDM;

purchased from Teknova) (Neidhardt et al., 1974) supplemented with 10 mM NaHCO3, 1 mM

IPTG (Sigma), and 0.2% glucose. We refer to this media as RDM’. RDM’ was further

supplemented with 50 mg/ml kanamycin (Sigma) when growing cells, as well as 250 mM cAMP

(Sigma) when measuring tþ.

Expression measurements were performed in E. coli strain JK10, which has genotype

DcyaA DcpdA DlacY DlacZ DdksA. JK10 is derived from strain TK310 (Kuhlman et al., 2007),

which is DcyaA DcpdA DlacY. The DcyaA DcpdA mutations prevent TK310 from synthesizing or

degrading cAMP, thus allowing in vivo cAMP concentrations to be quantitatively controlled by

adding cAMP to the growth media. Into TK310 we introduced the DlacZ mutation, yielding

strain DJ33; this mutation enables the use of b-galactosidase activity assays for measuring

plasmid-based lacZ expression. In our initial experiments, we found that the growth rate of

DJ33 in RDM’ varied strongly with the amount of cAMP added to the media. Fortunately, we

isolated a spontaneous knock-out mutation in dksA (thus yielding JK10), which caused the

growth rate (~ 30 min doubling time) in RDM’ to be independent of cAMP concentrations

below ~500 mM. We note that JK10 will not grow in minimal media in the absence of cAMP.

The TK310, DJ33, and JK10 genotypes were confirmed by whole genome sequencing using

the PureLink Genomic DNA Mini Kit (ThermoFisher) for extracting genomic DNA from cultured

cells and the Nextera XT DNA Library Preparation Kit (Illumina) for preparing whole-genome

sequencing libraries.

Expression of the lacZ gene was driven from variants of a plasmid we call pJK48. These

reporter constructs were cloned as follows. We started with the vector pJK14 from

Kinney et al. (2010). pJK14 contains a pSC101 origin of replication (~ 5 copies per cell;

Thompson et al., 2018), a kanamycin resistance gene, and a ccdB cloning cassette positioned

immediately upstream of a gfpmut2 reporter gene and flanked by outward-facing BsmBI

restriction sites. First, the gfpmut2 gene in this vector was replaced with lacZ, yielding pJK47.

Next, the ribosome binding site in the 5’ UTR of lacZ was weakened, yielding pJK47.419; this

weakening prevents lacZ expression from substantially slowing cell growth in RDM’. pJK47.419

was propagated in DB3.1 E. coli (Invitrogen), which is resistant to the CcdB toxin. The

promoters we assayed were variants of what we call the ‘lac*’ promoter. The lac* promoter is

similar to the endogenous lac promoter of E. coli MG1655 except for (i) it contains a CRP

binding site with a consensus right pentamer and (ii) it contains mutations that were

introduced in an effort to remove previously reported cryptic promoters (Reznikoff, 1992).

Promoter-containing insertion cassettes were created through overlap-extension PCR and

flanked by outward-facing BsaI restriction sites. All primers were ordered from Integrated

DNA Technologies. Note that some of the primers used to create these inserts were

synthesized using pre-mixed phosphoramidites at specified positions; this is how a 24%

mutation rate in the �10 or �35 regions of the RNAP binding site was achieved. The resulting

promoter sequences are illustrated in Appendix 1—figure 1. To clone variants of pJK48, we

separately digested the pJK47.419 vector with BsmBI (NEB) and the appropriate insert with

BsaI (NEB). Digests were then cleaned up (Qiagen PCR purification kit) and ligated together in

a 1:1 molar ratio for 1 hr using T4 DNA ligase (Invitrogen). After 90 min dialysis, plasmids were

transformed into electrocompetent JK10 cells. Individual clones were plated on LB

supplemented with kanamycin (50 mg/ml). After initial cloning and plating, each colony was re-

streaked, grown in LB+kan, and stored as a catalogued glycerol stock. The promoter region of

each clone was sequenced in both directions. Only plasmids with validated promoter

sequences were used for the measurements presented in this paper. The promoter sequences

of all 448 plasmids used in this study, as well as their measured tþ and t� values, are provided

at https://github.com/jbkinney/17_inducibility (copy archived at https://github.com/

elifesciences-publications/17_inducibility).

Forcier et al. eLife 2018;7:e40618. DOI: https://doi.org/10.7554/eLife.40618 22 of 28

Research Communication Physics of Living Systems

https://github.com/jbkinney/17_inducibility
https://github.com/elifesciences-publications/17_inducibility
https://github.com/elifesciences-publications/17_inducibility
https://doi.org/10.7554/eLife.40618


Appendix 2
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Miller assays and the calibration of expression
measurements

Appendix 2—figure 1. Calibration of expression measurements with and without cAMP. (A)

Measurements of trawþ (in 250 mM cAMP) vs traw� (in 0 mM cAMP) for promoters in which the CRP

binding site has been replaced by a non-functional ‘null’ site. As expected, these data lie close

to the t
raw
þ ¼ t

raw
� diagonal (dotted line). (B) Upon closer inspection, however, we found that trawþ

values consistently fell slightly below corresponding t
raw
� values. Using least-squares fitting we

found that, on average, trawþ =traw� ¼ 0:852þ0:056
�0:053 where uncertainties indicate a 95% confidence

interval (reflecting 1.96 times the standard error of the mean in log space). To correct for this

bias, we plot and fit models to tþ ¼ t
raw
þ and t� ¼ 0:855� t

raw
� throughout this paper.

DOI: https://doi.org/10.7554/eLife.40618.017

We obtained tþ and t� measurements for each promoter as follows. First, the

corresponding E. coli clone was streaked out on LB+kan agar and grown overnight. A colony

was then picked and used to inoculate a 1.5 ml overnight LB+kan liquid culture. Either 8 ml, 6

ml, or 4 ml of the overnight culture were then diluted into 200 ml RDM’+kan. 25 ml of each

dilution was then added to 175 ml RDM’+kan in a 96-well optical bottom plate and

supplemented with either 0 mM cAMP (for traw� ), 250 mM cAMP (for trawþ ), or another cAMP

concentration (for some t
raw
þ measurements in Figure 3). The plate was then covered with

Breathe-Easier film (USA Scientific) and cells were cultured for ~ 3 hr at 37 ˚C, shaking at 900

RPM in a microplate shaker. During this time, 5.5 ml of lysis buffer was freshly prepared using

1.5 ml RDM’, 4.0 ml PopCulture reagent (Millipore), 114 ml of 35 mg/ml chloramphenicol

(Sigma), and 44 ml of 40 U/ml rLysozyme (Sigma).

Microplate film was removed and cell density (quantified by A600) was measured using an

Epoch 2 Microplate Spectrophotometer (BioTek). Cells were then lysed by adding 25 ml lysis

buffer to each microplate well, incubating the microplate at room temperature for 10 min

without shaking, then cooling the microplate at 4 ˚C for a minimum of 15 min. In each well of a

96-well optical bottom plate, 50 ml of lysate was then added to 50 ml of pre-chilled Z-buffer

(Miller, 1972) containing 1 mg/ml ONPG (Sigma). Samples were sealed with optical film and

both A420 and A550 were periodically measured in the plate reader over an extended period of

time (every 1.5 min for 1 hr or every 15 min for 10 hr, depending on the level of expression

expected).

The raw expression levels were quantified from these absorbance data using the formula
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t
raw
� ¼

DA420�DA550

V �DT �A600

; (9)

where V = 50 is the volume of lysate in ml added to the ONPG reaction, DT is the change in

time from the beginning of the measurement, and DAX indicates a change in absorbance at X

nm over this time interval. Only data from wells with A600
<
~

0:5 were analyzed. Note that the

A550 term in Equation 9 is not multiplied by 1.75 as it is in Miller (1972). This is because our

A550 measurements are used to compensate for condensation on the microplate film, not

cellular debris as in Miller (1972); our lysis procedure produces no detectable cellular debris.

In practice, Equation 9 was not evaluated using individual measurements, but was computed

from the slope of a line fit to all of the non-saturated absorbance measurements. Raw A420,

A550, and A600 values, as well as our analysis scripts, are available at https://github.com/

jbkinney/17_inducibility (copy archived at https://github.com/elifesciences-publications/17_

inducibility). Median values from at least three independent Miller measurements (and often

more) were used to define each measurement shown in the main figures.

Because we controlled the in vivo activity of CRP by supplementing media with or without

cAMP, we tested whether CRP-independent promoters produce measurements that vary

between these growth conditions. Specifically, we measured t
raw
� (in 0 mM cAMP) and t

raw
þ (in

250 mM cAMP) for 39 promoters in which the CRP binding site was replaced with a ‘null’ site

(see Appendix 1—figures 1B and C). These measurements are plotted in Appendix 2—

figure 1, and show a slight bias. To correct for this bias, we use an unadjusted tþ ¼ t
raw
þ

together with an adjusted t� ¼ 0:855� t
raw
� throughout the main text. Note that tþ ¼ t

raw
þ was

used for all nonzero cAMP concentrations, including those in Figure 3B that differ from 250

mM. Some upward bias is therefore possible in these tþ measurements, but we do not expect

this to greatly affect our conclusions.
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Parameter inference
Allelic manifold parameters were fit to measured tþ and t� values as follows. First, outlier data

points were called by eye and excluded from the parameter fitting procedure. We denote the

remaining measurements using t
i;data
þ and t

i;data
� , where i ¼ 1; 2; . . . n indexes the n non-outlier

data points. Corresponding model predictions tiþð�Þ and t
i

�ð�Þ, where � denotes model

parameters, were then fit to these data using nonlinear least squares optimization. Specifically,

we inferred parameters �� ¼ argmin�Lð�Þ where the loss function is given by

Lð�Þ ¼
X

n

i¼1

log
t
i

þð�Þ

t
i;data
þ

" #2

þ log
t
i

�ð�Þ

ti;data�

� �2

8

>

>

>

>

>

:

9

>

>

>

>

>

;

: (10)

These optimal parameter values �� were used to generate the best-estimate allelic manifolds,

which are plotted in black in the main figures. Uncertainties in � were estimated by performing

the same inference procedure on bootstrap-resampled data. For each variable

X 2 fF;P;a0;b0; tsat; tbgg, we report

X ¼ ðX50Þ
þðX84�X50Þ
�ðX50�X16Þ

(11)

where X50, X84, and X16 respectively denote the median, 84th percentile, and 16th percentile of

X values obtained from bootstrap resampling. In the case of X 2 fF;P;ag, we also report

DGX ¼�kBT logX50� kBT
logX84� logX16

2

� �

; (12)

where 1 kcal/mol = 1:62 kBT at 37 ˚C. We now describe each specific inference procedure in

more detail.

Inference for Figure 2B
We inferred � ¼ ftsat; tbg;F;P1;P2; . . . ;Png, with model predictions given by

t
i

þð�Þ ¼ tsat
Pi

1þFþPi

þ tbg; t
i

�ð�Þ ¼ tsat
Pi

1þPi

þ tbg: (13)

Parameters were fit to the n ¼ 39 non-outlier measurements made for promoters with +0.5 bp

or +4.5 bp architecture. We found that F ¼ 23:9þ3:1
�2:5 and tbg ¼ 2:30� 10

�3 a.u., while tsat values

remained highly uncertain.

Inference for Figure 3B
We performed a separate inference procedure for each of the seven cAMP concentrations

C 2 f250; 125; 50; 25; 10; 5; 2:5g, indicated in mM units. Specifically, we inferred �C ¼

fFC;P1;P2; . . . ;PnC
g where nC is the number of promoters for which tþ was measured using

cAMP concentration C. Model predictions were given by

t
i

þð�CÞ ¼ tsat
Pi

1þFC þPi

þ tbg; t
i

�ð�CÞ ¼ tsat
Pi

1þPi

þ tbg; (14)

where tsat ¼ 15:1 a.u. is the median saturated transcription rate from Figure 5C, and tbg ¼

2:30� 10
�3 a.u. is the median background transcription rate from Figure 2B. Note that many

of the t
i

� measurements were used in the inference procedures for multiple values of C,

whereas each t
i

þ measurement was used in only one such inference procedure.
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Inference for Figure 5B
Using data from both the �10 and �35 allelic series for the �61.5 bp promoter architecture,

we inferred � ¼ ftsat; tbg;a
0;P1; . . . ;Png. Model predictions were given by

t
i

þð�Þ ¼ tsat
a0
Pi

1þa0Pi

þ tbg; t
i

�ð�Þ ¼ tsat
Pi

1þPi

þ tbg: (15)

For each inferred a0, a value for a was computed using a ¼ a0ð1þ F
�1Þ � F

�1, where F ¼ 23:9

is the median CRP binding factor inferred for Figure 2B.

Inference for Figure 5C
In a single fitting procedure, we inferred � ¼ ftsat; t

�82:5
bg ; . . . ; t�60:5

bg ;a0
�82:5; . . . ;a

0
�60:5;P1; . . . ;Png

using

t
i

þð�Þ ¼ tsat

a0
Di
Pi

1þa0
Di
Pi

þ t
Di

bg; t
i

�ð�Þ ¼ tsat
Pi

1þPi

þ t
Di

bg; (16)

where each

Di 2 �82:5;�81:5;f �76:5;�72:5;�71:5;�66:5;�65:5;�64:5;�63:5;�62:5;�61:5;�60:5g

represents the position of the CRP binding site (in bp relative to the TSS) for promoter i. Note

that a single value for tsat was inferred for all promoter architectures, while both t
D

bg and a0
D

varied with CRP position D. The corresponding values of a plotted in Figure 5D and listed in

the Table 1 were computed using aD ¼ a0
D
ð1þ F

�1Þ � F
�1 where F ¼ 23:9 is the median CRP

binding factor inferred for Figure 2B. Among other results, we find that tsat ¼ 15:1þ0:6
�0:5 a.u.

Inference for Figure 8C
For each spacing D, we separately inferred �D ¼ fa0

D
;b0

D
; tDbgg using

t
i

þð�DÞ ¼ b0
D
tsat

a0
D
Pi

1þa0
D
Pi

þ t
D

bg; t
i

�ð�DÞ ¼ tsat
Pi

1þPi

þ t
D

bg; (17)

where tsat ¼ 15:1 a.u. is the median saturated transcription rate inferred for Figure 5C. We

then computed aD ¼ a0
D
ð1þ F

�1Þ � F
�1 and bD ¼ b0

D
ð1þ a�1

D
F
�1Þ � a�1

D
F
�1, using the median

CRP binding factor F ¼ 23:9 inferred for Figure 2B.
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Derivation of allelic manifold regimes

Appendix 4—figure 1. Derivation of the regimes of allelic manifolds. Panels A-D show

simulated induction curves for transcription t as a function of the RNAP binding factor P.

Dashed lines indicate boundaries between the minimal and linear regimes of each curve, while

dotted lines indicate boundaries between linear and maximal regimes. A formula for the value

of P at each regime boundary is also shown. All simulations used tsat ¼ 1 a.u., tbg ¼ 10
�4 a.u.,

F ¼ 100, and P ranging from 10�9 to 104. (A) Induction curve for unregulated transcription; see

Equation 18. (B) Induction curve for transcription repressed by occlusion; see Equation 19. (C)

Induction curve for transcription activated by stabilization (a ¼ 300); see Equation 20. (D)

Induction curve for transcription activated by acceleration (a ¼ 10, b ¼ 30); see Equation 21.

Panels E-G show how overlaps between the six regimes of two induction curves (three for t�
and three for tþ) result in five distinct regimes for the corresponding allelic manifold. (E)

Regimes of the allelic manifold for occlusion, which is shown in Figure 1C. (F) Regimes of the

allelic manifold for stabilization, which is shown in Figure 4C. (G) Regimes of the allelic

manifold for acceleration, which is shown in Figure 7C.
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Each transcription rate modeled in this work is a sigmoidal function of the unitless RNAP-

DNA binding factor P. As such, a log-log plot of transcription t as a function of P reveals a

sigmoidal curve having three distinct regimes. The ’minimal’ regime of this induction curve

comprises values of P that are sufficiently small for t to be well-approximated by its smallest

value (tbg in all cases). The ’maximal’ regime occurs when P is so large that t is well-

approximated by its largest value (either tsat or b
0
tsat). Between these maximal and minimal

regimes lies a ’linear’ regime in which t is approximately proportional to P.

For unregulated transcription, which in this paper is denoted t�, these three regimes are

given by

t� ¼ tsat
P

1þP
þ tbg »

tbg for P�
tbg

tsat

tsatP for
tbg

tsat
� P� 1

tsat for 1� P

8

>

<

>

:

; (18)

see Appendix 4—figure 1A. For transcription that is repressed by occlusion (with F � 1),

which we denote here by t
occ
þ , these three regimes are shifted (relative to t�) to larger values of

P by a factor of approximately F. As a result,

t
occ
þ ¼ tsat

P

1þFþP
þ tbg »

tbg for P� F
tbg

tsat

tsat
P

1þF
for F

tbg

tsat
� P� F

tsat for F� P

8

>

<

>

:

; (19)

see Appendix 4—figure 1B. By contrast, for transcription that is activated by stabilization,

denoted here by t
stab
þ , these three regimes shift (relative to t�) to lower values of P by a factor

of 1=a0, giving

t
stab
þ ¼ tsat

a0
P

1þa0P
þ tbg »

tbg for P�
tbg

tsata
0

tsata
0
P for

tbg

tsata
0 � P� 1

a0

tsat for 1

a0 � P

8

>

>

<

>

>

:

; (20)

see Appendix 4—figure 1C. For transcription that is activated partially by acceleration and

partially by stabilization, here denoted by t
acc
þ , two parameters govern the shape of the

induction curve. As a result, the boundary between the minimal and linear regimes are shifted

(relative to t�) to lower values of P by a factor of 1=a0b0, while the boundary between the linear

regime and the maximal regime is shifted down by a factor of only 1=a0. As a result,

t
acc
þ ¼ b0

tsat
a0
P

1þa0P
þ tbg »

tbg for P�
tbg

tsata
0b0

tsata
0b0

P for
tbg

tsata
0b0 � P� 1

a0

tsatb
0 for 1

a0 � P

8

>

>

<

>

>

:

; (21)

see Appendix 4—figure 1D.

Each allelic manifold described in the main text has five distinct regimes. These arise from

overlaps between the three regimes of t� and the three regimes of tþ. Specifically, the five

regimes of the allelic manifold for repression by occlusion, which are listed in Figure 1D, arise

from the overlaps between the three regimes for t� and the three regimes for toccþ . These

overlaps are indicated in Appendix 4—figure 1E. Similarly, the five regimes of the allelic

manifold for activation by stabilization (Figure 4D) arise from the overlaps between the

regimes of t� and t
stab
þ , illustrated in Appendix 4—figure 1F, while the regimes of the

manifold for activation by acceleration (Figure 7D) arise from overlaps between the regimes of

t� and t
acc
þ , illustrated in Appendix 4—figure 1G.
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