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ABSTRACT

Gene set analysis, which translates gene lists into
enriched functions, is among the most common
bioinformatic methods. Yet few would advocate tak-
ing the results at face value. Not only is there no
agreement on the algorithms themselves, there is no
agreement on how to benchmark them. In this pa-
per, we evaluate the robustness and uniqueness of
enrichment results as a means of assessing meth-
ods even where correctness is unknown. We show
that heavily annotated (‘multifunctional’) genes are
likely to appear in genomics study results and drive
the generation of biologically non-specific enrich-
ment results as well as highly fragile significances.
By providing a means of determining where enrich-
ment analyses report non-specific and non-robust
findings, we are able to assess where we can be con-
fident in their use. We find significant progress in
recent bias correction methods for enrichment and
provide our own software implementation. Our ap-
proach can be readily adapted to any pre-existing
package.

INTRODUCTION

As originally conceived, gene set analysis is a way to sum-
marize rankings or groups of genes obtained from high-
throughput experiments and as a tool for discovery (1–4).
Broadly speaking, these methods look for statistical similar-
ity between an experimentally derived gene set (or a ranked
list of genes) and previously characterized gene sets (e.g.
Gene Ontology (GO) (5), KEGG (6) or OMIM (7)). Run-
ning enrichment analysis on such data sets is now standard
practice. Given the heavy reliance on these methods for hy-
pothesis generation and experimental validation checks, it
is important to improve our understanding of their benefits
and limitations. As we will highlight, the central challenge

in this analysis is how to manage and interpret results in
light of gene set independence, or lack thereof.

One of the key insights into the challenge of gene set anal-
ysis is that some genes are simply generally more likely to
be annotated to any sets. Such genes will appear in many
sets. In the gene set analysis literature this property is often
described in terms of overlap or annotation bias. In earlier
work, we showed that the tendency for some genes to be
frequently represented in GO is a critical confound in gene
network analysis (8). A useful element of our approach in
that work was to define redundancy within GO in terms of
the ability of a single list of gene to predict the membership
of each gene set derived from GO and its annotation. The
degree to which a single list predicts all GO terms says how
redundant GO is, which sets look to be most generic, and
which genes contribute to those tendencies. Trivially, genes
with many annotations would appear at the top of such a
list because predicting them frequently will be correct across
more GO groups. Thus, there is a strong overlap with ‘an-
notation’ bias, but the two do have critical differences, as
will be particularly evident when we assess approaches that
correct for or minimize annotation bias. For simplicity, we
refer to our calculation of the maximally predictive single
list as estimating the gene’s ‘multifunctionality’, although
the extent to which this form of multifunctionality repre-
sents a technical or true biological property will remain an
open question.

In the gene set analysis context, because the redundancy
and overlap in GO is often apparent when inspecting results,
there have been a range of efforts to improve the situation
(we use GO as our motivating example of an annotation
scheme without loss of generality to alternatives). Many ap-
proaches attempt to reduce the redundancy in GO either by
trimming it down up front (9–13), or adjusting the results of
an analysis (14–16). An implicit understanding of the unde-
sirability of overlaps of gene sets is also present when anal-
yses are limited to a single branch of the GO hierarchy (e.g.
only using biological process) or by using gene sets of a par-
ticular size range (e.g. less than 500 genes). Such approaches
serve the dual purposes of simplifying interpretation of en-
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richment results and diminishing multiple test correction
penalties, thereby improving P-values. However, attempts to
reduce redundancy inevitably involve a loss of information,
especially in schemes like GO where the extent of overlaps
is extreme (8). Another approach to correct for redundancy
is through improving the statistical machinery underlying
gene set analysis, e.g. by assuming that the underlying an-
notations are true enough to reconstruct the gene sets con-
tributing to enrichment results by modeling their combined
effects (17). More commonly, enrichment approaches make
post-hoc adjustments, following a basic strategy of reduc-
ing the impact of multifunctional genes. Some approaches
take the view that differential annotation for genes reflects a
bias in the annotations that needs to be corrected, but that
the correction needn’t depend on the experimental data on
which gene set analysis is to be applied (18,19).

The commonality we point to in the various approaches is
that it is hard to know if they improve upon what is already
done. There is no strongly generalizable way to test the effi-
cacy of these methods, as there are no gold standards. This
is a problem likewise faced by any biologist in reading about
and interpreting any results using any of these methods. But
we take the stance that fixing the gene set analysis method or
the gene set annotations is fraught with difficulties. Instead,
our approach is akin to methods intended to test robustness
or overfitting, and is not a new form of enrichment analysis
and thus can be applied to any gene set analysis method.

We rely on two central heuristics, uniqueness and ro-
bustness, which relate multifunctionality to the proper-
ties possessed by well-conditioned problems. Traditionally,
well-conditioned problems are those that possess solutions
unique and robust to minor data variation. For example, if
enrichment output were identical to that produced by sets
of genes that are present in many functions (i.e. multifunc-
tional), then the results will not be at all uniquely character-
istic. In such cases it will be hard to distinguish among the
enriched functions that are returned; many functions will
be returned and the distinction between the 100th function
at p∼1E-10 and the top function at p∼1E-100 is not itself
robust. Likewise, an enrichment result should not hinge on
the presence or absence of any given single gene. Because
we argue uniqueness and robustness are fundamental prop-
erties for the analysis to be meaningful, they will provide
strong heuristic value to the interpretation of what would
otherwise be a black box.

In this paper, we further develop and explore our model
for enrichment and particularly the problem of multifunc-
tionality, focusing both on detailed examples and a large
corpus of studies. We derive ways to integratively assess
multifunctionality as a confound that is applicable to multi-
ple gene set analysis methods, including ones based on fixed
thresholds (‘hit lists’, e.g. (20)) and those which use com-
plete rankings of all genes (e.g. Gene Set Enrichment Anal-
ysis (GSEA) (21)). We show that our approach improves the
specificity of interpretation in enrichment analyses through
an analysis across 17 commonly used enrichment methods.
We propose that measurements of the effects of multifunc-
tionality should be routinely incorporated in such analyses.
To this end, we provide user-friendly implementations of the
methods in a graphical user interface as part of the ErmineJ
software package (22,23).

MATERIALS AND METHODS

Data sets

Except where noted, our analysis focuses on 20 710 hu-
man genes, obtained using the UCSC GoldenPath (24) and
NCBI databases (25). We downloaded the ‘C2’ curated gene
signatures from MolSigDB ([date: April 2013]) (26). We lim-
ited our analysis to 1800 lists of size 11–1000, which come
from 659 different publications, and often form pairs (e.g.
‘up’ and ‘down’ regulated for the same experiment). Impor-
tantly, these lists are the type of ‘hit list’ from genomics stud-
ies that typically forms the grist for performing GO enrich-
ment analysis. In this paper we reserve the term ‘hit list’ for
such experimentally derived groups of genes to be analyzed,
using ‘gene set’ to refer to GO groups.

Gene ontology and its derivatives

For the ErmineJ analyses, gene annotations were obtained
via the NCBI Gene database (gene2go file [date: April
2013]), and the structure of GO was extracted from the
XML files provided by the GO Consortium. As entailed by
the semantics of GO, gene annotations were propagated to
ancestors in the GO hierarchy based on is a and part of re-
lations, excluding the roots (semantic closure expansion).
We did not filter based on evidence codes and used all three
domains of GO (similar results were obtained using just bio-
logical process or molecular function). Except where noted,
we considered GO groups that had between 10 and 300
genes. There were 3172 GO terms meeting this criterion.

For subsequent enrichment analyses, we used the hu-
man gene association file (gene association.goa human,
[date:12/12/2014]) downloaded from GO and the mouse
version (gene association.mgi [date:12/12/2014]). GO was
constructed as above, using the OBO file (go.obo format-
version: 1.2 [date:12/12/2014]).

We also constructed additional versions of GO using
variations of the species (mouse and human), annotations
(14 evidence codes), domains (cellular component, molec-
ular function and biological process) and relations (only
direct [omitting propagation], is a, and part of), each of
which can be used to provide gene sets for gene set analysis.
Using every pairwise combination of a single choice of each
property, including ‘all’ and ‘none’, over all genes or only
those jointly present, yields 512 GO and annotation com-
binations. For each of these derivative GOs, we calculated
the gene multifunctionality scores (see below) and assessed
the fraction of GO terms enriched on this list at an FDR <
0.05 and FDR < 1E-10.

Further to parsing the role of properties within the ex-
isting GO and its annotations, we generated four novel ver-
sions of GO (alto-GOs), encompassing an alternate concep-
tualization of how an ontology, annotations to it and meth-
ods exploiting the two, interact. We labeled these Shadow-
GO, Ortho-GO, Weigh-GO and Local-GO (see Supplemen-
tary Material for more details), collectively termed ‘alt-
GOs’. For Shadow-GO, each GO term brings into exis-
tence its complement to which genes would be annotated as
‘not’ being members. This additional ‘Shadow’ of the orig-
inal GO would follow valid rules of inference defined by
GO through modus tollens, and all genes have an identically
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equivalent number of annotations. Ortho-GO alters GO by
performing dimension reduction on the original matrix of
propagated GO annotations, yielding new genes sets that
are closer to independent but retain the original tendencies
of pairs of genes to be co-annotated. Weigh-GO discards bi-
nary membership, such that each gene is weighted based on
set annotation specificity. Local-GO is a more targeted ver-
sion of GO, where we select a function of interest, and pick
non-overlapping GO terms to also test. In this case, the an-
notation sets are held constant, but the ontology is tweaked
to only include a subset of groups. To generate and assess
this, we pick a random function within GO to be of interest
and then iteratively pick new functions based on the mini-
mum Jaccard overlap with the remainder, stopping at either
200 or 1000 local functions (200-local-GO and 1000-local-
GO, respectively).

Multifunctionality of genes

We describe multifunctionality in terms of the number of
annotated GO terms for the gene our case studies but use
the analytic calculation from (8) throughout:

MFg =
i∑

g∈G O

1
ni ∗ n′

i

where i are the GO groups that gene g is a member of, ni the
number of genes in that group (in the universe of all genes),
and n’i those not in the group (the complement). The final
score is then ranked and standardized. The equation takes
this form as it is the ranking that maximizes the area un-
der the receiver operating characteristic curve (AUROC) for
each gene set under consideration, averaged across all gene
sets (8). In the real GO it is highly correlated (r > 0.95) with
the number of GO terms a gene has (being a version of this
weighted by specificity), and our results are generally robust
to either choice, except where methods attempt to specif-
ically correct away annotation bias, as in the hypothetical
ontologies.

Enrichment analysis

We considered two basic types of algorithms. First is a ‘ba-
sic’ enrichment analysis based on the hypergeometric distri-
bution, and which requires defining a ‘hit list’. The second
is based on ranks without setting a threshold. For this pur-
pose we used a method based on the AUROC (27), the same
as the method mentioned above to measure multifunction-
ality of a GO group but using the experimentally-derived
ranking. ErmineJ implements several additional methods,
including the resampling methods described by (2) and
a GSEA-inspired method that uses precision-recall analy-
ses rather than modified Kolmogorov–Smirnov statistics, in
which the mean average precision (similar to the area un-
der the precision-recall curve) is calibrated by random sam-
pling to obtain a null distribution. The false discovery rate
(FDR) was controlled using the method of Benjamini and
Hochberg (28).

Multifunctionality analysis of enrichment

For the hypergeometric method, we take the approach of
testing the effect of iteratively removing genes from the ‘hit
list’ in order of multifunctionality. The challenge is identi-
fying an appropriate stopping point. Our algorithm is moti-
vated by finding a point at which the enrichment results are
maximally sensitive to the removal of the most multifunc-
tional gene. Intuitively, if some gene sets are only enriched
due to overlaps, as we remove overlapping genes, those gene
sets will eventually fall away. This transition point will be re-
flected by a rapid alteration in the most significantly related
gene sets, similar to the phenomenon shown in Figure 3C.
We found this is effective in finding the optimum stopping
point in model data, and is also of value as a test for ‘robust-
ness’ in enrichment. A formal description of the gene re-
moval algorithm and a schematic is given in the supplement
(Supplementary Figure S1). If the hit list is not significantly
multifunctionality-biased (based on the Mann–Whitney U
test as described for GO groups above, P < 0.05), or if no
gene sets are significantly enriched at a pre-set FDR q (we
used q = 0.05), no correction is performed. If the algorithm
iterates such that more than half of the genes in the ‘hit list’
are removed, the algorithm terminates.

For methods that use a full ranking of genes, we devel-
oped an approach using regression. For the ROC-based
method (27), the appropriate regression was unweighted lin-
ear regression of the genes scores against the gene multi-
functionality scores; the original gene scores are replaced
by the Studentized residuals of this regression. Thus, genes
which are highly ranked, but also highly multifunctional,
will tend to be ‘bumped down’ in the ranking. We note that
some methods, such as GSEA, use the full ranking but be-
have more like precision-recall curves than ROCs, in that
they put much more emphasis on highly ranked genes. In
this situation unweighted regression is inappropriate. While
not investigated as part of our analysis reported here, a
regression-based correction for the precision-recall method
is implemented in ErmineJ 3.0. The regression is weighted
by 1/

√
N where N is the rank. This can be motivated by ob-

serving that under the null distribution of random rankings,
the standard error of the precision is higher at low recall,
and this is expected to vary as 1/

√
N (making the simpli-

fying assumption of independence of the genes). This vari-
ability is what determines the expected contribution of a hit
to the aggregate variability in the area under the precision-
recall curve.

Disease association analysis

Disease-gene relationships, organized by disease ontology
(DO) terms, were obtained from Phenocarta (29) [date:
April 2013]. Enrichment of MolSigDB hit lists for these dis-
ease gene groups were performed using ErmineJ 3.0. Mol-
SigDB hit lists were associated with DO terms using the
National Center for Biomedical Ontology Annotator (30),
applied to the title, abstract and Medical Subject Headings
(MeSH) associated with the linked PubMed record for the
MolSigDB list.
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ErmineJ implementation and analysis of case studies

ErmineJ implements multifunctionality analysis as well as
the unweighted and weighted regression correction algo-
rithms. ErmineJ implements gene multifunctionality as de-
fined by (8), as well as reporting the simpler ‘number of an-
notations’ measure. For the case studies reported here, Er-
mineJ analyses were limited to the biological process GO
aspect, for terms containing 20–200 genes. Gene lists for
case studies were extracted from data presented in the orig-
inal reports or supplementary tables. The gene lists we dis-
cuss are based on the identifiers we could match to official
gene symbols in our database, so may not exactly match
the lists reported by the authors. The data files used for the
case studies are available in the online supplement (http:
//ErmineJ.chibi.ubc.ca/multifuncsupplement/).

Analysis of alternate enrichment methods

We selected 17 common methods that perform varying
forms of gene set enrichment and correction procedures (ac-
cessed between Dec 2014 and April 2015). For the most
part, these methods rely on a statistical test to determine
which gene sets are significant and some method of enrich-
ment correction. Here, we focus on methods specifically de-
signed for GO. We ran each method with the same default
parameters, and when we could, used the same background
input. The GO annotations file also varied as some meth-
ods had set their annotation file, and others allowed the user
to specify it. For consistency, we attempted to use the same
GO version when possible. Because we could not directly
control for the number of GO terms used, we attempted to
control for this by comparing the fraction of GO terms re-
turned, instead of totals. However, we did not wish to pe-
nalize methods, so we continued to compare all results, even
if some GO terms were missing between methods. The to-
tal set of GO terms with gene annotations was then almost
16K, and for each case study methods reported between
2000 and 6000 terms. We did not limit the results to a partic-
ular GO category and excluded IEA annotations as is com-
monly done for purely algorithmic assessments, since IEA
annotations are themselves algorithmically determined.

To calculate the functions different methods are likely to
return for most hit lists, we performed GO enrichment anal-
ysis, using a list of the top 100 multifunctional genes derived
from human GO annotations as of Dec 2014, for the 17 dif-
ferent methods, and variations of a few of these methods,
including ErmineJ and a basic gene set enrichment imple-
mentation (hypergeometric test). We calculated the number
of GO terms returned as significant for this list of 100 genes
and how these terms and their P-values correlated between
methods. We chose a P-value threshold of 0.05 to compare
the number of results returned by each method. Some meth-
ods return all tested values, while others only the significant
terms they found enriched. Most methods perform their
own multiple hypothesis test corrections, and when able, we
specified for Benjamini–Hochberg. All these analyses were
similarly repeated for mouse GO annotations.

For the uniqueness assessment, we took each case study
and compared the enrichment results to the multifunction-
ality results, first by calculating the average multifunction-
ality of the GO terms returned as enriched, and also com-

paring the overlap of results from the previous multifunc-
tionality enrichment, species specific. We then performed a
robustness analysis using those same case studies. For this,
we removed 5% and then 10% of the most multifunctional
genes from the list, and re-ran the individual enrichment
methods. We then calculated the overlap between the en-
richment results returned for each method, as a measure of
stability. We also then once again compared how multifunc-
tional the results were once we removed the most multifunc-
tional genes.

Additional information including data files for many
of the analyses and scripts are available online at http://
ErmineJ.chibi.ubc.ca/multifuncsupplement/.

RESULTS

In this paper, we evaluate the effect of multifunctional genes
on enrichment results. We start by outlining our motivation
and illustrating the impact of multifunctional genes in our
model of uniqueness and robustness. We move on to provid-
ing specific examples in four case studies. We next perform
an assessment of multifunctional genes in globally used
gene lists using our standard algorithm. We then demon-
strate the impact of multifunctionality bias across multiple
algorithms and extend our multifunctionality analysis to al-
ternate versions of GO. We conclude with a demonstration
of the ErmineJ software where we have implemented the
multifunctionality bias assessment.

The multifunctionality problem in gene set analysis

To illustrate our work’s motivation, we outline a conceptual
model for gene set analysis that characterizes a specific ex-
perimental outcome (Figure 1). In the model, the system be-
ing studied is presumed to involve several gene-based ‘func-
tions’, which together contribute to the observed cellular or
physiological state (e.g. disease or phenotype). With some
probability, genes in those functions will be detected in the
study (depending on the type of assay, the strength of the
signal, etc.). The more multifunctional a gene is, the higher
the prior probability of it possessing any given function. If
existing gene annotations (e.g. GO (5) with its annotations
(31)) capture the relationships of the detected genes to those
functions, we would expect an enrichment analysis to rank
those functions highly. We note this model uses the ‘com-
petitive’ null hypothesis in the framework of (32), in which
genes with an annotation are contrasted with those that do
not.

Ideally the enrichment results will reconstruct the under-
lying functions. Because genes commonly have more than
one function (i.e. are annotated to more than one GO group,
pathway etc.), it is possible that the group which is most
enriched is not actually one of the functions that is truly
involved in the process or phenotype. This can occur if a
group preferentially contains these ‘multifunctional’ genes
which overlap with the genes annotated to the true func-
tions. Since many statistical analyses assume all genes are
equally likely to be perturbed in the experiment, enrichment
analysis here could be highly misleading. For example, if
we truly believed two functions were involved in some ex-
periment, then we would predict the experimental outcome
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Figure 1. A conceptual model for gene group analysis. Consider a hypothetical process (e.g. a disease) which involves two gene functions (bars at left).
Assume a gene is ‘detected’ in the experiment (with some non-zero probability) if they are involved in one of the functions that underlie the process of
interest. In this case, the genes with the highest probability of ‘showing up’ are the ones in functions 2 and 4. From a gene set enrichment analysis of this
hit list, it is hoped that enrichment will be found for both functions 2 and 4, but not the others. Yet, genes in these functions are highly multifunctional and
share other functions, which show up erroneously as enriched in the analysis (bars on the right).

(gene sets enriched) to most closely resemble not the ‘in-
put functions’ individually, but whichever third function is
best characterized by their overlap. The situation, which we
have summarized in Figure 1, is extremely simplified, as real
data are far more complex, with hundreds or thousands of
groups and many opportunities for such overlaps to occur.
And, of course, when the multifunctional genes at the inter-
sect are enriched, many functions will appear as ‘significant’
without being meaningful.

Tests for multifunctional effects in gene set enrichment

To interpret gene set enrichment results in the light of mul-
tifunctional genes, we suggest a series of tests that can
be applied to the output of any analysis. As previously
mentioned, well-conditioned problems are those that pos-
sess unique solutions and are robust to data variation.
We demonstrate the effects of multifunctionality on these
uniqueness and robustness heuristics in Figure 2. As a
demonstration of the first test, imagine the input to a gene
set analysis was the genes ranked by the number of GO
functions they possess (we use this list repeatedly in this pa-
per, referring to it as the ‘gene multifunctionality ranking’,
with the most heavily-annotated gene at the top). Applying
a simple enrichment test to this ranking (Mann–Whitney)
we find 92% of GO groups (with at least 5 genes) are signif-
icantly enriched (FDR < 0.05), and 36% at FDR < 1E-10.
When we use the multifunctionality ranking as described in
previous work that takes into account GO set sizes along
with number of GO terms (8), we find even greater enrich-
ments, with 98% at 0.05 and 36% at 1E-10. The degree to
which the actual input to a gene set analysis has any resem-
blance to the multifunctionality ranking will result in a con-
comitant similarity to the biologically non-specific (non-
unique) results of enrichment analysis of the multifunction-

ality ranking. Thus, using the multifunctionality ranking as
a comparator to the actual ranking provided as input will
demonstrate the uniqueness of the output. To further elab-
orate, in the case of experiments that return multifunctional
genes in their hit lists, it is possible to get similar if not iden-
tical results from an enrichment analysis (Figure 2A). Genes
in the hit lists may not be identical between the two experi-
ments, but they share common functions, and the resulting
enrichment will therefore be non-specific.

Multifunctional effects are critical to the assessment of
robustness as well. For an experiment that perturbs genes
with many functions, the results will be robust to variation
– removing multifunctional genes will likely keep these non-
unique results. In the case of an experiment with fewer over-
lapping perturbed functions, removing the multifunctional
genes will remove results that are due to the multifunctional
effects, leaving behind a more robust set of functions (Figure
2B). Removing the most multifunctional genes will impact
the overall output, and thus the stability of the enrichment
can be used as gauge. If removing a single gene can disrupt
the results, the point at which doing so has little effect, is
the point where we can be more confident in a biological
interpretation of the output. This idea is the basis of the
multifunctionality correction we suggest in our algorithm
(detailed in the supplement). We go into more detail in the
following sections on these points, applying these tests to
specific case studies and global gene lists.

Characterizing multifunctionality effects in case studies

Before presenting the details of the algorithm we developed
for multifunctionality assessment, we first describe the re-
sults the assessment of multifunctional genes provides for
four motivating case studies. While these case studies were
selected because they show interesting effects of multifunc-
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Figure 2. Uniqueness and robustness as constraints for testing validity of enrichment outputs. (A) For a given experiment 1 with unknown (or known)
functions 1 and 3 (bar on right in top panel), an experiment detects a set of genes (marked in dark grey in figure). Gene set enrichment outputs results (bar
on left in top panel). Because the genes detected are multifunctional, many functions are returned enriched. For a different experiment with a different
phenotype or disease, the functions (right bar in bottom part of panel), are different (or overlapping) and the genes detected may be similar. Enrichment
yields similar if not identical results to the previous experiment due to the multifunctional genes. Comparing this output to that of the multifunctionality
assessment shows that the results enriched are non-unique. (B) Removing a few multifunctional genes has a large impact on a subset of functions.
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tionality, they are far from being unusual, as we describe
in later sections. Each case study is based on the list of
genes identified by the investigators as being of interest.
We refer to these as ‘hit lists’ to differentiate them from
the gene sets which are tested for enrichment. We used Er-
mineJ as the algorithm for gene set enrichment. We refer to
multifunctionality-corrected results as those obtained by re-
moving the most multifunctional genes in the hit list, which
serves as the basis of the robustness tests in our algorithm.
More details are included in the Methods section and data
and full results files for each case study are presented in the
online supplement.

Genomic copy number variants in autism. Based in part on
GO enrichment analysis, Gilman et al. (33) hypothesized
that synaptic development and function is at the heart of
the autistic phenotype. Repeating their analysis using Er-
mineJ on their hit list of 70 genes, we arrive at a list of 30
GO gene sets (FDR < 0.05) similar but not identical to
those reported. Assessing the multifunctionality of these 70
genes, we see that the list is quite strongly biased toward
multifunctional genes (MF score = 0.86, P < 1E-8). Re-
moving the 11 most multifunctional genes (FLNA, NRXN1,
DLG1, MAPK3, CRHR1, DLG4, DKK1, AXIN1, WNT3,
NLGN3, STUB1) has an important influence on the re-
sults and their subsequent interpretation. Firstly, the heavy
down-weighting of the ‘learning or memory’ GO gene set
provides a good illustration of the benefit of considering
multifunctionality (Supplementary Table S1, Supplemen-
tary Figure S7). Of the six genes in the cluster that have
this annotation, four are among those 11 reported as highly
multifunctional (NRXN1, NLGN3, DLG4, CRHR1); they
have between 186 and 289 GO annotations each. By down-
weighting such genes, weaker signals were allowed to be
more prominent. For example, the term ‘neuron migration’
(supported by four genes among the 70), was originally
ranked 28th in our analysis but is unaffected by multifunc-
tionality correction and thus rises in the ranks. From a bi-
ological perspective, neuron migration might be even more
relevant to ASD than learning and memory. However, we
stress that the enrichment of ‘learning and memory’ in the
first place is not a statistical false positive; we prefer to think
of it as non-robust and, most importantly, non-specific. The
importance of NRXN1 and NLGN3 to ASD was already
bolstered by a simple analysis of the genes contained in the
CNVs studied by Levy et al. (34), and their heavy annota-
tion helps ensure that they drive the enrichment results.

Genome-wide association studies of schizophrenia.
Schmidt-Kastner et al. (35) identified 77 schizophre-
nia (SZ) candidate genes from a review of the genetic
association literature, and used enrichment analysis and
manual annotation to gain support for their hypothesis
on vascular stress responses. Our re-analysis of this list
shows it is also strongly multifunctionality-biased (P <
1E-14), with GO enrichment results related to stress and
inflammation. However, a multifunctionality-corrected
analysis results in no gene sets meeting the significance
criterion, yet those at top of the list now involving synaptic
transmission. The two points illustrated by this case are
the dependency of significance on the multifunctionality of

genes as none pass multiple test correction, and it is often
possible to construct a variety of narratives when faced
with a multifunctional gene list. In this case, the same list
of genes could be treated as having something to do with
synaptic transmission, while from another point of view it
has something to do with stress responses.

Gene expression changes in response to hypoxia. Manalo
et al. (36) identified genes which were changed in RNA
expression in response to hypoxia, and intersected with
genes which were induced by a constitutively active form
of the HIF-1 transcription factor. As for the other case
studies, their list of 202 genes was biased toward multi-
functional genes (P < 1E-10). Unsurprisingly, the enrich-
ment results were also highly sensitive to removal of mul-
tifunctional genes, as after multifunctionality correction,
only four groups would be significant at an FDR of 0.05 (70
originally). These include ‘peptidyl-proline modification’,
‘cellular response to hypoxia’, ‘collagen fibril organization’
and ‘cellular response to oxygen levels’, which strongly align
with the themes the authors chose to focus upon. We argue
that this ‘cleaning up’ of the results increased their relevance
to the study while not precluding the investigation of less
specific terms.

Protein interactions of Oct4. Pardo et al. (37) studied
mouse genes whose products were found to physically in-
teract with the Pou5f1 transcription factor (more com-
monly known as Oct4), a crucial protein in the regulation
of cellular differentiation and thus in embryonic develop-
ment. In ErmineJ, the list of Oct4 interactors yields en-
richment of many GO gene sets related to DNA and chro-
matin function, spanning recombination, replication and
histone acetylation, but also a variety of other processes
such as ‘modification of symbiont morphology or physiol-
ogy’ and ‘ATP metabolic process’ as well as terms relating
to embryonic development. A multifunctionality-corrected
analysis yields a shorter and more focused set of gene sets
which emphasize chromatin remodeling and histone acety-
lation. Importantly, removing Oct4 from the list of interac-
tors dramatically reduces the number of GO gene sets con-
sidered significant after multifunctionality correction, leav-
ing just one, ‘chromatin remodeling’. This illustrates the im-
pact even a single highly multifunctional gene can have on
an enrichment analysis and reiterates how protein interac-
tions are highly biased toward multifunctional genes (8,38).

Enrichment results are sensitive to gene multifunctionality

Having characterized the effects of multifunctional genes in
the individual case studies, we wished to obtain more in-
sight into whether multifunctionality might affect enrich-
ment analyses globally. We next examined a large set of
experimentally-derived gene lists, primarily from transcrip-
tome profiling studies (MolSigDb, (26)). We evaluated the
multifunctionality of genes within these hit lists, and their
impacts through simulation studies and the robustness and
uniqueness tests.

Multifunctional genes are overrepresented in genomics re-
sults. Figure 3A shows that genes which show up on multi-
ple MolSigDb lists tend to be multifunctional (Spearman’s
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Figure 3. Multifunctionality strongly impacts GO enrichment results on published ‘hit lists’. (A) Multifunctional genes appear more often in MolSigDb
lists. Multifunctionality is the number of GO terms assigned to a gene. Data are smoothed with a sliding window of 100 genes. (B) Multifunctional GO
terms are more frequently enriched in MolSigDb hit lists. P-values for AUROCs for GO functions using gene multifunctionality ranking versus GO group
incidence results of simple over-representation enrichment analyses of MolSigDb groups (threshold FDR < 0.05). The Pearson correlation is r = −0.67
using the log P-values as shown, Spearman’s rank correlation rs = −0.59. (C) Enrichment results are sensitive to the removal of single genes depending on
multifunctionality of the GO term. Change in top 10 GO ranks for each hit list after removing one gene (the strongest contributing one). Multifunctionality-
enriched hit lists tend to gather at the left; (at a FDR < 0.05, mean shift is 8) whereas the sets that are not enriched for multifunctional genes change by an
average of 902 (right-hand peak).

rank correlation rs = 0.48). This suggests that multifunc-
tionality defined by GO is reflected in the responses of genes
to experimental manipulations. In other words, genes which
are highly annotated tend to turn up more often in ge-
nomics studies. Whether this is a cause or an effect of the
annotations, is not entirely clear (8). For example the trend
in Figure 3A is likely confounded by biases in the choice
of which genes are analyzed in each study; most studies
in MolSigDb used microarrays that contain probes corre-
sponding to many but not necessarily all known protein
coding genes, and genes which are ‘popular’ are more likely
to be tested. Regardless, this analysis supports the view that
multifunctionality measured by GO is relevant to the anal-
ysis of genomics studies.

Given the trend in Figure 3A, it is not surprising that we
observe a similar phenomenon for GO term enrichment,
in which gene sets found to be enriched in multiple Mol-
SigDb lists tend to be enriched for multifunctional genes
(Figure 3B; Spearman’s rank correlation rs = −0.67; distri-
butions of multifunctionality scores for GO and other gene
set schemes are shown in Supplementary Figure S2). That
is, gene sets defined by GO which contain genes which are
multifunctional (have many GO terms) are more likely to
be enriched in the MolSigDb lists. Such gene sets, by virtue
of their highly annotated members, will tend to be less bio-
logically specific. A related evaluation using MeSH terms is
shown in the supplement (Supplementary Figure S3).

We next performed a type of sensitivity analysis, where
we tested the impact of each gene in a hit-list on the re-
sults of the enrichment analysis. We find that for many Mol-
SigDb lists, the enrichment results are highly dependent on
the presence of one gene (right-hand peak in Figure 3C).
The gene which causes the largest shift in the results was
preferentially the most multifunctional gene (r = 0.35). In

another group of lists, the results were insensitive to the re-
moval of any one gene (left-hand peak in Figure 3C). These
hit lists are found to be the ones which had multiple mul-
tifunctional genes, rendering the removal of any one gene
ineffective.

Taken together, these results suggest that the outcome of
a gene set enrichment analysis can be highly dependent on
the presence or absence of multifunctional genes in the ‘hit
list’. Further, the gene sets that are found by enrichment
analysis tend to be multifunctional, thus having less specific
interpretations. This strongly suggests that the presence or
absence of multifunctional genes will be informative in de-
termining whether results from an enrichment analysis can
be trusted.

Exploring multifunctionality through simulation studies.
Our first model, designed to test the effect of multifunction-
ality in a relatively simple case, examines a hypothetical ex-
periment that yields a ‘hit list’ of 100 genes, to which we
wish to apply a hypergeometric test to evaluate enrichment.
Ten of the genes in the list come from one target GO gene
set (i.e. annotated with a particular GO term). The other
90 are assumed to be irrelevant noise. Ideally the target GO
gene set should rank very highly, if not first, in the enrich-
ment analysis. Indeed this will usually happen if the 90 other
genes are chosen completely randomly. However, if we add
an additional constraint that the 90 genes must have a min-
imum degree of multifunctionality (but still selected at ran-
dom), the situation changes dramatically (Figure 4A). If the
‘background’ genes are too multifunctional, the target GO
gene set is no longer successfully retrieved. This is a direct
demonstration of the Figure 1 scenario.

We next explored a more complex model, where 10 GO
gene sets were randomly selected as targets, and 10 genes
randomly selected from each (because a gene could appear
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Figure 4. Simulations showing that the presence of multifunctional genes
degrades recovery of ‘true’ functions. (A) Analysis of a simple simulation,
in which hit lists of size 100 are generated using 10 genes from a randomly
selected GO group (which becomes the target) plus background noise of 90
randomly chosen genes, with the background constrained to have a mini-
mum multifunctionality level. Increasing the minimum multifunctionality
of the background genes (x-axis) decreases recovery of the target GO term.
Black line indicates average of 1000 simulations; grey area covers 50% of
simulations (middle quartiles). (B) Analysis of a more complex model, mix-
ing 10 genes from 10 GO groups to make an artificial hit list, and testing
the effect of removing each gene (one at a time, not cumulatively). We plot-
ted the average rank of the target functions against the multifunctionality
rank of a single gene removed. Because only a single gene is removed, the
effect is modest, but the more multifunctional the gene, the more removing
it improves the score but also the more the scores vary. Note the y-axis only
includes the range from 19.3–20.7. The plot is the average of 1000 simula-
tions, each of which involved removing each of the 100 genes in turn.

in more than one GO gene set, this sometimes resulted in
slightly fewer than 100 genes in total). The ideal enrichment
analysis result would be that the top 10 GO terms would, on
average, be the ones which were used to construct the hit list,
yielding a mean rank of 5.5. Simulating this situation 1000
times, the mean rank of the ten target GO gene sets was
20.7. We then removed a single gene from the hit list and
repeated the analysis, doing this for each gene in turn, for
each simulated set (1000 by ∼100 simulations). As shown in
Figure 4B, the improvement in the result is proportional to
the multifunctionality of the removed gene. That is, remov-
ing the most multifunctional gene has the tendency to ‘clean
up’ the enrichment results so the truly underlying functions
are closer to the top of the ranking (the theoretical optimum
of 5.5 is not attainable in this simulation due to overlaps
among GO groups). An interesting aspect of this result is
that the gene being removed is a ‘true positive’, in the sense
that it belongs to at least one of the 10 target gene sets. Thus,
even though the enrichment signal for groups it belongs to
is necessarily weakened by its removal, the cost incurred by
including it is even worse, owing to its multifunctionality.
However, this improvement in specificity comes with a cost
in the form of far higher variation in correct rankings when
the multifunctional gene is removed (Figure 4B, grey). This
suggests that removal of multifunctional genes will both im-
prove specificity and reveal underlying fragility in results by
determining the potentially erroneous feature on which they
most critically depend. Further simulations and results are
shown in Supplementary Figure S4 and S5 and the compa-
rable results for continuous corrections are shown in Sup-
plementary Figure S6.

Field-wide evaluations for the impact of multifunctionality.
While our simulations were useful in framing the prob-
lem with multifunctionality, it is obviously crucial that the
approach (i.e. evaluating and/or removing multifunctional
genes) has desirable effects on real data overall. This is dif-
ficult to evaluate because in real data there is no established
gold standard for enrichment results. This has been a con-
sistent challenge for all such evaluations in the literature.
As we will not know what the functions a hit list should be
enriched for, we perform our next analysis once again on
the standard MolSigDB hit lists, and identify the impact of
multifunctional genes on what would be reported.

We wish to detect the point at which reported results are
both robust and unique to removing multifunctional genes;
in other words, the point at which overlaps have decreased
and the influence of individual genes is small. Since we
found that multifunctional genes most contribute to large
swings in enrichment, this argues in favor of removing mul-
tifunctional genes in descending order until reported results
are no longer sensitive to their removal. If we remove mul-
tifunctional genes in descending order, we also slowly re-
move functions from the reported enriched results. In our
case, this resulted in 8% of genes being removed on average,
with 52% fewer GO gene sets being significant (at an FDR
< 0.05). Note that this does not yield additional enriched
functions, but merely argues that a subset of apparently sig-
nificant results were not robust (and primarily due to high
prevalence genes). More importantly, there is a decrease in
the occurrence of enrichment of highly multifunctional GO
gene sets. The correlation between occurrence and multi-
functionality goes from r = −0.67 (as in Figure 3B; Pearson
correlation) to r = −0.51. Further, previously rare gene sets
became more common, leading to a more even spread of oc-
currence of GO gene sets across the MolSigDB results (the
standard deviation of times a term occurs in the results goes
from 24 to 13.3 after this ‘correction’). The agreement of
these results with the expectations under the model (Figure
1) supports the hypothesis that over-occurrence of multi-
functional groups is an artifact, not a meaningful biological
phenomenon. More importantly, it suggests that multifunc-
tional genes are a good place to look to for irreproducible
results. If removing a single gene––and particularly the gene
that was likeliest to arise by chance anyway––removes most
of your enrichment, the enrichment results were probably
not reliable in the first place.

Characterizing algorithms using the robustness and unique-
ness heuristic

Having assessed the impact of multifunctionality in a base-
line algorithm, we now look to see if the same ideas apply
to other methods. Our focus here is on demonstrating that
simple assessments of multifunctionality reveal more clearly
what pre-existing methods are doing. We once again con-
sider the four case studies previously described, but now
consider a corpus of 17 pre-existing enrichment analysis
methods (including our own ErmineJ). We use all the meth-
ods as black boxes, using their default settings but standard-
izing so that the inputs and outputs are comparable.

Recall that using the gene multifunctionality ranking as
input to a simple Mann–Whitney enrichment test yields
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over 90% of gene groups enriched. The extent to which
the results of an actual analysis resemble this result is a
measure of interest in the uniqueness analysis (Figure 5A),
which is naturally customized to each algorithm since the
exact functional outputs in response to this generic input
will vary. In response to an input of the top 100 multifunc-
tional genes as an input (see Materials and Methods), the
methods returned an average of 22.38% (0.12–77.44%, SD
22.25%) of all GO functions as significant, indicating the
functionally promiscuous effect even this small set of genes
can have in some methods. The wide range indicates that
methods vary strongly but a substantial fraction of that
variance may be enforced by direct filtering (GO groups
which can’t be returned). This highlights the importance of
having a way of benchmarking the outputs of real enrich-
ment gene lists since variation in output for a given method
will reflect the same filtering. The precise P-values for GO
terms differ from method to method, with correlations of
P-values across significantly enriched terms averaging rs =
0.30 (Spearman’s rank correlation, SD 0.21, Figure 5B).

We now apply our criteria of uniqueness and robustness
to the output of the 17 algorithms for our four case study
data sets. First, to assess uniqueness, we compared the out-
put of each algorithm when given the experimental input hit
lists to that of the algorithm when the top 100 multifunc-
tional genes was the input (Figure 5A). Recall that the mul-
tifunctional hit lists just input genes with as many functions
as possible, so output enriched functions may be significant
but appear only to the extent they overlap with other func-
tions, and are therefore non-specific (as illustrated earlier in
Figure 2A). Because we know the four case study data sets
have a substantial multifunctionality bias, as expected the
overlap in the enrichment results with the top 100 multi-
functional genes and the experimental hit lists is very high.
Filtering out this overlap results in an average retention of
only 46.4% of the results, SD 10.8% (darker shaded bars in
Figure 5C).

We next assessed robustness by removing the 5% of most
multifunctional genes from the experimental hit lists (as
demonstrated in Figures 2B and 5A). While this percent-
age is arbitrary, it seems an extremely conservative test to
us (if removal of only 5% of the hit list––as little as one
gene––can alter reported enrichments, it would seem unrea-
sonable to consider the results meaningfully robust). As for
the comparison with the top 100 multifunctional genes, we
compare the results after this removal to the original results
with the hit list, finding an average of ∼53.5% (SD 10.1%)
of reported enrichments are retained (lighter shaded bars in
Figure 5C). This confirms that many enrichment results in
these case studies are not robust.

We next combined the uniqueness and robustness filters,
yielding an average 26.6% (SD 9%) of GO terms robust to
both (lightest shaded bars in Figure 5C). It may seem sur-
prising that the filters are not basically redundant. Since we
are removing multifunctional genes to test for robustness, it
might seem like this should downgrade the multifunctional
functions as well. Such reasoning underlies at least some en-
richment software’s pre-filtering. However, as we noted ear-
lier (Figure 3C), functions returned because they are mul-
tifunctional are likely to be robust, since the aggregate of
any remaining biological signals will yield such functions.

In contrast, the functions susceptible to removal of a sin-
gle multifunctional gene are (paradoxically) not likely to
be very multifunctionally biased themselves. The multifunc-
tional gene is simply a good bet to affect any given func-
tional enrichment, and then non-robust functions will be
disrupted.

Thus, far the analysis simply confirms that the robustness
and uniqueness heuristics are behaving as expected, over-
all, on the four case studies across 17 different enrichment
methods. But the true power of this assessment is to help
understand the behavior of specific methods. We divide the
enrichment tools into those which apply standard statisti-
cal tests (enrichment only – 5 methods considered ‘non-
correcting’) and those which attempt to improve on stan-
dard approaches (through statistical corrections or filter-
ing of GO terms, etc., 12 ‘correcting’ methods, see Table 1).
Looking at whether two or more algorithms report the same
GO terms enriched for a given study, the non-correcting al-
gorithms overlap (at least two algorithms report) on aver-
age 58.3% (across studies, SE ∼9%) of functions; in con-
trast, the correcting methods overlap in on average 24.2%
of functions (when downsampled to the same number of al-
gorithms; SE ∼5%). And, as expected, the union of func-
tions ever reported as enriched is much higher for the cor-
recting algorithms (average downsampled ∼58.2%) than the
non-correcting (37.2%). Thus, it is hard to see any method-
ological convergence in advances among enrichment meth-
ods and methodological variance is likely to make results
even less robust. While the methods themselves are diverse,
their output can be heuristically understood in a consistent
way in the light of our multifunctionality assessments. Parti-
tioning our multifunctionality-based assessment by the en-
richment method class (Figure 5D), we can see that ‘cor-
recting’ methods are much more likely to return robust and
unique results (average ∼30.7%, SD 10.4%) in contrast to
non-correcting methods (average ∼16.7%, SD 6.7%), as de-
scribed in Table 2 (more details in Supplementary Tables S2
and S3).

Understanding the gene ontology using multifunctionality

The correction-based algorithms we have characterized
start with the GO annotations and then attempt to moder-
ate the impacts of properties like annotation bias on a par-
ticular analysis. An alternative, as described in the introduc-
tion, would be to alter or filter the GO hierarchy to reduce
multifunctionality bias and apply that ‘improved’ GO to all
analyses. The effect of such manipulations can now be eval-
uated in a useful way using our methods. In the following
two sub-sections, we exploit this ability to perform general
assessments which characterize both fine-scale features and
the general architecture of GO.

Dissecting the gene ontology and its annotations. To as-
sess the relative contribution to multifunctionality bias of
species (mouse or human), annotation codes, GO domain
(e.g. biological process) and GO relation type (e.g. part of),
we built 512 alternative versions of the gene ontology and
its annotations (collectively coined as ‘alt-GOs’, see Mate-
rials and Methods). Returning to an observation presented
earlier for the default human GO, we calculated the gene
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Figure 5. Effects of multifunctionality on algorithm behavior. (A) Schematic of method to assess uniqueness and robustness of the 17 gene set enrichment
methods. We input the top 100 multifunctional genes, the case study genes and then the case study genes filtered at 5% for the most multifunctional genes.
The 5% reduced output results are those robust to multifunctionality. The results filtered by the multifunctional results are those used in uniqueness test. (B)
The top 100 multifunctional genes were given as a hit list for the individual algorithms, and the resulting GO enrichment results for each were compared.
The methods that do not claim to correct cluster together. The corrections that prune results post-enrichment cluster with the non-correcting methods.
(C) Four case studies were assessed in each of 17 commonly used enrichment methods and their results assessed for the role of multifunctional genes in
generating their systemic results. Only a modest fraction (average 46.4%, average SE 6%) of the reportedly enriched functions are not the same ones that
each algorithm outputs when the 100 most multifunctional genes are used as an input (leftmost panels). Removing the 5% most multifunctional genes
from each hit list (as few as 1 gene) dramatically alters most reported enrichment, leaving only ∼53.5% (average SE 7%) of them intact (middle panel).
This combination of effects has an impact on all but a small fraction (average 26.6%, average SE 5%) of the algorithms across all four studies (right most
panels). Note that colors associated with the study are indicated in the legend in panel B. (D) Algorithm behavior is examined for the effects of corrections.
We partitioned the algorithms into two classes, those which perform more standard statistical tests (darker colors) and those which attempt to correct for
problems with enrichment in some way (lighter colors). We then repeated the analysis from part A. Algorithms attempting to correct their output yield a
significantly higher fraction of terms which are both specific (not multifunctional) and robust (to removal of 5% of genes from the hit list).
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Table 1. Methods used and their correction types

Name URL/package Correction type Cite

No corrections
GOTermFinder [03/31/2015] http://go.princeton.edu/cgi-bin/

GOTermFinder
(40)

GOMiner (v. 457) [03/31/2015] http:
//discover.nci.nih.gov/gominer/index.jsp

(41)

Gorilla [03/31/2015] http://cbl-gorilla.cs.technion.ac.il/ (42)
PANTHER [03/31/2015] http://go.pantherdb.org (43)
Hypergeometric Local implementation in R, used to

generate input for GO-Elite and
GO-Module below

Pre-test adjustments
GenGO [04/01/2015] http:

//www.sb.cs.cmu.edu/GenGO/run.html
A generative model is used to select the
subset of ‘active’ GO categories, and
filters out non-active

(44)

DAVID (v. 6.7) [03/31/2015] http://david.abcc.ncifcrf.gov/ Clusters similar GO terms, uses ‘fuzzy’
methods

(45)

GENECODIS [03/31/2015] http://genecodis.cnb.csic.es/ Merges similar GO terms into clusters (46)
GOStat [03/31/2015] http://gostat.wehi.edu.au/ GO structure (paths and splits) (47)
GOStats (v 2) [03/31/2015] http://www.bioconductor.org/packages/

release/bioc/html/GOstats.html
Conditions on the fact that the child
terms are significant. Only terms with
non-significant leaves are tested.

(48)

FatiGO [03/30/2015] http://babelomics.bioinfo.cipf.es/ GO structure clustering (49)
Ontologizer (v 2.0) [03/03/2015] http://compbio.charite.de/contao/index.

php/ontologizer2.html
PCI––Parent, child intersection––ignore
genes not annotated to the parents

(50)

T4T––term for term––standard
TE––topology elimination–ignores genes
mapping to significant child terms

Post-test adjustments
GO-Elite (v 1.2.5) [03/31/2015] http://www.genmapp.org/go elite Prunes redundant GO groups (51)
GO-Module (v 1.2) [03/31/2015] http://lussierlab.org/GO-Module Takes in lists of GO terms and removes

‘dispensable’ terms
(52)

ErmineJ (v 3.0.2) [03/31/2015] http://erminej.chibi.ubc.ca/ Reports multifunctionality, thresholds on
MF groups

Table 2. Significant GO term result overlaps of the 17 algorithms on the four case studies

Enrichments only Corrected

Average SD Average SD Down-sampling (5) SD

Two or more methods
All results 58.4% 9.2% 52.4% 5.3% 24.2% 10.7%
Both robust & unique 37.4% 17.9% 29.0% 8.5% 15.9% 8.1%
Enriched across all studies (union)
All results 37.2% 4.1% 97.3% 1.1% 58.2% 22.9%
Both robust & unique 29.2% 4.8% 91.6% 4.9% 48.0% 7.9%
Enriched per study (averaged)
Both robust & unique 16.7% 10% 30.7% 26% 30.5% 6%

multifunctionality scores for each alternative GO, yielding
a single ranked gene list. Assessing the fraction of GO terms
enriched in this list at an FDR < 0.05 and FDR < 1E-10
gives a feel for how multifunctionality-biased the annota-
tions are. Recall from our earlier results that in a default
human GO annotation set, nearly all GO terms are enriched
at FDR < 0.05 and over one third are at FDR < 1E-10 (de-
scribed in the above results section Tests for multifunctional
effects in gene set enrichment). For the alt-GOs we extend
this analysis to evaluate enrichment of each possible pair of
alt-GOs (create the ranking with one GO, evaluate enrich-
ment using another). This was done for all possible pairs
including the simple self-comparison (Figure 6A for FDR
< 0.05 and Supplementary Figure S8 for FDR < 1E-10).

Across all the possible pairs of versions of GO and its
annotations, the multifunctionality bias remains very high
(Figure 6A). All the versions yield quite high reported frac-

tions of enriched terms (>0.85; Figure 6A). There is also
clear structure such that fractions of enriched terms within a
given ontology (columns) are perfectly clustered by species
first, then evidence code, with moderate clustering by do-
main and little by relation. Multifunctionality is thus, itself,
robustly estimated from the various ontologies and so varies
only modestly from GO row to row.

When split by species (Figure 6B), the multifunctionality
from the complete GO and all evidence code set is enriched
(FDR < 0.05) in every derivative ontology’s annotated gene
sets for greater than 94% of GO terms (median 98%). The
trend in mouse is slightly stronger with all derivative on-
tologies being enriched in more than 96% of GO terms. We
can perform the same assessment across species, using the
original multifunctionality scores from each species to test
for enrichment in the other; this modestly lowers reported
enrichments (minimum 90%). The proportions scale simi-
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Figure 6. Multifunctionality bias is a robust feature of GO. Different versions of GO, filtered for different annotation properties were built and compared.
(A) Heatmap of the fraction of GO terms enriched in a list of genes ordered by multifunctionality estimated from a different version of GO at an FDR of
0.05. We see a clear structure within a given ontology, with clustering by species (mouse in green, human in purple), then by annotation (shades from red
to blue), then by domain (shades from orange to yellow) and some clustering by the relation (shades from blue to green). The color codes listed in the key
are used consistently throughout the rest of the panels. (B) The fractions for the original human GO on all the other human GO derivatives, the original
mouse GO on all the mouse derivatives, and all the human GOs on the mouse GOs. This is shown for both the FDR < 0.05 and FDR < 1E-10. (C) Taking
each multifunctionality list and calculating the enrichment on ‘itself ’, we see for the GO’s conditioned on annotation codes follow an upward trend to be
more enriched as the annotations are more reliable. (D) For domains, this is fairly stable. (E) For relations, it is the opposite, as we become more strict, we
lose the multifunctionality bias, moderately.
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larly to our original assessment in that fractions at FDR
< 1E-10 show broadly similar trends centering at around
30% of terms being enriched in each derivative ontology
(not shown).

If we are to consider each derivative ontology only with
respect to its own multifunctionality, then our evaluation
reduces to the diagonal of the heatmap in Figure 6A, and
performance subject to evidence code choice (Figure 6C),
domain (Figure 6D), and relation (Figure 6E) can each
be evaluated. Some interesting patterns are clearly evident,
with different evidence codes having different roles in ex-
treme multifunctionalities; interestingly, traceable author
statements (TAS) has relatively high multifunctionality bias
while simply using all evidence codes has far less. This can
be seen in the left panel of Figure 6C, where TAS (far right)
has mean 47.4% (median 48.6%) of terms enriched at FDR
< 1E-10, while using all evidence codes (far left of the same
panel) yields only mean 30.2% (median 28.7%) of terms en-
riched at the same level; this multifunctionality bias in TAS
may reflect the focused annotation efforts (or biases) by cu-
rators. The more information via propagation used in the
relational structure of GO, the stronger the multifunctional-
ity bias (Figure 6E). However, we think the variation in val-
ues is actually quite modest given the enormous redundancy
one can imagine propagation induces. This seems more a
feature of the underlying biology or our knowledge of it
rather than a problem with GO’s structure.

Rebuilding the gene ontology and its annotations. Just as we
can use the multifunctionality heuristic to readily parse GO
and its annotations in fine detail, we can consider how even
more vastly altered gene ontologies would behave through
this heuristic. In the following section, we consider four rad-
ically different versions of the gene ontology and annota-
tions (summarized in Figure 7).

In our first version of GO, every gene ontology term
brings into existence its opposite to which genes would ad-
ditionally be annotated as ‘not’ being members. This yields
a logically consistent GO, and forces all genes to have the
same number of annotations (one for each GO term, as
to whether it belongs or not). The main other effect is
to formalize a closed world assumption on GO, which is
consistent with how GO is normally applied. Despite hav-
ing no annotation bias, multifunctionality scores from the
Shadow-GO are still highly correlated with those derived
from the original GO (Spearman’s rank correlation rs ∼
0.69). Shadow-GO also suffers from almost the same en-
richment problems as default GO with almost 97% of gene
sets enriched at FDR < 0.05 and 37% at FDR < 1E-10.
However, unlike in the original assessment, where sidedness
had no impact, the multifunctionality ranking is now highly
sided, with only 50% of GO terms being positively enriched.
This is almost fully accounted for by 99% of the original
GO terms being positively enriched with only a few of the
new shadow terms being positively enriched. This is striking
since the calculation of multifunctionality is ‘unaware’ of
the structure of GO and simply sees the annotated sets. Con-
ceptually the modest impact the GO shadowing has makes
sense: Shadow-GO is at least as redundant as the original
GO and is only concealing its bias from a trivial assessment.
We consider two additional hypothetical-GOs, Ortho-GO

and Weigh-GO (see Supplementary Material: ‘Rebuilding
the Gene Ontology. . . ’), both of which may be thought of
as elaborations of Shadow-GO, in one case by constructing
gene sets to be orthogonal and in the other by weighting
gene membership within existing gene sets. In both cases,
while annotation bias is largely gone, the utility of mul-
tifunctionality in understanding ‘expected’ enrichment re-
sults is still very high.

Our final version of GO, ‘Local-GO’, also discards GO as
a universal tool and asks only if we can construct local non-
overlapping sets that ‘work’. This is close to the premise of
GO-slim and one might imagine it as pre-registering a func-
tion of interest for a given experiment and then having that
function define which other sets are independent enough to
also be tested. One obvious limitation of this approach is
that not all of the genes originally possessing some func-
tion will now have one annotated. Indeed we see this: the
200-local-GO attached annotations to only 14% of origi-
nally covered genes and the 1000-local-GO attached anno-
tations to only 45% of originally annotated genes (see meth-
ods). While 68% of GO groups were significantly enriched
by multifunctionality on 200-local-GO (and 52% on 1000-
local-GO), almost none were very significantly enriched
(∼1% 200-local-GO, ∼2% 1000-local-GO FDR < 1E-10),
even with the more modest multiple hypothesis test correc-
tion. Thus, using pre-registration, semantic filtering and ex-
treme enrichment thresholds would seem to be a potential
improvement in ensuring results were biologically specific.

Implementation of multifunctionality reporting in ErmineJ

The approaches we describe are general enough that they
can be adapted to any gene set analysis method. To permit
biologists to rapidly benefit, we have integrated new features
in ErmineJ (version 3.0) that expose information on multi-
functionality to users. ErmineJ (22,23) is open source desk-
top software implemented in the Java programming lan-
guage that affords a point-and-click interface for enrich-
ment analysis with extensive visualization features, as well
as programmatic and scriptable interfaces. Our philosophy
in designing the multifunctionality features of ErmineJ 3.0
is to make it clear which results are sensitive to multifunc-
tionality, rather than to focus on corrected results as such.
Users can then decide to filter or re-rank the results based
on multifunctionality effects. Figure 8 is a screenshot of the
ErmineJ 3.0 interface illustrating the presentation of mul-
tifunctionality effects for the hypoxia case study. ErmineJ
also provides diagnostic plots of multifunctionality that can
be useful for detecting how biased the user’s data are be-
fore analysis. The new ErmineJ features are documented at
http://erminej.chibi.ubc.ca/.

DISCUSSION

Gene set analysis allows us to make statements ascribing
an experimental result to changes in underlying gene-based
functions. This is of tremendous scientific value if it works
and can be correspondingly damaging if it does not. No
consensus has emerged as to the correct way to perform
function enrichment, and this is impossible to resolve with-
out accepted gold standards, which are currently not at-
tainable. Rather than tackle this issue, we have suggested
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Figure 7. Alternate hypothetical GOs to assess multifunctionality. Constraining the ontology to reduce or change multifunctionality can be done by
‘Shadowing’ GO to obtain members ‘not’ in GO. Selecting orthogonal groups to force minimal overlaps (Ortho-GO), or weighting the genes (Weigh-GO)
so that overall membership is the same also constrains multifunctionality. A targeted version (Local-GO) has a more specific and hypothesis driven basis,
where a known function is pre-selected, and other GO groups are selected that do not intersect with each other.

a generally applicable heuristic test to assess if function en-
richment is working reasonably in terms of robustness and
uniqueness. We showed that both of these properties are
highly associated with gene multifunctionality (as opera-
tionalized by gene sets). In the simplest version of our ap-
proach, when testing for enrichment of a gene set, one sim-
ply removes the most multifunctional gene from the data
and reruns the analysis in whatever software tool being
used. This can be repeated until either the notable results
vanish or the experimenter is comfortable that the results
are robust and can be reported as such, e.g. ‘Our 350 can-
didate genes were enriched for synaptic activity, a property
robust to the removal of the 5 most multifunctional genes’.
By considering robustness over multifunctional genes, weak
signals can still be considered significant if they are unusual
(of low prior probability).

In contrast to our approach, attempts to improve enrich-
ment methods to better recover the true functions by fix-
ing the underlying enrichment tests or determining the un-
derlying dependencies of functions are trying to address ill-
posed problem given the current incompleteness of anno-
tation data. We do not know how functions combine (lin-
early?), whether an absence of annotations reflects an an-
notation of absence (a necessary and untrue assumption),
or indeed, the true null distribution for many experimental
designs. We propose that the best we can hope is to assess
the conditions under which enrichment results are not sensi-
tive to these likely confounds. An important result from our
analysis is that the methods that do attempt to correct for
biases and lack of gene independence have succeeded even
while ending up with highly variable output. We think this is
a generally important principle that may be fruitfully gener-
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Figure 8. Screen shot of the ErmineJ interface showing multifunctionality-related features. The results of the enrichment analysis for the Manalo case study
are shown. Each row in the table is a gene group. The right-most column shows the enrichment results as p-values, with different tints of green indicating
strength of enrichment. The degree to which the result is sensitive to multifunctionality correction is indicated by a diamond next to the p-value, with red
indicating the highest sensitivity. The p-value is shown in grey if it would not be significant at an FDR of 0.1 after multifunctionality correction. The second
column from the left shows the multifunctionality of the GO term, which darker tints of red indicating stronger bias. Note that the most multifunctional
GO terms are not necessarily the ones which have the strongest effect of correction.
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alize to other areas of bioinformatics research: Even treat-
ing the methods as black boxes, uniqueness and robustness
are fundamental properties that can serve to benchmark
methods. Our formal assessment of this for enrichment fo-
cuses on multifunctionality, but these ideas will find alter-
nate expression in different areas of research and serve as an
important alternative to developing methods based on as-
sessment in specific gold standards, which can result in field-
wide overfitting (39). Our assessment of the current state of
corrections in enrichment––that they work, modestly––was
both encouraging and surprising to us. Combined with our
evaluation of hypothetical GOs, we feel these demonstra-
tions provide strong evidence of the intuitive significance
of our approaches and create a strong argument for mak-
ing multifunctionality considerations a routine aspect of en-
richment analysis.

We have shown that gene multifunctionality has a major
impact on the biological interpretability of functional en-
richment analysis, and presented algorithms that improve
the interpretability of results, often dramatically. Enrich-
ment analysis is already extremely widely used, and we sug-
gest that accounting for multifunctionality will make it a
more attractive approach for interpreting genomics stud-
ies. The availability of the implementations in ErmineJ 3.0
put these approaches in the hands of researchers. The algo-
rithms are also simple to implement and general, and could
easily be adopted for use in other software packages.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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