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Most studies of responses to transcriptional stimuli measure changes in cellular mRNA concentrations. By sequencing na-

scent RNA instead, it is possible to detect changes in transcription in minutes rather than hours and thereby distinguish

primary from secondary responses to regulatory signals. Here, we describe the use of PRO-seq to characterize the imme-

diate transcriptional response in human cells to celastrol, a compound derived from traditional Chinese medicine that has

potent anti-inflammatory, tumor-inhibitory, and obesity-controlling effects. Celastrol is known to elicit a cellular stress re-

sponse resembling the response to heat shock, but the transcriptional basis of this response remains unclear. Our analysis of

PRO-seq data for K562 cells reveals dramatic transcriptional effects soon after celastrol treatment at a broad collection of

both coding and noncoding transcription units. This transcriptional response occurred in two major waves, one within 10

min, and a second 40–60 min after treatment. Transcriptional activity was generally repressed by celastrol, but one distinct

group of genes, enriched for roles in the heat shock response, displayed strong activation. Using a regression approach, we

identified key transcription factors that appear to drive these transcriptional responses, including members of the E2F and

RFX families. We also found sequence-based evidence that particular transcription factors drive the activation of enhancers.

We observed increased polymerase pausing at both genes and enhancers, suggesting that pause release may be widely in-

hibited during the celastrol response. Our study demonstrates that a careful analysis of PRO-seq time-course data can dis-

entangle key aspects of a complex transcriptional response, and it provides new insights into the activity of a powerful

pharmacological agent.

[Supplemental material is available for this article.]

The technique of perturbing cells and then measuring changes in
their patterns of gene expression is a reliable and widely used ap-
proach for revealing mechanisms of homeostatic regulation. In
mammalian cells, a wide variety of stimuli that induce striking
changes in transcription are routinely applied, including heat
shock, hormones such as estrogen, androgen, and cortisol, lipo-
polysaccharide, and various drugs. Regardless of the stimulus, tran-
scription is commonly assayed by measuring concentrations of
mature mRNA molecules, typically using RNA-seq. This approach
is now relatively straightforward and inexpensive and allows for
the use of standard analysis tools in detecting many transcription-
al responses (Oshlack et al. 2010; Ozsolak and Milos 2011).

Nevertheless, these mRNA-based approaches are fundamen-
tally limited in temporal resolution owing to the substantial lag be-
tween changes in transcriptional activity and detectable changes
in the level of mRNAs. This lag results in part from the time re-
quired for transcription and post-transcriptional processing, and
in part because pre-existing mRNAs buffer changes in mRNA con-
centration. For a typical mammalian gene, significant changes

may require hours to detect, making it difficult to distinguish pri-
mary responses to a signal from secondary regulatory events. A
possible remedy for this limitation is instead to make use of
GRO-seq (Core et al. 2008), PRO-seq (Kwak et al. 2013), NET-seq
(Churchman and Weissman 2011; Mayer et al. 2015; Nojima
et al. 2015), or related methods (Dolken et al. 2008; Rabani et al.
2011, 2014; Li et al. 2016) for assaying nascent RNAs. These assays
have the important advantage of directly measuring the produc-
tion of new RNAs, rather than concentrations of mature mRNAs.
As a consequence, they can detect immediate changes in transcrip-
tional activity, and they permit time courses with resolutions on
the order of minutes rather than hours (Hah et al. 2011; Danko
et al. 2013; Jonkers et al. 2014; Mahat et al. 2016b). An additional
benefit of nascent RNA sequencing is that it is effective in detect-
ing unstable noncoding RNAs, including enhancer RNAs
(eRNAs), together with protein-coding transcription units (Hah
et al. 2011, 2013; Core et al. 2014). As a result, both active regula-
tory elements (which are generally well marked by eRNAs) and
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transcriptional responses can be detected using a single assay
(Danko et al. 2015).

In this study, we sought to use PRO-seq to characterize the
immediate, dynamic transcriptional response to the compound
celastrol. Celastrol (also known as tripterine) is a pentacyclic triter-
penoid isolated from the root extracts of Tripterygium wilfordii
(thunder god vine), which has been used for millennia in
traditional Chinese medicine for treatment of fever, joint pain,
rheumatoid arthritis, bacterial infection, and other ailments
(Westerheide et al. 2004). During the past few decades, celastrol
has shown promise as an anti-inflammatory agent in animal mod-
els of collagen-induced arthritis, Alzheimer’s disease, asthma, sys-
temic lupus erythematosus, and rheumatoid arthritis (Guo et al.
1981; Allison et al. 2001; Xu et al. 2003; Li et al. 2005; Sethi
et al. 2007). In addition, celastrol is known to inhibit the prolifer-
ation of tumor cells, including those from leukemia, gliomas, pros-
tate, and head/neck cancer (Nagase et al. 2003; Yang et al. 2006;
Sethi et al. 2007; Fribley et al. 2015). Recent research has also dem-
onstrated striking obesity-controlling effects in mice (Liu et al.
2015; Ma et al. 2015).

Celastrol is known to activate the mammalian heat shock
transcription factor HSF1 and stimulate the heat shock response
(Westerheide et al. 2004; Trott et al. 2008) as well as the unfolded
protein response (Mu et al. 2008; Fribley et al. 2015). In addition,
celastrol activates a battery of antioxidant response genes (Trott et
al. 2008). At the same time, celastrol inhibits the activities of other
transcription factors, including androgen receptors (Hieronymus
et al. 2006), glucocorticoid receptors (Trott et al. 2008), and NF-
KB (Sethi et al. 2007). Thus, in several respects, the cellular re-
sponse to celastrol resembles other well-known stress responses,
including, in particular, the response to heat shock. Indeed, this
heat shock-like behavior appears to explain, in part, the cytopro-
tective properties of celastrol. Nevertheless, it remains unclear ex-
actly what distinguishes the celastrol response from heat shock
and other stress responses. In particular, little is known about
the immediate transcriptional effects or primary targets of celas-
trol. Thus, an examination using PRO-seq provides an opportunity
for a deeper understanding of the specific mechanisms underlying
the activity of this potent compound, with potential therapeutic
implications.

With these goals inmind, we collected PRO-seq data for K562
cells at tightly spaced time points after treatment with celastrol
and analyzed these data using a variety of computationalmethods.
Our analysis sheds new light on the immediate transcriptional re-
sponse to celastrol at both regulatory elements and target genes.
More generally, it demonstrates that time-courses of PRO-seq
data together with appropriate bioinformatic analyses can be
used to dissect key aspects of a complex transcriptional response.

Results

Celastrol induces broad transcriptional repression

and more limited up-regulation

We prepared PRO-seq libraries for K562 cells before celastrol treat-
ment and after 10, 20, 40, 60, and 160 min of celastrol treatment,
with two biological replicates per time point (Fig. 1A). To ensure
that we could normalize read counts even in the presence of global
changes in transcription,we spiked the samenumber of permeable
Drosophila cells into each sample prior to run-on (Booth et al.
2016). Samples were sequenced to a total combined depth of
334.3 M reads, with an average replicate concordance of r2≈

98% (Supplemental Fig. 1). About 0.5 M of these reads (0.1%)
were derived from the Drosophila spike in. To obtain gene models
appropriate for our cell types and conditions, we developed a prob-
abilistic method, called tuSelector, that considers all GENCODE-
annotated isoforms for each gene and identifies the most likely
gene model given our PRO-seq data (Supplemental Fig. 2;
Supplemental Methods). This step was particularly important for
analyses that depend on an accurate transcription start site for
each gene. We identified a total of 12,242 protein-coding genes
from GENCODE as being actively transcribed in one or more
time points (Methods). Of these genes, 75.4% were active across
all six time points, 11.7% were active in a single time point, and
the remaining 12.9% were active in 2–5 time points. Thus, our
PRO-seq data and computational analyses indicate that more

Figure 1. Characterizing the dynamic transcriptional response to celas-
trol using PRO-seq. (A) PRO-seq was applied to K562 cells collected before
celastrol treatment (untreated/0 min) and at 10, 20, 40, 60, and 160 min
after celastrol treatment. Two biological replicates were performed for
each time point. (B) Distribution of log expression ratios (treated vs. un-
treated) for each time point (rlog is a regularized log2 estimate obtained
from DESeq2). Only genes classified as differentially expressed (DE)
throughout the time course are represented. Notice that most DE genes
(FDR≤ 0.01) are down-regulated upon celastrol treatment. (C) A UCSC
Genome Browser display showing raw PRO-seq data for two differentially
expressed genes, EGR1 and KDM3B. EGR1 is rapidly and strongly re-
pressed (immediate decrease of∼80%), whereas KDM3B ismore gradually
repressed, losing ∼50% of its expression by 160 min.
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than half of all protein-coding genes are
transcribed either in the basal condition
or during the celastrol response in K562
cells.

The genes that are differentially
transcribed in response to celastrol were
of particular interest for further analysis.
To measure transcriptional activity spe-
cific to each time point, we used counts
of PRO-seq reads mapping to the first
∼16 kb of each gene body, omitting the
first 500 bp to avoid the effects of pro-
moter-proximal pausing. Because RNA
polymerase travels at an average rate of
∼2 kb/min (Singh and Padgett 2009;
Danko et al. 2013; Jonkers et al. 2014;
Veloso et al. 2014) and our time points
are separated by at least 10min, this strat-
egy conservatively considers new tran-
scription only, yet maintains sufficient
statistical power for downstream analysis
(see Methods). By applying DESeq2
(Love et al. 2014) to these 16-kb read
counts, we identified 6516 (56%) of the
active genes as being differentially ex-
pressed (DE) relative to the untreated
condition (FDR≤ 0.01). Interestingly,
∼80%of these DE genes were down-regu-
lated. Many genes showed rapid and dra-
matic down-regulation, with decreases in
expression by half or more at 3.5% of DE
geneswithin 10min, at 7.8% ofDE genes
within 20min, and at 48.1% of DE genes
within 160 min (Fig. 1B,C). In contrast,
many fewer genes showed substantial in-
creases in expression; for example, only
0.03%, 1.9%, and 7.7% of DE genes had
doubled in expression after 10, 20, and
160 min, respectively. Nevertheless, ex-
treme up- and down-regulation were
both rare, with <1% of DE genes showing
increases and <1% showing decreases
in transcription by factors of eight or more. These observations
are reminiscent of findings for the heat shock response, which
have included general decreases in transcription together with
up-regulation of selected stress-response elements (Hieda et al.
2004; Mahat et al. 2016b), but the effect of celastrol is somewhat
less dramatic. We conclude that celastrol broadly inhibits tran-
scriptionwithinminutes after administration but also rapidly acti-
vates a set of genes that may be important for continued cellular
viability.

Celastrol activates heat shock more strongly and directly

than it activates the unfolded protein response

Celastrol has been reported to activate stress response pathways
such as the heat shock and unfolded protein responses
(Westerheide et al. 2004; Mu et al. 2008; Trott et al. 2008; Fribley
et al. 2015). To see whether these effects were detectable at the
transcriptional level immediately after treatment with celastrol,
we examined our PRO-seq data at genes activated by heat shock
factor protein 1 (HSF1) and genes involved in the three branches

of the unfolded protein response (UPR), corresponding to activat-
ing transcription factor 6 (ATF6), inositol-requiring enzyme 1
(ERN1), and endoplasmic reticulum kinase (EIF2AK3) (Fig. 2A).
Because the initial stages of the UPR and heat shock response are
nontranscriptional, we looked for downstream activity of the first
group of transcription factors activated in each pathway, using tar-
gets reported in the Reactome pathway database (Fabregat et al.
2016). Most direct targets of HSF1 were up-regulated within 160
min (Fig. 2B). Genes encoding chaperone protein HSPH1 and pro-
teinase inhibitor CBP1 were among the HSF1 targets showing the
strongest initial response, with the gene encoding HSPH1 almost
quadrupling its expression in 10 min and that for SERPINH1 in-
creasing more than eightfold in 160 min. Most direct targets of
the main UPR TFs (ATF4, ATF6, and XBP1), however, were not
strongly induced during our time course. There were some excep-
tions to this general rule, such as genes encoding transcription fac-
tor ATF3, chaperone HSPA5, and apoptosis inhibitor DNAJB9,
which more than doubled in expression. It is possible that these
targets are activated earlier than other targets, perhaps by other
TFs. In any case, our observations suggest that celastrol induces a

Figure 2. Induction of cellular stress responses by celastrol. (A) Illustration showing key aspects of the
unfolded protein response (UPR) and heat shock response (HSR), both of which have been reported to be
induced by celastrol (Mu et al. 2008; Trott et al. 2008). Expected transcriptional targets are shown inside
the nucleus, with targets of HSF1, the key transcription factor (TF) activated in the HSR, in red, and targets
of the TFs associated with the three major branches of the UPR—XBP1, ATF4, and ATF6—in green, pur-
ple, and blue, respectively. Asterisks indicate genes that were differentially expressed in our experiments
with FDR≤ 0.01. (B) PRO-seq-based log fold changes in expression in K562 cells after 160 min of treat-
ment by celastrol for numerous known targets of the same four TFs: XBP1, ATF4, ATF6, and HSF1. Genes
labeled are the same as those listed in A. Only targets of HSF1 display strong up-regulation.
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pronounced, rapid transcriptional response in the heat shock
pathway and has a much less pronounced transcriptional effect
on the UPR, although some targets of the UPR are activated.

Celastrol produces distinct temporal patterns

of transcriptional response

Our PRO-seq data for closely spaced time points enabled us to ex-
amine the temporal patterns of transcriptional response to celas-
trol treatment across the genome. To group our ∼6500 DE genes
by shared transcriptional trajectories across the five time points
following celastrol treatment, we used the autoregressive cluster-
ing algorithm, EMMIX-WIRE, which considers both expression
values at each time point and the correlation of these values
over time (Wang et al. 2012). EMMIX-WIRE identified four clus-
ters of DE genes showing distinct patterns of transcription (see
Methods; Fig. 3A). Only one of these clusters (cluster #1)

displayed dramatic and sustained up-
regulation. In contrast, cluster #2
showed rapid and pronounced down-
regulation, cluster #3 showed delayed
down-regulation, and cluster #4 dis-
played moderate, continuous down-reg-
ulation. Interestingly, the expression
patterns for these clusters suggested
that the transcriptional response to
celastrol occurs largely in two distinct
waves: one within the first 10 min,
and a second between 40 and 60 min af-
ter treatment. It is possible, however,
that additional waves occur but are un-
detectable at the resolution of our time
points. These findings were robust to
the number of clusters selected, with
similar overall behavior for five-, six-,
and seven-cluster models (Supplemental
Figs. 4–6).

Each of these clusters was enriched
for genes with a distinct biological func-
tion, according to Reactome, a carefully
curated database of gene-pathway rela-
tionships (Fig. 3A). To identify these en-
richments, we labeled genes with their
associated pathways from Reactome,
then used permutation testing to find
pathways overrepresented in each of the
four clusters relative to the other three.
Cluster #1 is enriched for genes responsi-
ble for the HSF1 response, including the
HSPA family (Supplemental Fig. 7).
Consistent with this observation, genes
in this cluster have been shown, by
ChIP-seq, to bind by HSF1 under heat
shock conditions in K562 cells (Fig. 3B;
Vihervaara et al. 2013). Cluster #2 is en-
riched for genes involved in ribosomal
assembly, translational initiation, and
peptide elongation. Cluster #3 is en-
riched for pathways that enableDNA rep-
lication (e.g., MCM family) and cell-cycle
progression (e.g., CDK family) (Sup-
plemental Fig. 10). The delayed down-

regulation of these genesmay occur as the cell is preparing to enter
replicative arrest and, potentially, senescence, consistent with ob-
servations that celastrol induces cell-cycle arrest and potentiates
apoptosis (Kannaiyan et al. 2011; Feng et al. 2013; Fribley et al.
2015). This transcriptional pattern is also consistent with our
observation that celastrol-treated cells failed to replicate and
mostly died within three days (Supplemental Fig. 11). Finally,
cluster #4 contains essential elements of the RNA splicingmachin-
ery (e.g., CD2BP2, CLP1, and the SRSF kinase family) (Supplemen-
tal Fig. 11). Down-regulation of this cluster is consistent with
previous reports that splicing is inhibited under heat shock (Shalgi
et al. 2013). Similar patterns of enrichment were observed with
five-, six-, and seven-cluster models. Overall, these results demon-
strate that the components of a complex, multilayered transcrip-
tional response can be disentangled to a degree by identifying
groups of genes that display distinct temporal patterns of gene
expression.

Figure 3. Clusters of genes showing distinct temporal patterns of response to celastrol. (A)
Differentially expressed genes (FDR≤ 0.01) clustered by time series of log2 fold change (LFC) in expres-
sion relative to the untreated condition (0 min). Each gene is represented by a blue line, and the red lines
indicate the mean expression per time point per cluster. Below each cluster is a summary of the enriched
terms in the Reactome ontology (FDR≤ 0.01) (see Supplemental Material for details; Fabregat et al.
2016). (B) ChIP-seq data from Vihervaara et al. (2013) describing binding of HSF1 in K562 cells under
normal (left) and heat shock (right) conditions, stratified by our cluster assignments. Each line represents
an average over all genes in the cluster in the region of the TSS, with lighter-colored bands representing
95% confidence intervals obtained by bootstrap sampling. Notice that cluster #1 is unique in showing a
strong enrichment for heat shock-induced binding of HSF1.
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Several key transcription factors are associated

with the celastrol response

Can the distinct transcriptional responses in these clusters of genes
be traced to particular transcription factors? To address this ques-
tion, we used linear regression to explain the estimated transcrip-
tion levels at each timepoint based on the TFs that apparently bind
in the promoter region of each gene (Fig. 4A).We used two orthog-
onal sources of information about TF binding: (1) ChIP-seq peaks
for untreated K562 cells (Dunham et al. 2012); and (2) scores from
DeepBind, a machine-learning method that is trained on a combi-
nation of ChIP-seq and in-vitro data and predicts TF-specific bind-
ing affinity based on the DNA sequence alone (Alipanahi et al.
2015). In both cases, we considered the interval between 500 bp
upstream of and 200 bp downstream from the transcription start
site of each active gene. Our regression model included a coeffi-
cient for each TF at each time point. A positive estimate of this co-
efficient indicated that increased affinity for a TF was associated
with increased expression at a given time point, whereas a negative
estimate indicated that increased affinity for a TF was associated
with decreased expression at that time point.

Between the two TF binding data sets, we identified >20 TFs as
being significantly associatedwith changes in gene expression and

having a large effect size (Fig. 4B; Supplemental Fig. 13). Of these
TFs, E2F4 stood out as showing a particularly pronounced impact
on expression in both data sets. E2F4 is associated with incremen-
tally increased expression between 0 and 60 min, and with de-
creased expression thereafter, similar to the expression pattern of
genes in cluster #3, which are associated with cell-cycle control.
This observation is consistent with reports that E2F4 is an activator
in some contexts but primarily acts as a repressor responsible for
maintaining G2 arrest (Polager and Ginsberg 2003; Lee et al.
2011). In addition, we found that the dimerizing TFs MYC (from
ChIP-seq data) and MAX (from DeepBind predictions) were both
associated with an immediate increase in gene expression, fol-
lowed by decreased expressionwithin 20min (Fig. 4). This delayed
decrease in expression of MYC- and MAX-bound genes could re-
sult from the known disruption of MYC-MAX dimerization by
celastrol (Westerheide et al. 2004;Wang et al. 2015). Finally, genes
predicted to be bound by SRF also displayed elevated gene expres-
sion after 40 min. SRF has been previously associated with early
and transient induction of cytoskeletal genes in response to heat
stress in murine embryonic fibroblasts (Mahat et al. 2016b).

We also found that the paralogous TFs RFX1 (from ChIP-seq)
and RFX5 (from DeepBind) were both associated with increases in

expression. Both of these TFs have been
implicated in regulating the expression
of immunity-related human leukocyte
antigen (HLA) genes, and both have con-
text-specific transcriptional repression
and activation mechanisms (Katan et al.
1997; Villard et al. 2000; Xu et al. 2006),
so it is possible that they contribute
to celastrol’s anti-inflammatory effects.
However, RFX1 was not tested with
DeepBind and its motif is quite similar
to that of RFX5, so it is impossible to
know from our data whether one or
both of these TFs are important in the
celastrol response (notably, they do
have different binding patterns in vivo
in the untreated condition) (Supplemen-
tal Fig. 13B,C). Nevertheless, our regres-
sion framework is useful in providing a
list of candidate TFs whose binding pref-
erences correlatewithaspects of the celas-
trol response.

Increased polymerase pausing is broadly

associated with transcriptional

repression

Promoter-proximal pausing of RNA
polymerase is a rate-limiting and inde-
pendently regulated step in productive
transcription (Andrulis et al. 2000; Wu
et al. 2003). Notably, the peaks of paused
RNA polymerase at DE genes doubled in
height during our time course (Fig. 5A;
Supplemental Fig. 14). Accordingly, we
found that the “log pause index,” or
log2 ratio of average read depth at the
pause peak to that in the proximal gene
body, increased by more than 1 (corre-
sponding to a fold-change of more than

Figure 4. The celastrol response appears to be influenced by various transcription factors. (A) A sche-
matic representation of the regression model used to estimate the impact of TF binding. The predicted
expression level for each gene is a linear function of a gene-specific term, a time point-specific term, and a
sum of per-time TF-specific effects weighted by the estimated relative TF binding affinity in the promoter
regions of differentially expressed genes (fromDeepBind or ChIP-seq). Note that the TF binding affinity is
estimated from the untreated state and is invariant across time. (B) The estimated TF- and time-specific
coefficients from the DeepBind-based regression model. Error bars correspond to the 95% CI estimates
for each coefficient. Each gene (e.g., HSF1) is labeled by its DeepBind motif (e.g., D00470.005) in the
legend. Only TFs with at least one significant time point (FDR≤ 0.01) and an absolute effect size in
the 90th percentile or above are shown. A positive weight for a TF at a given time point indicates that
genes at which that TF is predicted to be bound showed increased expression relative to those without
it. Negative weights indicate decreased expression. The three separate plots represent manually selected
clusters of TFs associated with distinct temporal patterns. The time point-specific TF coefficients explain
∼11% of the residual variance not explained by gene-specific or time point-specific terms.
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2 in the pause index) in DE genes by 160 min (Fig. 5B). Together,
these observations indicate that most DE genes undergo increased
pausing after celastrol treatment, suggesting that pause release
may be widely inhibited during the celastrol response.

To see if particular expression patterns were associated with
changes in pausing, we separately examined the changes in log
pause index during the time course for each of our six gene expres-
sion clusters. Interestingly, we found that pausing increased in all
clusters with the exception of cluster #1 (Fig. 5C), the only strongly
up-regulated cluster (see Fig. 3A), where pausing decreased for the
majority of genes but increased or remained unchanged for a sig-
nificant fraction of them (Supplemental Fig. 14B). Thus, changes
in the log pause index are generally negatively correlated with
changes in expression across clusters. This observation suggests
that decreases in the rate of release of paused Pol II to productive
elongation could contribute to increased pausing and, hence, to
down-regulation of transcription, while the absence of such an ef-
fect (in cluster #1) might permit up-regulation of transcription

(Zeitlinger et al. 2007; Mahat et al.
2016b). As cluster #1 is strongly associat-
edwith theHSF1 response, this finding is
consistent with previous reports that
HSF1 regulates transcription by increas-
ing the rate of release of paused RNA po-
lymerase into productive elongation
(Mahat et al. 2016b). Nevertheless, it is
also possible that the inverse correlation
between pausing and expression is a con-
sequence of “mass action” of available
Pol II (see Discussion).

Heat shock induces a similar but more

pronounced transcriptional response

than celastrol

Celastrol is known to mimic heat shock
in many respects (Westerheide et al.
2004), but it remains unclear how similar
the transcriptional responses to these
two stimuli are. To address this question
more directly, we obtained PRO-seq
data for heat shock-treated K562 cells
from a recently published study
(Vihervaara et al. 2017) and processed it
identically to our celastrol data. We fo-
cused on comparing the heat shock
data for 0 and 30 min (the only time
points available) with our celastrol data
for 0 and 40 min, additionally consider-
ing our 60- and 160-min time points for
some analyses (Supplemental Fig. 15A,
B). In general, heat shock induced a
broader response than celastrol treat-
ment, with twice asmany genes differen-
tially expressed after 30 min of heat
shock (4604) vs. after 40 min of celastrol
treatment (2302). Of the 1301 genes that
were up-regulated in response to either
treatment, 21% were shared between
the heat shock and celastrol responses,
and of the 4230 that were down-regulat-
ed in response to either treatment, 25%

were shared (Fig. 6). As with celastrol treatment, the pause index
significantly increased after 30 min of heat shock. Taken together,
these results suggest that there are many commonalities between
the early transcriptional responses to the heat shock and celastrol
treatments but also many differences.

We then sought to characterize the pathways underlyingma-
jor differences between the celastrol and heat shock responses.
Using Reactome, we tested for functional enrichments among
shared and nonshared DE genes, separately considering up- and
down-regulated genes. We found that genes down-regulated
only in the celastrol response were enriched for mitochondrial en-
ergy production and translation of mitochondrial genes
(Supplemental Fig. 16A). In contrast, down-regulated genes specif-
ic to the heat shock response were enriched for MAP kinase signal-
ing and cell-cycle progression (Supplemental Fig. 16B), whereas
down-regulated genes that were shared in both responses were
strongly enriched for ribosomal formation and translation
(Supplemental Fig. 16C). For the up-regulated genes, the heat

Figure 5. Increased promoter-proximal pausing is associated with transcriptional repression in the re-
sponse to celastrol. (A) Mean PRO-seq signal at promoters for all active genes, grouped by time point and
oriented with respect to the direction of transcription of the gene. The x-axis represents distance to the
center between the divergent transcription start sites (seeMethods). Intervals around each line represent
95% confidence intervals obtained by bootstrap sampling. Notice the general increase in the height of
the pause peaks with time. (B) The distribution of changes in the log fold index with respect to the un-
treated condition (ΔLPI) (see Methods) for all active genes at each time point. The notch corresponds to
median ±1.58×IQR/√n, roughly a 95% confidence interval of themedian. (C) The distribution of ΔLPI for
all DE genes (FDR≤ 0.01) by cluster and time point. Notice that all clusters show an increase in the pause
index with time, except for cluster #1. Error bars indicate the 25th and 75th percentiles of the data.
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shock-only genes were enriched for GPCR signaling, and the
shared genes were dominated by heat shock response pathways
in agreement with the analyses discussed above (Supplemental
Fig. 17A,B); no pathways were significantly enriched in the celas-
trol-only response.

Finally, we searched for pathways whose genes tended to
change expression in opposite directions in the heat shock and
celastrol responses. We compared the 40, 60, and 160-min time
points for celastrol to the 30-min heat shock time point. One path-
way, cholesterol biosynthesis, emerged from this analysis as down-
regulated in celastrol at both 60 and 160 min but up-regulated in
heat shock (Supplemental Fig. 18A). This observation is consistent
with previous findings for mammalian cells that heat shock in-
creases activity of theMVApathway, a key cholesterol biosynthesis
pathway (Shack et al. 1999). The central regulatory enzyme in the
MVA pathway, HMGCR, is clearly up-regulated in heat shock and
down-regulated at 60 min in celastrol. We investigated whether
sterol response element binding factor 1 (SREBF1), an important
TF for cholesterol biosynthesis genes (Brown and Goldstein
1997), was a potential mechanism for decreased genic expression
in the celastrol response by asking if genes bound by SREBF1 in un-
treated cells showed decreased expression relative to those not
bound across the celastrol time-course (Supplemental Fig. 18B).
We found that genes that were strongly bound by SREBF1 in un-
treated cells, in comparison to unbound genes, went from being
more highly expressed in the untreated condition to having simi-
lar mean expression at 60 min of treatment and lower mean ex-
pression at 160 min of treatment. These results demonstrate
that, despite having many similar effects, celastrol and heat shock
have opposite effects on the expression of genes involved in cho-
lesterol biosynthesis.

Enhancers show similar functional associations and pausing

patterns to genes

Previous studies have shown that putative enhancers are diver-
gently transcribed, producing nascent RNAs that can be detected
via PRO-seq (De Santa et al. 2010; Core et al. 2014; Danko et al.
2015). Using dREG (Danko et al. 2015), which predicts divergent
transcription start sites (dTSSs) from stranded GRO/PRO-seq data,
we identified 25,891 apparent dTSSs from our PRO-seq data, pool-
ing calls across time points. Based on the distance from nearest
annotated genic TSSs, we classified 7334 of these dTSSs as likely
transcribed enhancers, 15,941 as likely promoters, and the remain-
ing 2616 as ambiguous. For validation,we examinedChIP-seq data
from ENCODE for untreated K562 cells and found, as expected,

that enhancer and promoter classes were both strongly enriched
for acetylation of histone H3 at lysine 27 (H3K27ac), and that
the promoter classwasmore strongly enriched for RNApolymerase
and trimethylation of histone H3 at lysine 4 (H3K4me3) (Fig. 7A).
The enhancer class also showed moderate enrichment for mono-
methylation of histone H3 at lysine 4 (H3K4me1). These observa-
tions confirm that PRO-seq serves as an efficient single-assay
approach for characterizing both transcribed enhancers and pro-
tein-coding genes in our system (Danko et al. 2015).

To better understand the role of the noncoding regulatory el-
ements in the celastrol response, we further examined 1479
(∼20%) of the 7334 dTSS-based enhancers that were classified as
differentially transcribed.We attempted to find functional enrich-
ments for potential target genes of these differentially transcribed
enhancers using the Genome Regions Enrichment of Annotations
Tool (GREAT, ver. 3.0) (see Methods), which associates candidate
regulatory elements with likely target genes according to dis-
tance-based rules and then tests those genes for functional enrich-
ments (McLean et al. 2010). GREAT identified enrichments for
processes relating to apoptosis, translational regulation, and re-
sponses to various environmental stresses (Fig. 7B), in general
agreement with our analysis of DE genes. We also found that our
set of putative enhancers displayed an accumulation of paused po-
lymerase after celastrol treatment (Fig. 7C; Supplemental Fig. 19).
Although the functional significance of pausing at enhancers is
unknown, this observation suggests that global shifts in pause lev-
els at genic TSSs are also reflected at enhancers.

Finally, we sought to determinewhich TFs influenced activity
at enhancers. Because sparse data at enhancers resulted in noisier
estimates of transcriptionally engaged RNA polymerase than at
genes, we focused in this case on a relatively small group of 480 en-
hancers that showed little activity at 0 min but greatly increased
activity by 160 min (see Methods). We compared DeepBind scores
for these activated enhancers with those for non-DE enhancers
that had similar absolute expression levels and found six TFs
whose motifs had significantly elevated scores for sequence ele-
ments in the activated enhancers: HSF1/2, JUND, FOSL2, MAFK,
STAT3, and THRA (Fig. 7D; Supplemental Fig. 20). Of these TFs,
HSF2was also associated with increased expression in genes, while
JUND and FOSL2 are subunits of AP-1, a TF previously found to
regulate cellular growth and senescence (Shaulian and Karin
2001). Because these TFs were identified simply based on their se-
quence preferences, TFs with similar motifs are also potential reg-
ulators. For example, it is possible that JUN, whose expression
increases over the time-course and which is known to be activated
by HSF1 (Sawai et al. 2013), is actually responsible for the apparent
association with JUND, which does not appear to be activated. We
also cannot effectively distinguish between HSF1 and HSF2 bind-
ing here. In addition, since this analysis was limited to TFs that in-
creased transcription at enhancers, it is unsurprising that it did not
identify TFs associated with decreased expression in the genic re-
sponse, such as MAX. Despite these caveats, these results demon-
strate that PRO-seq can be used to detect transiently activated
enhancers and identify candidate TFs thatmay drive the enhancer
response.

Discussion

This study represents the first genome-wide assessment of the im-
mediate transcriptional effects of celastrol, including transcribed
regulatory elements as well as genes, shedding light on some of
the possible primary targets and mechanisms of action of this

Figure 6. Celastrol down-regulates most of the same genes as heat
shock but up-regulates many different genes. (A) Venn diagram of genes
that are up-regulated after 30min of heat shock vs. after 40min of celastrol
treatment. (B) Venn diagram of genes that are down-regulated after 30
min of heat shock vs. after 40 min of celastrol treatment.
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Figure 7. Response to celastrol at predicted transcribed enhancers. (A) Divergent transcription start sites (dTSS) that were classified by distance-based
rules as likely enhancers or promoters show distinct patterns of histone marks in untreated K562 cells. Shown are H4K4me1 (enriched at enhancers),
H3K4me3 (enriched at promoters), and H3K27ac (enriched at both). PRO-seq read counts are shown for comparison. The x-axis is oriented by direction
of transcription of nearest gene. (B) Gene Ontology (GO) biological processes associated with differentially expressed enhancers using GREAT (McLean
et al. 2010). Bar plot represents −log10 P-values for enrichment, with numerical fold enrichments indicated at right. (C) Metaplot of PRO-seq signal at
all enhancers, centered on the dTSS, per time point. Units of PRO-seq signal are average numbers of reads per 10-bp bin. Intervals around each line rep-
resent a 95% confidence interval obtained by bootstrap sampling. (D) The distribution of DeepBind scores for HSF2 and JUND for transcriptionally acti-
vated and unchanged sets of enhancers. The notch corresponds to the median ±1.58×IQR/√n, roughly a 95% confidence interval of the median.
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potent therapeutic compound.We find that celastrol treatment re-
sults in pervasive transcriptional down-regulation, with nearly
half of expressed genes being down-regulated within 160 min. A
much smaller group of genes, roughly 10% of those expressed,
are up-regulated during the same time interval. By analyzing the
sequences nearby transcription units, we were able to identify sev-
eral transcription factors whose binding patterns partially explain
these transcriptional responses. We also observed a clear impact
from celastrol on polymerase pausing at both genes and enhanc-
ers, which is negatively correlated with changes in transcriptional
activity. While there are limits to what can be learned from PRO-
seq data alone, we have shown that when these data are collected
at relatively high temporal resolution and analyzed together with
other data for the untreated condition, they can provide valuable
insights into a multifaceted, multistage cellular response to a tran-
scriptional stimulus.

We find that celastrol treatment generally induces a similar
response to heat shock, consistent with previous reports (Wester-
heide et al. 2004; Trott et al. 2008). Heat shock has also been ob-
served to induce widespread down-regulation in mammalian
cells (Hieda et al. 2004; Mahat et al. 2016b; Vihervaara et al.
2017). Moreover, many of the same genes that are up-regulated
upon celastrol treatment are also bound by HSF1 after heat shock
or participate in heat shock pathways. In addition, sequences
associated with HSF1 binding are associated with increased gene
expression, according to our regression analysis. Finally, our direct
comparison showed that both treatments lead to up-regulation of
genes involved in the heat shock response and down-regulation of
genes involved in ribosomal formation and translation.

Together, these findings suggest thatHSF1 is activated soonaf-
ter celastrol treatment, whereupon it activates a large group of
genes. These observations suggest that, in part, the transcriptional
response to celastrol may simply be a general cellular stress re-
sponse. Cellular stress responses are known to affect a broad range
of cellular functions, including cell-cycle arrest, transcription of
molecular chaperones, activation of DNAdamage repair pathways,
removal of irretrievably damaged macromolecules, and apoptosis
upon severe damage (de Nadal et al. 2011), and they are relevant
inmany diseases, including cancer (Bi et al. 2005), proteotoxic dis-
eases (Mu et al. 2008), and autoimmune disorders (Todd et al.
2008). Previous studies have investigated cellular stress responses
at the delayed transcriptional (Teves and Henikoff 2011; Mahat
et al. 2016b), post-transcriptional (Gardner 2008), translational
(Shalgi et al. 2013), and post-translational levels (Urano et al.
2000; Golebiowski et al. 2009). Together with similar studies of
heat shock (Mahat et al. 2016b), our study helps to illuminate spe-
cific features of the early transcriptional response to stress.

Nevertheless, we observed several differences between the
heat shock and celastrol responses. The most striking difference
was that genes associated with the cholesterol synthesis pathway
are activated by heat shock but repressed by celastrol. This observa-
tion is consistent with reports that celastrol decreases endogenous
cholesterol in mice and reduces obesity (Liu et al. 2015; Ma et al.
2015; Zhang et al. 2016). Further analysis suggested that loss of
SREBF1 binding may be responsible for the difference in the celas-
trol response. Given that SREBFs are activated via proteolytic cleav-
age froman inter-membrane proteinwhen sterols are scarce (Wang
et al. 1994), it is possible that celastrol inhibits cholesterol synthesis
by inhibiting SREBF1 cleavage and release. Alternatively, or
in addition, celastrol could inhibit cholesterol synthesis bydecreas-
ing the stability of the SCAP-SREBF complex (Zhang et al. 2009;
Kuan et al. 2017).

Another apparent difference between the heat shock and
celastrol responses has to do with the kinetics at genes that appear
to be regulated by SRF, a transcription factor associated with HSF1/
2-independent up-regulation after heat shock.We observed an en-
richment for SRF binding sites in the core promoters of genes that
displayed elevated expression after 40 min of celastrol treatment.
In contrast, previous findings for heat shock (Mahat et al. 2016b)
have indicated that SRF-mediated up-regulation occurs much
more rapidly, as early as 2.5 min after treatment. Finally, our anal-
ysis suggests that the loss of binding byMYC-MAXmay be respon-
sible, in part, for the broad transcriptional repression we observe
within 20 min of celastrol treatment. To our knowledge, MYC-
MAX inhibition has not been reported to be important in the
heat shock response. The finding for celastrol is supported by pre-
vious studies showing that celastrol directly inhibits MYC-MAX
functionality (Wang et al. 2015). SinceMYC-MAX is a strong tran-
scriptional activator and is bound at over 6000 promoters of active
genes in K562, its inhibition may be an important contributing
factor to widespread down-regulation after celastrol treatment
(Amati et al. 1992, 1993).

A major strength of our experimental approach is that it al-
lows us to observe transient as well as sustained transcriptional re-
sponses. For example, we found that E2F4, a transcriptional
repressor, was quickly down-regulated after celastrol treatment, re-
ducing in expression by half within 20min. Despite loss of this re-
pressor, target genes of E2F4 were increasingly down-regulated
(rather than up-regulated, as expected) after 60 min (Lee et al.
2011). These observations suggest that the apparent increased re-
pression activity of E2F4 during the celastrol response may have
a nontranscriptional basis. Interestingly, previous studies have
shown that celastrol inhibits CDK4 and that CDK4 overexpression
disrupts E2F4 DNA-binding ability (Scimè et al. 2008; Peng et al.
2010). Thus, it is possible that celastrol increases the DNA binding
of E2F4 to DNA, which in turn could contribute to cell-cycle arrest
(Polager and Ginsberg 2003; Lee et al. 2011).

Another advantage of our densely sampled PRO-seq time-
course is that it allows us to measure changes in promoter-proxi-
mal RNA polymerase pausing. We observed that pause indices in-
creased by more than twofold at differentially expressed genes
during our time-course. We also found that increased pausing
was associated with decreased transcription in genes, as previously
reported for heat shock conditions (Mahat et al. 2016b), although
we did not observe a converse association between decreased paus-
ing and up-regulation of genes. A possible mechanism that could
contribute to this increased pausing in down-regulated genes is
the celastrol-induced disruption of the MYC-MAX complex,
which has been shown to recruit P-TEFb, which in turn broadly fa-
cilitates pause release (Kanazawa et al. 2003). This mechanism
could, in principle, affect down-regulated genes only, for example,
if up-regulated genes recruit P-TEFb independently of MYC-MAX
(e.g., through the activity of HSF1) (Lis et al. 2000).

While it is possible that increased pausing causes decreased
expression by limiting productive elongation and therefore reduc-
ing transcription levels, an alternative possibility is that increased
pausing is a consequence of “mass action”—that is, decreased tran-
scriptional activity across many genes results in increased avail-
ability of free Pol II, some of which ends up being loaded on
promoters and coming to rest at pause sites (Mahat et al. 2016b).
In other words, the negative correlation between pausing and ex-
pression could be explained by causality in either direction, or per-
haps in both directions. Additional experiments will be needed to
establish the causal basis of these correlations. In any case, our
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observations suggest that changes in pausing are widespread and
broadly associated with transcriptional repression and therefore
may play an important role in the celastrol response.

Methods

Celastrol treatment

K562 cells were cultured at 37°C in RPMImedia (Gibco) containing
10% FBS (Gibco), Pen Strep (Gibco), and 2 mM L-glutamine
(Gibco). Biological replicate cell cultures were prepared as follows:
after thawing K562 cells and seeding a fresh culture, cells were split
into two separate flasks, which would remain separated through
six passages and expansions until treatment and collection for
preparation of PRO-seq libraries. Cells from each expanded repli-
cate were seeded onto six 30-mL dishes (one for each time point)
at a density of 5 × 105 cells/mL and then incubated for an addition-
al doubling cycle (∼20 h). For treatments, fresh celastrol was dis-
solved in DMSO at a final concentration of 20 mM. Celastrol-
treated samples received celastrol (Sigma) at a final concentration
of 3 µM, whereas untreated (0-min) samples received an equiva-
lent volume of DMSO. Cells remained in culture dishes in the in-
cubator during the time-course. Time-course treatments were
carried out in reverse order so that all samples would be collected
at the same time (starting with 160-min time point and ending
with the untreated).

Cell permeablization and PRO-seq

Samples were then prepared for precision run-on reactions by sub-
jecting cells to permeablizing conditions. Briefly, cultures were
spun down and resuspended in ice cold 1×PBS. Samples were
spun again and washed in 5 mL wash buffer (10 mM Tris-Cl, pH
7.5, 10 mM KCl, 150 mM sucrose, 5 mM MgCl2, 0.5 mM CaCl2,
0.5 mM DTT 1× protease inhibitor cocktail [Roche], and 20 U
RNase inhibitor [SUPERase In, Invitrogen]). Cell pellets were
then resuspended in permeabilization buffer (10 mM Tris-Cl, pH
7.5, 10 mM KCl, 250 mM sucrose, 5 mM MgCl2, 1 mM EGTA,
0.05% Tween-20, 0.1% NP40, 0.5 mM DTT, 1× protease inhibitor
cocktail [Roche], and 20 U RNase inhibitor [SUPERase In,
Invitrogen]) and left on ice for 5 min. Cells were checked for pen-
etration by trypan blue to assess permeability (∼99% permeable).
Cells were thenwashed two times in 5mLwash buffer before being
resuspended in 200 µL storage buffer (50mM Tris-Cl, pH 8.3, 40%
glycerol, 5 mM MgCl2, 0.1 mM EDTA, and 0.5 mM DTT). A 1:50
dilution was prepared using 2 µL of each sample and used to
take OD600 measurements. All samples were then diluted to an
equal density (OD600 = 0.181) in a final volume of 110 µL of stor-
age buffer. Then, 5 × 104 pre-permeabilized S2 cells were spiked
in to each cell count-normalized sample before flash-freezing the
permeabilized cells and storing them at −80°C.

Stored permeable cells with spike-ins were thawed on ice, and
each sample was subjected to the precision run-on protocol
(Mahat et al. 2016a). Run-on reactions incorporated only biotiny-
lated NTPs with no unmodified NTPs. All libraries were subjected
to nine cycles of PCR amplification before size selection and gel
purification.

Cell counting

Cells were either treatedwith 3 µMcelastrol, DMSO, or left untreat-
ed for 4 d. Live/dead cells were determined based on trypan blue
staining. Counts were measured with an automatic cell counter
(Bio-Rad).

Read mapping

All filtered reads were removed from each fastq file, then cutadapt
(v1.9.1) was run with the following options:

cutadapt -a TGGAATTCTCGGGTGCCAAGG -m15 to remove
the Illumina adapters and discard all remaining reads that were
<15 bp in length. All reads were then trimmed to 34 bp in length
using fastx_trimmer (v0.0.13.2) to avoid biasing read mapping
away from gene promoters. The trimmed reads were then aligned
to the hg19 and bdgp6 genomes using the STAR aligner (v2.4.0i)
(Dobin et al. 2013). Reads aligning to hg19 and bdgp6 were then
separated, and bigwigs were created by converting each read to a
single count at its 5′ end. While human assembly hg19 was used
for read mapping, we do not expect the use of the more recent
hg38/GRCh38 would have an appreciable impact on our results,
as themajor differences between these assemblies concern alterna-
tive haplotypes and centromeric regions.

Detection and resolution of dTSSs

dREGwas run on each sample as described previously (Danko et al.
2015), producing a set of genomic intervals corresponding to pre-
dicted divergent transcription starts sites. These initial dREG calls
had fairly coarse resolution, ranging in size from several hundred
to thousands of bases. We therefore applied a heuristic scanning
method to identify one or more higher-resolution dTSSs within
each dREG call. Briefly, this method involved sliding a window
along a dREG interval and considering the relative read counts
among three subintervals: a peak, a flank, and center. To identify
pairs of divergent peaks, the test was applied simultaneously to
each strand in a strand-specific manner, and the results were com-
bined. Specifically, for a scan initiated at base i, the center was de-
fined as the interval [i, i + 110), the shoulder as [i− 50, i), and the
flank as [i− 250, i− 150). Three one-sided binomial tests were per-
formed, testing that there are fewer reads in the center than the
flank, the center than the shoulder, and the flank than the shoul-
der. The sum of the resulting six negative log P-values (three for
each strand) then became the per-base score. The best scoring win-
dow in a dREG region was taken as a dTSS. In addition, up to two
other dTSSs were called if their score exceeded 20.

Classifications of dTSSs

dTSSs were classified as either enhancers or promoters based on
their relative distance from the set of all TSSs annotated in
GENCODE v19. To classify each dTSS, the following rules were ap-
plied: (1) if the dTSS was >1 kb, and at most 1 Mb, away from the
nearest annotated promoter, it was classified as an enhancer; (2)
if the dTSS was within 200 bp of an annotated promoter, or it was
within 1 kb of an annotated promoter and it was the closest dTSS
to the promoter, it was classified as a promoter; (3) if the dTSS
was between 600 bp and 1 kb away from thenearest annotated pro-
moter and not the closest dTSS to the promoter, it was classified as
an enhancer; (4) otherwise, the dTSS was classified as unknown.

Selection of active transcripts in K562 cells

Selection of transcripts was performed by a new program, called
TuSelector. First, a list of potential transcripts was obtained from
GENCODE v19. The genic regions and data were partitioned into
100-bp intervals. For each gene, a set of coarse-grained overlapping
transcriptmodels was created, where for each transcriptmodel and
interval, the interval was assigned to the transcript model if and
only if it overlapped the corresponding annotated transcribed re-
gion by more than 50% at the nucleotide level. Next, the PRO-
seq read counts in each 100-bp interval were summarized by a 1
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if there were reads aligned to the interval or a 0 otherwise.
TuSelector computed a likelihood for each of the possible coarse-
grained transcript models at a given gene, as follows:

L(T) =
∫

ut

P(ut )
∏
i

[
P X = xi|ut( )

]d i,T( )
{ }

dut

×
∫

uu

P(uu)
∏
i

[
P X = xi|uu( )

]1−d i,T( )
{ }

duu

,

where T is the transcript model, the products range across geno-
mic intervals i, xi is the summary of the data in interval i (0 or 1),
δ(i, T) is an indicator function that takes value 1 when interval i
is included in T and 0 otherwise, X is a Bernoulli random vari-
able, and θt and θu are the parameters for this random variable
in the transcribed and untranscribed states, respectively. P(θt) is
assumed to be uniform over the interval (0.3, 1), and P(θu) is as-
sumed to be uniform over the interval (0.01, 0.03). In practice,
we discretized θu into segments of size 0.01 and θt into segments
of size 0.05 and approximated the integrals with finite sums.
Finally, in addition to the annotated transcripts, we considered
a competing model representing a completely untranscribed
gene.

TuSelector was run separately for each replicate and time
point and potentially produced discordant transcript calls across
these runs. Therefore, we selected at most one “consensus” tran-
script model per gene for use in further analysis, as follows. To
be considered a consensus call, TuSelector had to identify the
same transcript model at least 80% of the time with at least 50%
of replicate pairs both having the same transcript call. Two tran-
script models were considered “the same” if their endpoints dif-
fered by less than 500 bp. If no transcript model met these
criteria, the gene was not considered in further analysis.

Estimating expression and detecting differentially

expressed genes

For all active, protein-coding transcripts, reads were taken from up
to the first 16 kb of the gene, excluding the first 500 bp to avoid an
influence from promoter-proximal pausing. This strategy allowed
us to focus on the most recent transcription at each time point
and avoid averaging over long time intervals. Themaximum inter-
val of 16 kbwas based on aminimum interval between time points
of 10 min and an average polymerase transcription rate of ∼2 kb/
min, minus a few kilobases of “padding.” Any genes that were
shorter than 700 bp were removed from the analysis. A size factor
for each sample was obtained by taking the number of spike-in
reads for that sample divided by the median number of spike-in
reads per sample. To estimate expression of transcriptional en-
hancers, reads were taken from 310 bases (assuming a 110-base
spacing between dTSSs as reported by Core et al. 2014, plus 100
bp to either side) centered on the dTSS. Both sets of read counts
were fed jointly into DESeq2, and enhancers and genes were sub-
sequently separated for further analysis. An enhancer or gene
was called as DE with an FDR≤ 0.01 using a likelihood ratio test.

Clustering differentially expressed genes

Gene expression log-fold changes were computed relative to the
untreated (zero-minute) time point using the DESeq-based esti-
mates of absolute expression (rlog values). All DE genes were
then fed into the autoregressive clustering program EMMIX-
WIRE using default settings. Likelihood values for between two
and 10 clusters were computed. We selected four clusters as a val-
ue at which the increases in likelihood with the number of clus-

ters began to decline. To check for the robustness of our
selection, we repeated our analyses with five and seven clusters
and found that they were not highly sensitive to the cluster
number.

Computing functional enrichment for gene clusters

Reactome (v52) was used to assign genes to functional categories.
Genes that were not annotated in Reactome were removed. The
background set for all enrichments was the set of DE genes present
in Reactome. Odds ratios were computed per cluster (c) and path-
way (p) as

OR = Xc,p/Xc,¬p
X¬c,p/X¬c,¬p

,

whereX represents a count and c and ¬c denote the sets of genes in,
and not in, cluster c, respectively, and, similarly, p and ¬p denote
the sets of genes in, and not in, pathway p. An empirical null dis-
tribution of odds ratios was computed by randomly shuffling the
gene assignments to pathways 100,000 times. P-values were then
computed from this distribution and the Benjamini-Hochberg
procedure was applied to estimate false discovery rates.

Characterizing genic regulation

ChIP-seq data were downloaded from the ENCODE website
(https://www.encodeproject.org) in narrowPeak format (optimal
idr) on Sept. 30th, 2016. Scores for each gene-TF pair were comput-
ed by taking the peaks with the maximum signal that intersected
[−200,+500] around the promoter. DeepBind v0.11 was run over
[−200,+500] around the promoter with standard settings using
all nondeprecated motifs for DNA binding proteins (Alipanahi
et al. 2015). DeepBind andChIP-seq scores were then standardized
to control for differences in range. To analyze TFs that may be in-
volved in different regulatory patterns, we linearly regressed genic
expression (as estimated by DESeq2) against scores from ChIP-seq
or DeepBindwith time point-specific coefficients for each TF and a
time-independent, gene-specific coefficient to capture the fixed
effect of unmodeled regulation (Neph et al. 2012; Alipanahi
et al. 2015). In this framework, the expected expression of a given
gene i at time j is expressed as

Yij = bi + bj +
∑
k

bijkxik,

where βi is the gene-specific expression bias term, βj is a time-spe-
cific bias term, and βijk is the coefficient for the time point-specific
effect of a TF k on gene i. Standard deviations for each coefficient
were estimated via 1000 bootstraps. Finally, the list of TFs was fil-
tered to keep those with FDR≤ 0.01 in at least one time point and
with a maximal change between any two coefficients in the 90th
percentile. This procedure selected for TFs having an effect that
was both statistically significant and of large magnitude. Per-TF
F-statistics were also calculated and are available as Supplemental
Tables (Supplemental Tables 1, 2).

Identification and analysis of genic pause peaks

To locate pause peaks, we scanned each active transcript (see
above) greater than 1 kb in length in the region of the annotated
TSS ([TSS− 200, TSS + 200]) taking the number of reads in a 50-
bp sliding window, with a sliding increment of 5 bp. The window
with the largest number of reads in the untreated condition (0-min
time point) was designated as the pause peak. To compute a log2
pause index (LPI), we subtracted the DESeq-estimated log2 read
count (the “rlog” value) for the gene body from the equivalent
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DESeq-estimated log2 read count at the peak. Furthermore, to com-
pute changes in this value over time, we subtracted the LPI for the
zero time point from the LPI for each subsequent time point; that
is, the change in LPI at time t, denoted ΔLPIt, was given by ΔLPIt =
LPIt− LPI0. Notice that normalizing changes in the pause peak by
changes in the gene body in this way causes ΔLPIt to increase only
if the number of reads in the peak increases bymore than the num-
ber of reads in the gene body.

Analysis of heat shock data

PRO-seq heat shock gene expression values were computed in an
identical manner to the celastrol data with the exception of the
size factors, which were obtained directly from a previous analysis
(Vihervaara et al. 2013). Gene transcripts were the same as those
used for the celastrol data. P-values were (re-)computed using the
Wald test instead of the LRT for both the celastrol and heat shock
data to allow for a single time point analysis. Differences in the
distributions of gene expression within a pathway between HS
and celastrol responses were evaluated using the Kolmogorov-
Smirnov test.

Estimating expression in enhancers

To prevent contamination from genic transcription, all dTSSs pre-
viously annotated as enhancers were extended by 1 kb to either
side and removed if any part of the extended enhancer was within
5 kb of a gene body. DESeq was used to estimate the transcription
level in the enhancer peaks, tails, and the whole enhancer body.
The enhancer peak was defined as ±250 bp from the center of
the enhancer, the tail was ±400 to ±1000 bp from the center,
and the whole enhancer was 0 to ±1000 bp from the center of
the enhancer. Read counts were summed from both strands for
each region (i.e., peak = plus strand [0,+250]+ minus strand
[−250,0]), and then DESeq2 was used to estimate fold changes.
Enhancers were called as strongly activated if they were differen-
tially expressed with FDR≤ 0.01, rlog(expression at 0 min)≤ 1,
and were in the 90th percentile for fold change between 0 and
160min. To get the same number of similarly expressed nondiffer-
entially expressed enhancers, we performed rejection sampling on
enhancers that were differentially expressed with FDR > 0.5, using
their average expression values between 0 and 160 min and prob-
abilities calculated from a kernelized histogramof the activated en-
hancer’s expression at 160 min.

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE96869.
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