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Abstract 

Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multi-
forme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. 
The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor 
cells, failure of anti-glioma drugs to cross the blood–brain barrier, tumor heterogeneity and the highly metastatic 
and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being 
developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and 
clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting 
strategies, current treatment limitations, novel combination therapies in the context of current treatment options and 
the ongoing clinical trials for glioblastoma therapy.
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Introduction
In recent years, a growing number of successful pre-clin-
ical agents have failed to show reproducible effects on 
patient survival [1]. The “Basket trail” approach—testing 
the effect of one drug on a single mutation in a variety of 
tumor types is being used to address the irreproducibility 
issue [2]. Another approach being used to overcome this 
troubling trend is the use of combination of drugs that 
rely on complementary mechanisms of antitumor activ-
ity and can be combined into a therapeutic regimen [3, 
4]. The success of combination therapy approach relies 
on three factors: (i) each component of the combina-
tion therapy regimen should have a single-agent activ-
ity without any cross-resistance, (ii) pre-clinical studies 
on the drug cocktail should indicate synergism, and (iii) 
each component should have a separate safety criterion 
[5]. Since, combination therapy works synergistically or 
in an additive manner, lower doses of individual drugs are 
administered reducing the problems of drug resistance to 
tumor cells and drug toxicity to healthy cells [6].

In cancer, combinations of two or more therapeutic 
treatments have been demonstrated to be more effective 
than monotherapy and chemotherapy [6]. Monotherapy 
non-selectively targets rapidly growing cells and chemo-
therapy leads to high toxicity burden and immunosup-
pression [6]. Glioblastoma multiforme (GBM) is the most 
frequent and aggressive brain tumor in adults with very 
poor prognosis [7]. In the past decade, despite novel 
therapeutic targets being discovered, monotherapy has 
failed in clinical trials [8, 9]. In this review, we discuss and 
summarize the current status of combination therapy in 
combating GBM.

Pathophysiology of Glioblastoma multiforme
Glioblastoma multiforme is the most aggressive pri-
mary malignant brain tumor, with a median survival of 
about 14.6  months post-diagnosis and is classified as 
Grade IV by the World Health Organization (WHO) 
[10]. It accounts for 45.2% of malignant primary brain 
and central nervous system (CNS) tumors, 54% of all 
gliomas and 16% of primary brain and CNS tumors [11]. 
The global incidence of GBM is 0.59–3.69 per 100,000 
live births with an age-adjusted incidence rate of 3.97 
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cases per 100,000 for males and 2.53 cases per 100,000 
for females [11, 12]. Glioblastoma is classified into two 
types: primary GBM, which is the predominant subtype 
(80% of cases) and is manifested at later age (mean age 
62 years) whereas secondary GBM progresses from lower 
grade astrocytoma or oligodendroglioma and is prevalent 
in younger patients (mean age 45 years) [13–16]. A rare 
subtype of GBM, “with oligodendroglioma component” 
(GBMO) has been added to the WHO classification [10]. 
GBMO is defined as GBM with an area resembling ana-
plastic oligodendroglioma and necrosis with or without 
microvascular proliferation [10].

Molecular sub‑classes of Glioblastoma multiforme
The histological homogeneity despite clinical hetero-
geneity of GBM sub-types that affect disease prognosis 
and therapeutic outcomes warrants a molecular profil-
ing based classification [17]. The Cancer Genome Atlas 
(TCGA) summarized genomic alteration in 206 GBM 
patients. A total of 601 genes and sequencing data from 
91 patients (a subset of the 206 GBM patients) were used 
to describe the mutational spectrum [18]. An independ-
ent set of gene expression profiling data from 260 GBM 
patients and 40 classifying genes have been used to clus-
ter GBM into four clinically relevant subtypes; namely: 
Classical, Proneural, Mesenchymal and Neural (Table 1) 
[18].

Classical GBM
The classical subtype is associated with chromosome 7 
amplification, loss of chromosome 10 (100% cases) and 
Epidermal growth factor receptor (EGFR) amplifica-
tion (97% cases) [19]. Focal deletion of 9p21.3 harbor-
ing cyclin-dependent kinase Inhibitor 2A (CDKN2A) 
is associated (p < 0.01, two sided Student’s t test) with 
classical GBM, which co-occurs with EGFR amplifica-
tion in 94% cases [18]. Homozygous deletion of 9p21.3 is 
almost mutually exclusive with retinoblastoma (RB) path-
way genes (RB1, CDK4, CCDN2) [18]. Neural precursor 
and stem cell marker (NES) overexpression, mutation in 

phosphatase and tensin (PTEN), Notch (NOTCH3, JAG1, 
LFNG) and Sonic hedgehog (SMO, GAS1, GLI2) pathway 
activation are observed in this subtype [18].

Mesenchymal GBM
This subtype is associated with focal heterozygous dele-
tion of 17q11.2 containing neurofibromin 1 (NF1) 
(p < 0.01, adjusted two-sided Student’s t test), mutation in 
PTEN, mutation in tumor protein p53 (TP53) and activa-
tion of genes in tumor necrosis factor (TNF) superfamily 
and NF-kB pathway [18]. Mesenchymal subtype is associ-
ated with mesenchymal markers: CHI3L1 and MET [18, 
20].

Proneural GBM
This subtype is associated with platelet-derived growth 
factor receptor alpha (PDGFRA) amplification, mutation 
in isocitrate dehydrogenase 1 (IDH1), PIK3A/PIK3R1, 
TP53, CDKN2A and PTEN [18]. Several development 
genes (SOX, DCX, DLL3, ASCL1, TCF4) are overex-
pressed in the proneural subtype [20]. Interestingly, 90% 
of the IDH1 mutations in GBM are found in proneural 
subclass (p < 0.01, adjusted two sided Fisher’s exact test) 
[18].

Neural GBM
This subtype is associated with neuronal marker expres-
sion such as NEFL, GABRA1, SYT1, SLC12A5 and EGFR 
amplification and overexpression. The gene ontology 
(GO) categories associated with this subtype include 
neuron projection, axon transmission and synaptic trans-
mission. This subgroup shows strong association with 
oligodendrocytic and astrocytic differentiation. The neu-
ral subgroup also includes genes that are differentially 
expressed during neuronal differentiation [18].

In 2016, WHO updated the classification of CNS 
tumors [21]. The new update includes molecular fea-
tures in addition to histopathology [21]. The nomencla-
ture of the subtypes includes the histopathological name 

Table 1 Glioblastoma multiforme classification by The Cancer Genome Atlas and World Health Organization

Sub‑class Genetic markers Median survival 
(months)

References

Classical CDKN2A, EGFR, NES, PTEN, Notch and SHH pathway 12.2 [18]

Mesenchymal NF1, PTEN, TP53, TNF, NF-kB pathway 11.8 [18]

Proneural PDGFRA, IDH1, PIK3A/PIK3R1, CDKN2A, PTEN, SOX, DCX, DLL3, 
ASL1, TCF4

11.3 [18]

Neural EGFR, NEFL, GABRA1, SYT1, SLC12A5 13.1 [18]

Glioblastoma, IDH1 wild type TERT, TP53, EGFR, PTEN 9.9 [21]

Glioblastoma, IDH1 mutant TERT, TP53, ATRX 15 [21]



Page 3 of 12Ghosh et al. Clin Trans Med  (2018) 7:33 

followed by genetic information [21]. Currently, GBM is 
classification into three major sub groups (Table 1) [21].

Glioblastoma, IDH1 wild type
About 90% of GBM are in this subtype, most cases are 
either primary or de novo glioblastoma [21]. Patients in 
this subtype are mostly 55 years or older [22]. The overall 
survival with surgery and radiotherapy is approximately 
10  months. These tumors are located in supratentorial 
region of the brain and are associated with extensive 
necrosis, TERT promoter methylation (72% cases), TP53 
mutations (27%), EGFR amplification (35%) and PTEN 
mutations (24%) [21]. A new variant, epithelioid glioblas-
toma, falls under IDH1-wild type and is characterized 
by the presence of large epithelioid cells, vesicular chro-
matin, rhabdoid cells and prominent nuclei [20, 21]. This 
subtype of GBM is found in patient ages ranging from 
10 to 69 years and often harbors a v-raf murine sarcoma 
viral oncogenes homolog B1 (BRAF) V600E mutation 
[23]. This subtype lacks EGFR amplification and chromo-
some 10 loss [21].

Glioblastoma, IDH1 mutant
About 10% GBM cases form this subtype and are char-
acterized as secondary glioblastoma associated with low-
grade diffused glioma [21]. This subtype of GBM arises 
in younger patients (about 44  years) [22]. The median 
survival post surgery and radiotherapy is 24  months. 
Additional chemotherapy treatment extends the medial 
survival to 31 months. These tumors are located in fron-
tal lobe of brain and are characterized by limited tumor 
necrosis, TERT promoter mutation (26%), TP53 muta-
tions (81%) and ATRX mutations (71%) [21].

Glioblastoma, not otherwise specified (NOS)
This subtype includes GBM where full IDH evaluation 
cannot be performed [21].

There are two additional glioblastoma subtypes: (i) glio-
blastoma with primitive neural component and (ii) small 
cell glioblastoma and granular cell glioblastoma [21, 24, 
25]. Both these subtypes show poor glioblastoma-like 
prognosis without microvascular proliferation and/or 
necrosis [21].

Disease prognosis in Glioblastoma multiforme 
and clinical correlation
Many signaling pathways, oncogene and transcription 
factors are altered in GBM [26]. Disease prognosis in 
GBM and patient response to therapy depends on the 
type genetic and epigenetic modifications [27]. The fol-
lowing section summarizes the factors that determine 
GBM prognosis and impact its clinical management.

Molecular marker based disease prognosis
Here we summarize the latest development in molecu-
lar marker based GBM prognosis and their clinical out-
comes (Table 2).

O‑6‑methylguanine‑DNAmethyltransferase (MGMT)
DNA repair enzyme MGMT removes alkyl groups from 
O6 position of guanine in DNA making cells resistant to 
the chemotherapeutic agent temozolomide (TMZ) [28]. 
Methylation of MGMT gene promoter leads to epigenetic 
silencing of MGMT in glioma cells. This in turn, leads 
to reduction in DNA repair function, increased genome 
instability and chemosensitivity to TMZ [29–32]. GBM 
patients with concurrent methylation of MGMT, TP53 
and CDKN2A show better prognosis [33].

EGFR
EGFR mutation is mainly found in primary GBM [34]. 
EGFR variant III (EGFRvIII) is the most common muta-
tion (40%) in GBM and its overexpression is highly 
associated with poor prognosis [35]. EGFR gene status 

Table 2 Molecular marker based disease prognosis in Glioblastoma multiforme 

Markers Genetic/epigenetic alteration Pathway affected Prognosis References

MGMT Promoter methylation DNA mismatch repair Better [125]

EGFR Gene mutation/partial deletion [EGFRΔIII] PI3K/AKT/MAPK Poor [126]

IDH1 Point mutation [R132H] G-CIMP and metabolic alteration Better [127]

G-CIMP Hypermethylation Global epigenetic alteration Better [18, 39, 40]

ATRX Gene mutation Alternative telomere lengthening Poor [45, 46]

TP53 Gene mutation p53 Unknown [42]

PTEN Gene mutation PI3K/AKT/MAPK Poor

1p19q deletion CIC and FUBP mutation Not clearly known Better [48]

SRC Phosphorylation Integrin signaling Better [49]

RPS6 Phosphorylation mTOR Poor [49]
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and overexpression is a prognostic indicator in younger 
patients [35].

IDH mutation
Mutations in IDH1 or IDH2 genes, which encode isoci-
trate dehydrogenase enzyme involved in tricarboxylic 
acid cycle (TCA), are common in lower grade and ana-
plastic (II–III) glioma [36]. IDH1 mutated high grade 
gliomas arise from lower-grade glioma (secondary GBM) 
and shows specific radiographic, histologic and transcrip-
tional features consistent with a less aggressive prognosis 
[37].

G‑CIMP
The CpG island hypermethylation phenotype (G-CIMP) 
is strongly correlated with IDH1 mutation and the 
proneural sub-type of GBM [38, 39]. G-CIMP is rarely 
found in primary GBM (5–8%) [39]. GBM patients in this 
subgroup have the highest overall survival rates [18, 39, 
40].

TP53 mutation
TP53 gene mutation is most commonly found in second-
ary GBM (60–70%) [41]. Mutation in this tumor suppres-
sor is reported in younger patients, albeit the prognosis 
in this subtype is still unclear [42].

ATRX mutation
Mutation in alpha-thalassemia/mental retardation syn-
drome X-linked (ATRX) gene, involved in alternative tel-
omere lengthening is most frequently found in secondary 
GBM (57%), less frequently in pediatric GBM (24%) and 
rarely in primary GBM (4%) [43, 44]. This mutation often 
clusters with IDH1 and TP53 mutations and is associated 
with poor patient prognosis [45, 46].

Loss of chromosome 10
Loss of chromosome 10, a part or the entire chromo-
some is found in 80–90% of GBM cases [41]. Mutation in 
PTEN, located at 10q23.3 is exclusively found in primary 
GBM and accounts for 20–40% of GBM [47].

1p19q co‑deletion
GBMO results from 1p19q co-deletion [48]. As per the 
National Comprehensive Cancer Network (NCCN) treat-
ment guidelines, 1p19q co-deletion is the only molecu-
lar biomarker for therapeutic use for GBMO subtype 
(NCCN, 2013).

Metabolic profiling based prognosis
Protein expression analysis in GBM patients revealed two 
populations of glioblastoma stem-like cells (GSC) associ-
ated with different clinical outcomes: (i) proto-oncogene, 

tyrosine protein kinase and SRC activation is associated 
with the subgroup showing better prognosis (ii) riboso-
mal protein S6 (RPS6), an effector of the mTOR pathway 
is associated with poor patient prognosis [49].

Immunological profiling based prognosis
Analysis of tumor-associated stroma revealed that mes-
enchymal (MES) subtype of GBM is associated with the 
presence of tumor-associated glial cells and microglial 
cells [50]. Furthermore, genetic deactivation of NF1 is 
associated with increased macrophage/microglia in the 
tumor microenvironment [50]. Since there is a higher fre-
quency of M2 macrophages and CD4+ T cells observed 
after radiotherapy, M2 macrophages are presumed to 
play a role in radioresistance [50].

Glioblastoma multiforme: treatment challenges
Despite the identification of well-defined molecular 
markers, therapeutic targeting and disease prognosis in 
GBM is poor. Multiple factors contribute to this disease 
complexity and are summarized below.

Glioblastoma stem cell (GSC) and therapeutic resistance
The poor prognosis of GBM can be attributed to its 
resistance to current therapeutic approach consisting 
of radiotherapy (RT) with concomitant and adjuvant 
TMZ therapy post surgery [51]. Although, GBM is most 
comprehensively characterized based on genetic (IDH1 
mutation), epigenetic (MGMT promoter methylation) 
and transcriptional (classical, mesenchyme, proneu-
ral, neural) profiling, these mutations show therapeutic 
resistance and recurrence due to the self-renewing tumor 
cell type known as GSCs that escape chemo-RT and pro-
liferate residual tumor cells following treatment [52–54]. 
GSCs are defined as tumor cells capable of self-renewal, 
high tumorigenic ability, and capacity for multipotent 
differentiation [55, 56]. GSCs can acquire resistance to 
chemo-RT either through innate properties of genetic 
heterogeneity of the tumor or through adaptive resist-
ance pathways [57–59].

Intratumoral heterogeneity
Genomic landscape study of pre- and post treatment 
GBM patients pairs revealed a variable degree of geneti-
cally related clones to the original tumor (clonal evo-
lution) and accumulation of new clones (sub clonal 
evolution)—giving rise to high degree of intratumoral 
heterogeneity: the primary cause for the poor progno-
sis and lack of effective therapeutic options in GBM [60, 
61]. Intratumoral heterogeneity can be experimentally 
concluded from (i) single cell RNA-seq data showing the 
presence of heterogeneous mixture of cells in various 
GBM subgroups, and (ii) genetically distinct identity and 
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differential drug resistance profiles in single cell derived 
GBM subclones [62, 63]. The proneural subgroup has 
the highest proportion of markers specific to other sub-
groups and reports the worst prognosis [62]. Altogether, 
intratumoral heterogeneity fuels therapy resistance and 
failure of effective therapeutic strategies.

Post‑therapy resistance
A number of molecular mechanisms have been impli-
cated in the post-therapy resistance in GBM: DNA 
damage checkpoints; tumor microenvironment such as 
hypoxia, acidic and metabolic stresses; oncogene and 
transcription factor activation such as Notch, NF-kB and 
EZH2 [54, 64–71]. Some examples of these mechanisms 
include (i) enrichment of CD133+ GSCs post chemo-RT 
results in post-therapy resistance and is mediated by the 
activation of DNA damage checkpoint kinases (ChK1 
and ChK2) [54], (ii) MGMT plays an important role in 
TMZ resistance mediated by MMR pathway that acts 
by reversing the mutagenic DNA lesion O-6-lguanine 
(introduced by TMZ) back to guanine [28, 72], (iii) the 
Notch pathway inhibitor: γ-secretase inhibitor (GSI) 
sensitizes GSCs to radiation [67] and overexpression of 
Notch 1 or Notch 2 sensitizes GSC to RT by blocking the 
transition into endothelial progenitors [67], (iv) combina-
tions of receptor tyrosine kinase (RTK) inhibitors and/
or RNA interference show promising anticancer activity 
by inhibiting cell growth in PTEN-deficient glioma cells 
[73], (v) hypoxia favors GSCs maintenance and hypoxia 
inducible transcription factors (HIF-1 and HIF-2) are 
involved in tumor maintenance and angiogenesis [74], 
and (vi) GSCs suppress the adaptive immune system by 
recruiting microglia/macrophages to induce secretion of 
immunosuppressive cytokines interleukin-10 (IL-10) and 
TGF-β1, in turn promoting tumor growth [75].

Therapeutic targeting
The compromised responses to radio and chemotherapy 
in GBM results from therapeutic resistance and inef-
ficient targeting of GSCs. Novel therapeutic approaches 
are being developed to overcome these treatment limita-
tions [76–80].

Targeting GSCs by surface markers
Patients with CD133+ expression show poor clinical out-
comes [81]. Silencing of CD133+ in GBM derived neuro-
sphere impairs the self-renewal and tumorigenic capacity 
of neurosphere cells [82]. Selective targeting of CD133+ 
GBM cells by anti-CD133 monoclonal antibody selec-
tively kills tumor cells while sparing normal cells [83]. 
Using CD133 antibody conjugated immune liposomes 
that encapsulate gemcitabine to target GSCs showed 15 

times higher anti-tumor effect than that of free gemcit-
abine [84].

Targeting GSCs by signaling pathways
Signaling pathways including Notch, Sonic-hedgehog 
(Shh), VEGF, STAT3 and Bone morphogenetic proteins 
(BMPs) are critical in GSCs maintenance and target-
ing these pathways have promising therapeutic potential 
[85]. GSI mediated Notch inhibition leads to reduced 
neurosphere proliferation, reduced CD133+ cell frac-
tion in  vitro and decreased tumor growth in  vivo [86]. 
STAT3 is a critical signaling node involved in GSC main-
tenance through regulation of Toll-like receptor TLR9 
expression [87, 88]. A variant of BMP7 (BMP7v), member 
of the TGF-β superfamily, has been shown to decrease 
GSC proliferation and angiogenesis providing a novel 
approach to the treatment of GBM [89].

Targeting tumor microenvironment
Tumor microenvironment plays a significant role in GSC 
stemness and thus targeting microenvironment for ther-
apy has shown promising results [90]. Cancer stem cells 
(CSCs) orchestrate vascular niches that maintain the 
CSCs pool [74]. VEGF is involved in microvasculature 
formation and is an important mediator of angiogenesis 
in GBM [90]. Bevacizumab is a recombinant humanized 
monoclonal antibody that inhibits VEGF signaling path-
way by inhibiting interaction with VEGF receptors [91]. 
Tumor-associated macrophages (TAMs) are enriched 
in GBMs and promote tumor progression [92]. GSCs 
secrete periostin (POSTN) to recruit TAMs and dis-
rupted POSTN attenuate the tumor-supportive M2 type 
TAMs in xenografts [92].

Combination therapy in Glioblastoma multiforme: 
preclinical development
Characterization of molecular targets from in  vitro and 
in vivo studies have led to the development of clinical tri-
als in GBM. Experimental models and clinical trials are 
most rewarding when they combine multiple gene tar-
gets [93–96]. This approach, also referred to as combina-
tion therapy, shows synergistic effects in terms of drug 
efficacy and is by far the most effective way of managing 
aggressive tumors like GBM.

Maximum surgical resection of the tumor followed by 
focal chemotherapy with TMZ is the current standard of 
care for GBM [97]. TMZ, a second-generation imidazo-
tetrazine, is a DNA-alkylating agent [98]. It has the ability 
to cross the blood–brain barrier (BBB) making it particu-
larly effective in the treatment of brain tumors [98–100]. 
However, in addition to severe side effects of TMZ such 
as myelotoxicity, ulcers, nausea, vomiting, fatigue and 
toxic DNA damage, the resistance to this drug is common 
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in GBM patients [101, 102]. A potential approach in the 
first-line treatment of GBM may be to explore a more 
effective combination regimen. In this section we sum-
marize a comprehensive list of gene targets and small 
molecule inhibitors that are in various stages of preclini-
cal development for GBM therapy and are being tested 
in combination with radio- and/or chemotherapy (Fig. 1).

TMZ in combination therapy
TMZ and micellarized Cyp (MCyp)
Shh signaling pathway is up regulated in high-grade gli-
omas and inhibition of Shh leads to apoptosis and cell 
death [103, 104]. Cyclopamine (Cyp) is a Shh antago-
nist, which is selective and non-toxic to cell types not 

dependent on activation of the Shh pathway [105]. 
Combination of MCyp with TMZ has been shown to 
block the Shh pathway and eliminate neurosphere for-
mation [105].

TMZ and morphine
The efflux of P-glycoprotein 1 (P-gp1) in endothelium 
cells of the BBB mediates TMZ resistance [106]. Mor-
phine is an inhibitor of P-gp1 [106]. Combinatorial effect 
of morphine with lower dose of TMZ shows significant 
reduction in tumor growth [106]. Additionally, reduc-
ing the TMZ drug dose reduces chemoresistance, thus 
improving therapeutic response in the long term [106].
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TMZ and nutlin3a
nutlin3a is a murine double minute 2 (MDM2) pro-
tein–protein interaction inhibitor [107]. It blocks the 
MDM2-p53 associated signaling pathways [107]. The 
combination of TMZ/nutlin3a synergistically decreases 
the growth of p53 wild type GBM cells and leads to sig-
nificant increase in survival of mice with GBM10 intrac-
ranial tumor [107].

TMZ and SGT‑53
Combining TMZ with exogenous delivery of TP53 via 
tumor-targeted nanocomplex (SGT-53) significantly che-
mosensitized GBM cells (U87 and U251) to chemother-
apy and prolonged median survival [108].

TMZ and sulforaphane (SFN)
Coadministration of the transcriptional NF-kB inhibitor, 
SFN with TMZ in TMZ-resistant cell lines (U87-R and 
U373-R) lead to reversal of chemoresistance, suppression 
of cell growth and enhanced cell death in chemoresistant 
xenograft in nude mice [109]. Additionally, SFN has also 
been shown to inhibit miR-21 via Wnt/β-catenin/TCF4 
signaling pathway, thereby enhancing chemosensitivity 
[110].

TMZ and XL765
The PI3K/mTOR pathway is dysregulated in many 
tumors. It acts by inhibiting Akt signaling and promotes 
resistance to EGFR inhibitors [111, 112]. XL765 is a novel 
PI3K/mTOR dual inhibitor [113]. XL765 in combina-
tion with TMZ shows additive cytotoxicity in genetically 
diverse GBM xenografts [113].

TMZ and JQ1
Delivery of transferring-functionized nanoparticle (Tf-
NP) based dual drug combination of TMZ with bromo-
domain inhibitor JQ1 leads to increased DNA damage 
and apoptosis. This results in 1.5 to 2-fold decrease of 
tumor burden and increased survival when compared 
with free-drug dosing [114].

TMZ and nimotuzumab
The mutant form of EGFR, EGFRvIII confers therapeu-
tic resistance and tumor growth. Nimotuzumab, an 
anti-EFGR antibody in combination with TMZ showed 
enhanced antitumor activity in nude mice bearing sub-
cutaneous or intracerebral tumor expressing EGFRvIII 
[115].

RIST/aRIST in combination therapy
The RIST (rapamycin, irinotecan, sunitinib, temozo-
lomide) and the variant aRIST (alternative to rapamy-
cin, GDC-0941) combination regimen inhibit GBM cell 

growth in primary patient culture via up-regulation of 
apoptotic pathways [116]. Rapamycin is an mTOR inhibi-
tor, irinotecan is a topoisomerase-I inhibitor and suni-
tinib inhibits RTKs [116]. These individual components 
have shown partial success, but while in combinations, 
they significantly reduce cell viability [116]. Additionally, 
in the combinatorial regimen all inhibitors are adminis-
tered at relatively lower doses thereby reducing toxicity 
and other side effects [116].

Radiotherapy in combination therapy
RT and poly (ADP ribose) polymerase (PARP) inhibitor
Inhibition of PARP proteins radiosensitizes glioma cells 
by inhibiting DNA repair [93–95]. Studies show that 
PARP inhibitors (PARPi) decreased colony formation 
in MGMT unmethylated GBM patient derived xeno-
grafts. This suggests PARP inhibition as a new therapeu-
tic approach in GBM [117]. RT in GBM patients’ lead to 
upregulation of PARP1 mediated repair of DNA damage 
in glioblastoma CSCs. Preclinical study of the PARPi, 
talazoparib (BMN-673; Pfizer), in combination with RT 
showed prolonged G2/M block and a significant reduc-
tion in GSC proliferation [118].

RT and palbociclib
RB pathway (Cycline-dependent kinase (CDK4/6), RB 
tumor suppressor and the E2F-family of transcription 
factors are important for cell cycle regulation [119]. 
Amplification of CDK6 and deletion of CDK inhibitor 
2A/B (CDKN2A/B) genes are frequently found in GBM 
patients (~ 86%), specifically in classical and mesenchy-
mal subtypes [119]. Such alterations cause constitutive 
expression of E2F transcription factors leading to cell 
cycle acceleration, DNA replication and mitotic pro-
gress [119]. Palbociclib (PD0332991; Pfizer) is a selective 
inhibitor of CDK4/6 kinase in RB proficient cells and can 
promote cell cycle arrest and apoptosis both in vitro and 
in vivo [120]. Palbociclib when coadministered with RT, 
showed a survival advantage in mice [121].

Tyrosine kinase receptor inhibitors in combination therapy
Activation of RTKs, including EGFR, PDGFRα, PDGFRβ 
and MET is frequently observed in GBM. Anti-EGFR 
therapy or targeted therapy against a particular RTK 
is not effective in suppressing the downstream PI3K 
pathway leading to therapeutic resistance. Combina-
tion of RTK inhibitors (erlotinib, SU11274, imatinib) 
show improved cell survival and anchorage-independent 
growth in PTEN-deficient glioma cells [73].

Immunotherapy in combination therapy
Immunosuppression is one of the primary reason for 
poor prognosis in GBM [122]. Reduction in T cell 
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mediated immune response is due to co-inhibitory recep-
tors on T-cells known as immune checkpoint molecules 
[122]. CTLA-4 and PD-1 are two such immune check-
point molecules, blocking these two molecules induces 
tumor regression and promotes long-term survival [123, 
124]. Combination of anti-PD-1 antibodies and RT dou-
bled median survival and enhanced long-term survival 
in 15–40% GBM mice [125]. Studies in GBM models 
and human samples have shown that the accumula-
tion of myeloid-derived suppressor cells (MDSCs) in the 
tumor microenvironment induces immunosuppression 
[126, 127]. Inhibiting MDSC accumulation with PD-1 or 
CTLA-4 (that acts early in T-cell activation) enhances 
efficacy of immune-simulated gene therapy [128].

Antisense oligo‑based therapy in combination therapy
Immune-suppression in the tumor microenvironment 
leads to down-regulation of TGFβ-2 in GBM cells, which 
inhibits T and B cell activation and proliferation. Nano-
particle mediated delivery of antisense oligonucleotides 
(AON) to GBM xenografts in rats showed better delivery 
of AON to target cells and increased rates of activation of 
CD25 + T cells leading to immunostimulation [129, 130].

Combination therapy in GBM: ongoing clinical 
trials
Molecular profiling of GBM and preclinical research has 
led to the discovery of several targets for GBM therapy. 
The success of poly (ADP ribose) polymerase inhibitors 
(PARPi) in the treatment of breast and ovarian cancer in 
recent years has led to an intensive focus on exploiting 
the underlying combination therapy approach for both 
discerning the mechanisms of oncogenesis as well as for 
developing better treatment regimens. Depending upon 
the GBM sub-type, treatment modalities that combine 

two or more chemotherapeutic agents are being tested in 
ongoing clinical trials. In this section we summarize a list 
of the ongoing clinical trials for various GBM targets that 
are being tested in combination with radio-and/or chem-
otherapy (Table 3).

Future perspectives
Recent therapeutic approaches in cancer are based on the 
major advances made in areas of molecular biology, cel-
lular biology and genomics. Administering drug combi-
nations to patients that provide better clinical outcomes 
than individual agents do, is one such advance that has 
been successfully translated into therapy. PARP inhibi-
tors, which utilize the combination therapy approach, 
have shown excellent results in the treatment of breast 
and ovarian cancer changing the diagnostic and thera-
peutic landscape of the disease. Since combination drugs 
target multiple pathways, they rely on smaller drug doses, 
which help minimize drug resistance, a pitfall of adjuvant 
therapy in the clinic. However, it is important to con-
sider some limitations to the use combination therapy 
in GBM. First, a better understanding of the signaling 
networks and molecular players in GBM is crucial for 
the development of combination regimens and the suc-
cess of this approach. Second, some drug combinations 
are effective and act synergistically for therapeutic ben-
efits; some drug interactions may produce unwanted side 
effects on the patient’s health. Tumor heterogeneity and 
the unique immunological milieu of CNS is a major chal-
lenge in designing effective therapy regimens for GBM. 
One approach to overcome these limitations is to build 
mathematical models of synergism/antagonism of drugs 
and pathways that are effective in predicting drug combi-
nations for multifactorial disorders like GBM. Mathemat-
ical models are effective in visualizing drug combinations 

Table 3 Combination therapy in clinical trials for treatment of Glioblastoma multiforme 

Target Molecule GBM type Stage of testing References

Alkylation mediated DNA damage Temozolomide (TMZ) + radiotherapy (RT) GBM Phase IV NCT00686725

αvβ3 and αvβ5 integrin inhibitor+ Cilengitide + TMZ + RT Newly diagnosed GBM patients 
with methylated MGMT 
promoter

Phase III NCT00689221

Tyrosine kinase inhibitor Imatinib mesylate + hydroxyurea TMZ resistant progressive GBM Phase III NCT00154375

Pan-VEGFR tyrosine kinase inhibitor Cediranib + lomustine chemotherapy Recurrent GBM Phase III NCT00777153

VEGF-A Bevacizumab  (Avastin®) + TMZ + RT Newly diagnosed GBM Phase III NCT00943826

Immunostimulant TMZ + RT + poly ICLC Newly diagnosed GBM Phase II NCT00262730

Multiple kinase inhibitor TMZ + RT + sorafenib GBM Phase II NCT00544817

Tubulin inhibitor TMZ + PPX (CT2103) GBM without MGMT methylation Phase II NCT01402063

mTOR inhibitor TMZ + RT + bevacizumab + everolimus GBM Phase II NCT00805961

VEGF-A + topoisomerase I inhibitor TMZ + avastin + irinotecan Unresectable/Multifocal GBM Phase II NCT00979017

EGFR inhibitor TMZ + bevacizumab + tarceva GBM Phase II NCT005255525
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in a dose response matrix that can be subsequently vali-
dated by in vitro and/or in vivo experiments [131]. Quan-
tification of synergism (when the result of combining two 
or more chemical compounds produces an effect that is 
greater than additive effects of individual compounds) 
or antagonism (when the result of combining two or 
more chemical compounds produces an effect that is less 
than the additive effects of the individual compounds) is 
assessed based on the deviation of the observed combi-
nation response from the expected combination response 
calculated using a reference model [132]. The most com-
monly used reference models for calculating combination 
drug response include the Highest single agent (HSA) 
model, Loewe additivity model, Bliss independence 
model, and the Zero interaction potency (ZIP) model 
[133–136]. Combination therapy and drug synergism 
for targeted heterogeneous tumors and the interacting 
tumor microenvironment thus holds promise. Future 
research should focus on identifying synergistic interac-
tions between chemotherapy, radiotherapy and immuno-
therapy in order to maximize the antitumor potential of 
individual treatment approaches.
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