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Abstract

Background: The diversity in eukaryotic life reflects a diversity in regulatory pathways. Nocedal and Johnson argue
that the rewiring of gene regulatory networks is a major force for the diversity of life, that changes in regulation can
create new species.

Results: We have created a method (based on our new “ping-pong algorithm) for detecting more complicated
rewirings, where several transcription factors can substitute for one or more transcription factors in the regulation of a
family of co-regulated genes. An example is illustrative. A rewiring has been reported by Hogues et al. that RAP1 in
Saccharomyces cerevisiae substitutes for TBF1/CBF1 in Candida albicans for ribosomal RP genes. There one transcription
factor substitutes for another on some collection of genes. Such a substitution is referred to as a “rewiring”. We agree
with this finding of rewiring as far as it goes but the situation is more complicated. Many transcription factors can
regulate a gene and our algorithm finds that in this example a “team” (or collection) of three transcription factors
including RAP1 substitutes for TBF1 for 19 genes. The switch occurs for a branch of the phylogenetic tree containing 10
species (including Saccharomyces cerevisiae), while the remaining 13 species (Candida albicans) are regulated by TBF1.

Conclusions: To gain insight into more general evolutionary mechanisms, we have created a mathematical
algorithm that finds such general switching events and we prove that it converges. Of course any such computational
discovery should be validated in the biological tests. For each branch of the phylogenetic tree and each gene module,
our algorithm finds a sub-group of co-regulated genes and a team of transcription factors that substitutes for another
team of transcription factors. In most cases the signal will be small but in some cases we find a strong signal of
switching. We report our findings for 23 Ascomycota fungi species.

Keywords: Transcription factor, Rewiring, Evolution, Regulation, Transcriptional networks, Yeast, Ascomycota

Background
One of the several ways that species evolve and diverge
from each other is through changes in regulatory net-
works and more specifically through changes in the reg-
ulation of genes by transcription factors. The 23 species
with an established phylogeny in Fig. 1 are collectively an
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excellent environment or model for the study of gene reg-
ulation in general. To investigate evolutionary changes,
we generally compare regulation in the species in one
branch of the phylogenetic tree and compare that with
the remaining species. A group of functionally linked and
co-regulated genes is called a “regulon”. A regulon (and
its function) may be preserved across a family of related
species despite changes in regulation. In the review [1],
Li and Johnson propose three different scenarios for the
evolution of transcriptional networks in yeast. Their sce-
narios are (1) “transcription factor turnover” where the
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Fig. 1 Tree phylogeny for 23 species of yeast. We test each of the 12 selected branches (marked as #4, #5, #6, #10, #114, etc.) to partition the species
in the tree for rewiring events. Note that the partition numbers that are one or two digits indicates the branch includes all species up to that species
number. A whole genome duplication is indicated in branch #10. Each branch partitions the set of species into two sets M (the species on that
branch) andM� (the remaining species). The 23 species are: Saccharomyces (S.) cerevisiae (1), S. paradoxus(2), S. mikatae (3), S. bayanus (4), Candida (C.)
glabrata (5), S. castellii (6), Kluyveromyces (K.) waltii (7), S. kluyveri (8), K. lactis (9), Ashbya gossypii (10), Clavispora lusitaniae (11), Debaryomyces hansenii
(12), C. guilliermondii (13), C. tropicalis (14), C. albicans (15), C. parapsilosis (16), Lodderomyces elongisporus (17), Yarrowia lipolytica (18), Aspergillus
nidulans (19), Neurospora crassa (20), Schizosaccharomyces japonicus (21), Schizosaccharomyces octosporus (22), Schizosaccharomyces pombe (23)

transcription factor is conserved (as well as the tran-
scription factor binding probability), but membership of
genes in the regulon can change; (2) “transcription fac-
tor rewiring” or “switching” where the regulon members
are conserved, but the regulation switches from one tran-
scription factor to another transcription factor; (3) evolu-
tion of combinatorial interactions between transcription
factors due to direct protein-protein contacts between
DNA binding proteins.
In this paper we are interested in Scenario 2. Hogues

et al. [2] report an example of scenario (2) change in reg-
ulation, namely that in Saccharomyces cerevisiae the tran-
scription factor RAP1 regulates ribosomal RP genes, while
in the same conditions in Candida albicans the regulation
of the same ribosomal RP genes is done by the tran-
scription factor TBF1 (and sometimes also CBF1). There
one transcription factor for certain species is replaced by
another transcription factor for different species, carry-
ing out the regulation of the same collection of genes. In
order for a collection of related genes to preserve their
function, we must expect change in transcription factors
to be carried out for a collection of genes. Additional such
cases have been documented for yeast genes involved in
mating [3] and in galactose metabolism [4, 5]. See also
cases discussed in [6] and references therein.
Scenario (2) can also be discussed in terms of “motifs”.

A motif is a short segment in the DNA sequence, between

6–20 nucleotide pairs, usually fewer than 10, that can
be positioned at different locations within the regulatory
region of a gene [7]. Tanay et al. [8] focus on identifying
motifs that are “enriched”, i.e., the motif occurs in multiple
species, controlling analogous regulons in those species.
Sarda and Hannenhalli [9] present a method for

detecting rewiring, switching one transcription factor to
another transcription factor in the same 23 yeast species
we investigate.
Nocedal and Johnson [7] analyze more complex cases

of transcription factor rewiring in yeast and concludes
that future research is needed to understand transcrip-
tion factor rewiring in regulatory networks that involve
multiple transcription factors and larger regulons. They
also say that it is important to consider evolution in the
study of transcription factor rewiring. For us that means
considering how regulation in a branch differs from the
regulation in the other species of the tree. Our algo-
rithm automatically finds a collection of genes for which
switching occurs.

What our method does While it has been demonstrated
that one transcription factor can be replaced by another
(e.g., [2]), our algorithm looks for larger scale replace-
ments. We present the first computational method that
finds a regulon (denoted G) and two teams of transcrip-
tion factors (denoted T and T∗) for which there has been
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rewiring over evolutionary time for a specified branch M
of the phylogenetic tree.

Methods
Data
We use 53 evolutionarily conserved co-expression mod-
ules detected in [10] based on S. cerevisiae andC. albicans.
Additional file 1: Our supplementary material lists the
genes in each module (those modules for which there was
a full set of orthologs for all the species). Some modules
are contained in larger modules. The number of genes
in each S. cerevisiae module ranged from 1 to 614 with
an average of 54 and a total of 2840 genes for all the S.
cerevisiae modules. We study the 23 Ascomycota fungi
species with an established phylogenetic tree from [8]
shown in Fig. 1. Our yeast species includes Saccharomyces
cerevisiae, Candida albicans and Ashbya gossypii. All 23
yeast species names are provided in Additional file 2:
Supplementary material.
We used the orthology mapping of corresponding genes

across the 23 yeast species from [11]. In some cases there
is no gene for a given species, but we chose genes that had
the representatives (or orthologs) in all or almost all of
the species. “Orthologs” are genes in related species that
have similar nucleotide sequences, suggesting they came
from the same ancestral gene by speciation. When a gene
has multiple copies in one species, we pick one copy at
random, resulting in 2557 genes of S. cerevisiae – plus
the orthologous genes across the other 22 Ascomycota
species.
This paper is based on our calculation and analysis of

transcription factor binding probabilities, the computed
probability that a transcription factor binds somewhere
in the 600-base region preceding a gene of one of our
species (we obtained those regions from [11]). We refer
to that region as the “upstream promoter region”. The
set of 126 yeast transcription-factor-DNA binding-motifs
(represented as Positional Weight Matrices (PWM)) was
obtained from Transfac DB Database [12, 13]. While there
are many factors determining whether a gene is activated
or deactivated, it seems likely to be significant if the prob-
ability of a transcription factor is high for a branch of the
phylogenetic tree and lower for the remaining species, or
vice versa. We computed a binding probability for each of
126 transcription factors binding to each of 2557 genes in
each of 23 Ascomycota species for a total of approximately
126×2557×23 probabilities, i.e., approximately 7 million
probabilities (provided in Additional file 3: Supplemen-
tary material). Each of the genes that we selected was
present in S. cerevisiae. We used the same 23 Ascomycota
fungi and phylogeny [8], and our set of 126 transcription
factors includes most of the 88 transcription factors that
[14] uses, so we safely use 126 transcription factor bind-
ing motifs associated to S. cerevisiae and applied them to

the other yeast species as [14] has demonstrated that most
transcription factors have conserved their DNA motifs
over large evolutionary distances.

Our skewness method
For each species, gene, and transcription factor, we exam-
ine the “binding probability”, the probability that the tran-
scription factor binds to the upstream promoter region of
the gene.
If a particular branch of the phylogenetic tree has been

selected, we say a transcription factor-gene pair is (posi-
tively) skewed toward that branch if the binding probabil-
ities are on the average higher for species in that branch
than for the species in the complement. Later we will
define our function skew that measures how much it is
skewed; (see Eq. 3). We say the pair is negatively skewed
toward a branch if the reverse is true, that the binding
probabilities are lower for the branch than in the comple-
ment. We usually average the skewness of a transcription
factor over a collection of genes.

Computing skewness We pick a groupM of species rep-
resenting some branch of species in the phylogenetic tree
in Fig. 1 (e.g., species 1 − 10). We useM� to designate the
remaining species, 11 − 23 in this case. Hence M defines
a branch (or partition) of species in the tree.
All calculations use some choice ofM but we often omit

mention ofM andM� to simplify the notation.
For a collection of genes G we say a transcription factor

is skewed towards M if it binds more strongly (averaging
over the genes in G) for species in M than for species in
M�, and similarly it is skewed towards M� if the reverse
holds. We aim at finding a branch and some related genes
G in some module R and two collection of transcription
factors that we denote T and T� so that on the average,
transcription factors in T are skewed towardsM for genes
in G, while transcription factors in T� are skewed towards
species inM�.
To make that precise, we define the skewness, a mea-

sure of the difference in the average binding probabilities
between M and M�. Specifically, for a given branch M
(with complement M�) and each transcription factor x
and each gene g, we compute the skewness skew(x, g,M)

as follows in Eq. 4. We write 〈. . . 〉 for an average. We
note that the average binding probability is computed by
averaging over those species that have an ortholog of g;
we exclude those species that do not have an ortholo-
gous gene from the average. All of the following depend
on the choice of M. First we define Px,g,s = the bind-
ing (or occupancy) probability for transcription factor
x to bind to the promoter of gene g in species s. (See
Additional file 4: Supplementary methods, Section: Esti-
mating transcription factor binding probabilities). We will
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use “∗” to indicateM∗, the complement ofM is being used
in a calculation.
Now we present a formula for the extent to which the

binding probability of one transcription factor to one gene
is “skewed”, that is, stronger on the species in M than
inM�,

skew(x, g,M) = 〈Px,g,s〉s∈M − 〈Px,g,s〉s∈M� , (1)

Here “skew” measures how much x is skewed towards
M for g. It is greater than 0 if x is skewed towardsM and is
less than 0 if x is skewed towardsM�.
Figure 2 is a prime example of our findings. It shows

what we find when we investigate the module of RP genes
focusing on the branch of the phylogeny tree denoted by
‘10’ in Fig. 1 and consisting of the leftmost 10 species in
that Figure. The dashed vertical line separates that branch
from the rest of the tree. We see that for the 19 genes,
transcription factor TBF1 (blue dots) has generally lower
binding probabilities inM than inM� while the three tran-
scription factors (the red team) are higher in M than in

M� for those genes. Hence the overall dominance between
the two teams is opposite for the red and blue teams. Note
that the literature discusses this kind of switch for tran-
scription factor TBF1 versus transcription factor RAP1
(a member of the red team), but here we find the switch
apparently involves two other transcription factors as well,
transcription factor FHL1 and transcription factor SFP1,
members of the red team.
We also define the skewness for a collection T of tran-

scription factors, a collection of genes G, and a branch M
as follows by averaging the skew(x, g) all the the transcrip-
tion factors x in T and all the genes g in G, as follows.

skew(T ,G) = 〈skew(x, g)〉x∈T ,g∈G. (2)

For each branch M and Module R our goal is to iden-
tify a group G of genes in R and two teams or groups of
transcription factors T and T� so that

skew(T ,T�,G) = skew(T ,G) − skew(T�,G) (3)

Fig. 2 Transcription factor rewiring for Module 51, Ribosomal Protein (RP) genes. Here we describe the meaning of this and several following graphs.
The species tree is partitioned into two groups:M is the set of species in one branch (labeled “10” in Fig. 1) andM� consists of the rest of the 23
species. In this and related figures, a dashed vertical line (or two) separatesM fromM� . For each of the 23 species on the horizontal axis, we plot two
dots, each of which is an average of binding probabilities that a transcription factor binds to a gene. Here for example each red dot is the average of
57 (=3 transcription factors in the red team times 19 genes) binding probabilities for the species in question, i.e., averaging over the genes in G and
the transcription factors in team T (red dots) or in team T� (blue dots). The two dots for each species are connected with a solid line using the color of
the upper dot. The first row in Table 1 reports on this case. Note that the box in the lower right specifies first the blue team T� (which here consists of
a single transcription factor, TBF1), then the red team T (which here consists of three transcription factors, namely RAP1 SFP1 and SFL1), and finally
the number of genes in the block. When there are too many transcription factors to fit in the box, only a few are given, but full data is given in the
Additional file 5: Supplementary material for this graph (and all related graphs) including the names of the 19 genes that are discussed here
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is large. In the cases we care about, skew(T ,G) > 0 and
skew(T�,G) < 0.

Algorithms
Terminology
Blocks and substitution-maximizing blocks We define
a block denoted (T ,T∗,G) to be two groups or teams T
and T∗ of transcription factors and a group G of genes.
We say there is a rewiring for a branchM of the tree when
transcription factors in T are positively skewed for species
in M for the genes in G while the transcription factors in
T∗ are negatively skewed.
We define a “substitution-maximizing block” or more

simply a max block to be a block which has the property
that if we substitute any gene for one of the genes in G, or
any transcription factor for one of the transcription fac-
tors in the teams, then the skewness cannot not increase.
But discarding a low scoring gene or transcription factor
would raise the score of the block. Indeed the blocks with
the highest scores are those that that have exactly one gene
and one transcription factor in each of T and T∗.
Finding max blocks by enumerating subsets is clearly

out of the question, since we are dealing with candi-
date sets that may have dozens of genes and dozens of
transcription factors.
We can refer to a block (T ,T∗,G) as an (m,m∗,mG)-

block when m,m∗, and mG are the numbers of elements
in T ,T∗, and G respectively.

Overview For any starting collection G0 of mG genes,
the ping-pong algorithm finds some sets T and T∗ and
eventually a max block (T ,T∗,G) by repeatedly making
substitutions in the elements of T ,T∗, andG that increase
the score skew(T ,T∗,G); and since only substitutions are
made, the numbers of elements in T ,T∗, and G remain
m,m∗, and mG respectively. A gene or transcription fac-
tor that is eliminated from one of the sets at one stage
may later return after the mix of genes and transcription
factors has changed.

A sequence of ever-shrinking max blocks Next one of
the numbers m,m∗, and mG is decreased by 1: the dis-
cussion of “importance” below describes which of these
is decreased. This decrementing process continues, yield-
ing a sequence of max blocks whose total m + m∗ + mG
decreases in steps of 1. When the process is stopped
depends on the needs of the user. As discussed below,
here we chose to stop when the importance (a ratio)
reaches 0.5.

Our Ping-Pong Algorithm that yields a max block In
the game of ping-pong, the ball goes back and forth
between the two sides. Here the block goes back and forth
between two steps. The ping-pong algorithm consists of

alternating between steps TF andG below repeatedly with
skew(T ,T∗,G) increasing at each step until the process
stops in the sense that skew reaches an equilibium, a
max block.
A key point is that T and T∗ are generated fromG with-

out knowledge of previous versions of T and T∗. Similarly
G is generated purely from T and T∗ without reference to
any previous versions of G.
The ping-pong algorithm requires three positive inte-

gers, m,m∗,mG and a set G of mG genes in a regulon
R. The first time the ping-pong algorithm is applied, mG
is the number of genes in the Module R and m + m∗ is
the total number of transcription factors. At least one of
these three numbers will decrease during the attrition step
described below.

Step TF: choosing transcription factors T and T∗
Given a set G of genes, we compute the skew(x,G) scores
of every transcription factor x and let the new T be the
m highest scoring transcription factors and let T∗ be the
m∗ lowest scoring transcription factors. Since skew(T ,G)

is the average of skew(x,G) for x in T, it follows that
skew(T ,G) is increased (or equal) by this new T. Similarly
−skew(T∗,G) is increased by the new choice of T∗ and so
is skew(T ,T∗,G).

Step G. choosing G Note that skew(T ,T∗,G) is the aver-
age over themG genes in G of the terms

skew(T , g) − skew(T∗, g).

Next compute that term for each gene g in R and we set
the new G to be the mG highest scoring genes in R. That
increases (or possibly makes no change) in skew(T ,T∗,G).
Lemma: Steps G and TF never decrease the skew score.
To see this, let m be the number of transcription fac-

tors in T andmG be the number of genes inG. Notice that
skew(T ,G) can be written three ways, namely as the aver-
age of them terms skew(x,G), averaging over all x in T, or
as the average of the mG terms skew(T , g), averaging over
all g in G. Both are equal to the average of the m × mG
items skew(x, g).

skew(T ,G) = 〈skew(X, g)〉g∈G = 〈skew(x,G)〉X∈T (4)

Hence if any gene g is introduced by Step G, it must have
a higher skew scores

skew(T ,T�, g) = 〈skew(T , g)〉g∈G − 〈skew(T�, g)〉g∈G
than each gene that is replaced. Similarly each tran-
scription factor changed by step TF must increase the
skew score.
In the above transcription factor step the algorithm is

supposed to select the highestm scoring transcription fac-
tors for T, but for some choices of G there are fewer than
m that have positive scores, or similarly with T∗ there can
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be too few with negative scores. In such cases we termi-
nate the ping-pong run. There are ways around this as
long as there are some transcription factors with positive
scores and others with negative scores: just decreasem or
m∗ as needed, but our goal was to present the algorithm
in its simplest form. It is also possible to encounter sets of
genes G for which there are no transcription factors with
positive scores or none with negative scores.

Ping-pong stops at a max block After applying this
algorithm repeatedly, there will be no substitution of a
single transcription factor or a single gene that would
increase skew(T ,T∗,G) so that T ,T∗,G is a max block.
The algorithm alternates back and forth between the

two steps repeatedly, letting T and T∗ determine the set
of genes G, and then letting G determine transcription
factor teams T and T∗ . Each step increases the over-
all score skew(T ,T∗,G) until it stops at a max block: the
only changes in the sets are those that increase the overall
score. Since there are only a finite number of choices, the
procedure must eventually stop at a max block, where the
G that is used in step G is the G that is produced in the
TF step.
Ping-Pong pseudocode
Input: (all_Gs,G0, all_TFs,m,m�,mG): all_Gs is the set

of all genes in some module R; G0 is an initial gene set of
mG genes; all_TFs is the set of all transcription factors;
m,m�,mG remain constant; and m,m� are the numbers
of transcription factors in team T and T� and mG is the
number of genes
Output: The output is the max block (G, T, T�) and its

skewness score

1. new_score = 0
2. G = G0
3. Do
4. score = new_score
5. Compute Step TF: Choose transcription factor teams

T and T∗
6. Compute Step G. Choose genes G
7. new_score = skew(T ,T�,G)

8. while new_score > score : (score is increasing)
9. return G, T, T�, score
10. Stopping condition: Neither Step G nor Step TF

ever decreases the skew score, so it must reach an
equillibrium

The attrition step For each x in T we define the “impor-
tance” of x to be the ratio of skew(x,G) divided by the
highest score of the transcription factors in T ; similarly
for each y in T∗, the “importance” of y is the ratio of
skew(y,G) divided by the lowest score of the transcription
factors; and for each g in G, the “importance” of g is the
ratio of skew(T ,T∗, g) divided by the highest score in G.

We now compare all of the importance scores and delete
the one with the lowest score. In other words, we decrease
by 1 one of them,m∗,mG. That increases the overall skew
score. Now again we play ping-pong with the new reduced
numbers, starting the game with our current G, possibly
reduced by one gene.
As we proceed decreasing the numbers, we may lose

some transcription factor or gene that later becomesmore
important to a reduced set of genes and transcription fac-
tors and so it enters back in. That is why we choose new
teams from all transcription factors, not just the ones that
were included on the last step, and the same holds for
genes, using any genes in the specified regulon. We com-
pute binding probabilities with 8 digit precision to avoid
having tie scores, but if there is a tie score and one tran-
scription factor or gene must be chosen, we retain the
one(s) that comes first alphabetically.

When should attrition stop? When we start, it is likely
that some skew scores will be near 0, much smaller than
other skew scores, so their importance will be near 0.
The scientist who wishes to find many involved inter-
acting genes and transcription factors might stop when
the importance has risen to 0.25 (meaning that all the
importance scores lie between 0.25 and 1.0). The exper-
imentalist might wish to deal with fewer transcription
factors and genes and so might stop at 0.75. In this paper
and in the Additional file 5: Supplementary material we
stopped when the importance reached 0.5.

Results
We have examined the 12 largest branches of the species
tree for each of the above mentioned modules using this
approach. We indicated the branches with a slash and
labeled them with a number as shown on Fig. 1. We deter-
mined a “max block” for each module and branch. For
some, we found strong indications of rewiring.
Table 1 shows the cases with the largest skewness for

the block of the module and branch, sorted by descend-
ing skewness. Columns 4 shows the difference Dif(M�)

between the two teams, T and T�, onM�,

Dif(M�) = Dif�(T ,T�,G)

= 〈Px,g,s〉x∈T ,g∈G,s∈M� − 〈Px,g,s〉x∈T�,g∈G,s∈M�

(5)

while column 5 shows the difference Dif(M) onM,

Dif(M) = Dif(T ,T�,G)

= 〈Px,g,s〉x∈T ,g∈G,s∈M − 〈Px,g,s〉x∈T�,g∈G,s∈M
(6)

Transcription factor rewiring for Module-51 genes
Module 51 (see Fig. 2) consists of Ribosomal Protein
(RP) genes exclusively. In the Introduction we noted
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Table 1 Finding max blocks

Module Part.M Skew Dif(M�) Dif(M) #T� :#T #G/#MG Figure

51 10 0.734 –0.276 0.457 1:3 19/31 2

59 112 0.727 –0.241 0.486 9:1 2/2 3

55 4 0.726 –0.112 0.615 14:12 1/1 4

40 20 0.699 –0.712 –0.013 2:33 3/12 5

56 113 0.697 –0.165 0.531 4:12 1/1 6

42 113 0.655 –0.147 0.507 6:9 1/1 –

52 4 0.642 –0.037 0.604 6:2 7/24 –

16 112 0.630 –0.020 0.650 18:1 16/24 –

31 112 0.600 0.098 0.699 19:2 2/2 –

35 4 0.598 –0.012 0.586 10:17 1/1 –

53 112 0.583 0.003 0.612 21:1 20/24 –

62 20 0.580 –0.426 0.154 5:3 27/74 –

The first row (Module 51 and branch 10) describes the max block found for this module and branch. The column “Skew” is the max block’s skewness score
skew(T , T� ,G) = 0.734; next is the difference between the averages of T and T∗ on the species inM∗ , i.e., Dif(M�)) = 0.457, followed by the corresponding difference for the
species inM is Dif(M) = −0.276. The column #T� :#T reports the numbers of transcription factors in T∗ and T ; and the column #G/#MG reports the number of genes in the
regulon compared with the number in the module. The column “Figure” lists the figure number corresponding to the module or ’-’ for modules without figures. The cases
shown have the highest skew scores and are listed in order of those scores. When a module has similar results for branches that only differ slightly, we show only the one
whose block has the highest skewness. A more extensive set of data is included in Additional file 5: Supplementary material

that [2] reported that one transcription factor substi-
tutes for another on some collection of genes in two
species, namely Rap1 in Saccharomyces cerevisiae sub-
stitutes for TBF1 in Candida albicans for ribosomal
RP genes. We find for a branch of 10 species, RAP1,
FHL1, and SFP1 substitute for TBF1. Indeed we find that
their skewness scores are similar: skew(Tbf 1,Rap1,G) =
0.777; skew(Tbf 1, Fhl1,G) = 0.713; skew(Tbf 1, Sfp1,G) =
0.711, where our algorithm finds the regulon G con-
sists of 19 of the 31 RP genes in Module 51. See the
Additional file 5: Supplementary material for a list of the
19 genes and other detailed information about the most
significant block that was found for each module. Note
that FHL1 is mentioned in [6] as a “a key player” in the reg-
ulation of RP genes in S. cerevisiae. We find it is involved
in rewiring, according to our calculations.

Transcription factor rewiring for Module-59 genes
Module 59 consists of conserved, co-expressed genes
related to the biological function RNA methylation. Here
there are two genes in the module and both are in the
rewiring block. In Fig. 3 we see a much more complicated
apparent rewiring than in Fig. 2.
What is striking is that in 13 of the 19 species in

M� transcription factor MATA1 (red dots) has bind-
ing probabilities near 0, (though in two M� species it
is high). In contrast in the branch M, it is higher than
the T� team (blue dots, consisting of 9 transcription
factors.

Transcription factor rewiring for the Module-55 gene
YMR290C Module 55 consists of a conserved, co-
expressed gene related to the biological function riboso-
mal subunit assembly.
Here in Fig. 4 if the tree is cut at the bottom, sepa-

rating the right branch of 19 species from the left-most
branch of 4, it is arbitrary as to which of the two branches
is called M and we have called it the left branch. If how-
ever we had called it the right branch, the graph and
results would be the same. What we see is that in the
four species of M, the 12 transcription factors of the T
team (red dots) very clearly dominate the 14 transcription
factors of the T� team. In contrast on the right side, the
binding probabilities of the two teams are much closer,
apparently all active. So the apparent switching behavior
here is that the T clearly dominates T� on the left, while
on the right all the transcription factors interact at similar
levels (remembering that each dot is only an average).

Transcription factor rewiring for the Module-40 gene
Module 40 consists of conserved, co-expressed genes
related to the biological function actin cortical patch
assembly. The phenomenon seen in Fig. 5 is somewhat
similar to what is seen in the previous figure for Module
55. The branch of three species has one team turned on
and one turned off, or at least at much lower binding prob-
abilities, while for each of the other species, the two teams
have similar binding probabilities.
Here in Fig. 5 if the tree is cut at the top, separating

the left branch of 20 species from the right-most branch
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Fig. 3 Transcription factor rewiring for Module-59 (RNA methylation) genes. HereM is branch 112 from the phylogeny tree, soM = {14, · · · , 17} and
M� = {1, · · · , 13; 18, · · · , 23}. InM red dominates blue, while elsewhere bluemostly dominates red

of 3, it is arbitrary as to which of the two branches is
called M and we have called it the left branch. What
we see is that in the three species of M�, the two tran-
scription factors of the T� team (blue dots) very clearly
dominates the 33 transcription factors of the T team for

the 3 genes in the block. In contrast on the left side, the
binding probabilities of the two teams are much closer,
apparently all active. So the apparent switching behav-
ior here is that the M� clearly dominates M on the right,
while on the left all the transcription factors interact

Fig. 4 Transcription factor rewiring for Module-55 genes. HereM is branch 4 from the phylogeny tree, soM = {1, 2, 3, 4}, andM� = {5, · · · , 23}.
Notice the large difference between red and blue dots in all species inM, while blue mostly dominates inM�
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Fig. 5 Transcription factor rewiring for Module-40 genes. HereM is branch 20 from the phylogeny tree, soM = {1, · · · , 20}, andM� = {21, · · · , 23}.
Branch 20 is special in that it cuts the tree at the root separating the tree into two branches:M� is also a branch. Hence the roles ofM andM� can be
switched and the red and blue colors could be reversed. Notice then that branchM� has a wide separation between red and blue, while for the rest
of the species of the tree, red and blue are closer together

at similar levels (remembering that each dot is only an
average).

Transcription factor rewiring for Module-56 genes
Module 56 (Fig. 6) consists of conserved, co-expressed
genes related to the biological function purine ribonu-
cleotide biosynthetic process. This example is most similar
to Module 55 above in that there is an extreme difference
between red and blue inM but not inM∗.

Discussion
Our method can address questions such as the follow-
ing: Can different groups of genes in related species be
regulated by the same group or “team” of transcription
factors (as in Scenario 1)? Another question: Can a team
of transcription factors become dominant for a collection
of related genes in a tree branch while a second team is
dominant on the other species (as in Scenario 2)? In this
paper we focus in Scenario 2.
Our approach differs from that of Sarda andHannenhalli

[9] in that we define our skewness for each transcrip-
tion factor while they define a function that compares
the skewness of two transcription factors. They require
more computation than our approach since they must
make a complex computation of rewiring scores for each
pair of transcription factors. We use extensive computa-
tion instead to look formore complicated situations where
there can be several transcription factors that switch with

one or more transcription factors. That is we find collec-
tions or teams of transcription factors which are positively
skewed, averaging over the genes in a regulon, and for
those transcription factors which are negatively skewed.
We vary the selection of genes in the regulon and the
teams of positively skewed transcription factors and the
teams of negatively skewed transcription factors.
One of our colleagues, Chris Dock, tested a module

(#2) of 40 genes. He picked G0 to have 36 randomly
selected genes, and repeated this process 100 times. The
process always arrived at the same max block (using
importance = 0.5). That suggests the process is robust, but
does not guarantee a unique result.
A module consists of related genes and one can imagine

simplistically that the module represents a process with
just two stages; first one set of genes is activated, and later
another set. If there is rewiring, each might have its own
max block, the union of which might be the max block
that the above process finds. These can be found by using
amodified approach, where instead of starting with a large
set of genes and contracting it as we have described above,
one can start with one gene and expand the collection of
genes until importance 0.5 is reached. This ‘expanding“
approach would often yield a subset of the “contracting”
approach and the subset would depend on the initial gene.
Here we chose to keep our report simple by restricting
attention to the expanding max block approach which
gives an overview.
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Fig. 6 Transcription factor rewiring for Module-56 genes. HereM is branch 113 from the phylogeny tree, soM = {11, · · · , 13}, and
M� = {1, · · · , 10; 14, · · · , 23}. Notice the large difference between red and blue dots in all species inM, while blue mostly dominates inM�

Note that while T* consists of the transcription factors
for which skew(x,G) is smallest (most negative), they are
not necessarily all negative, and we have excluded some
cases where not all x in T* had negative skew score. This
was an optional choice, but it seemed appropriate in view
of the concept of rewiring.

Conclusion
Nocedal and Johnson [7] write “We do not yet understand
how a large network, composed of many transcription
regulators and hundreds or thousands of target genes,
forms in the first place.” We believe that considering only
cases in which one transcription factor is switched with
another will be inadequate to describe the evolution of
networks. They also write “A change even in the regulation
of a single gene can have important consequences in mod-
ern species’. ... However, most biological processes require
the coordinated expression of many genes rather than a
single gene” to produce a useful phenotype.
Our investigation aims at providing a new approach to

thinking about the very complex idea of rewiring, freeing
us from the constraint of considering only one transcrip-
tion factor substituting for one transcription factor (or one
gene for one gene).
All the examples in this paper discuss rewiring

(Scenario 2) via one team of transcription factors substi-
tuting for another team on a collection of genes. However,
it is an equivalent problem mathematically - using the
same set of binding probabilities - to have one team of

genes substitute for another team of genes for a collection
of transcription factors (the turnover problem, Scenario
1). In an example of a Scenario 1, Habib et al. [14] present a
method for tracing the evolutionary history of regulatory
interactions of 88 regulatory DNA motifs associated with
transcription factors across 23 Ascomycota fungi, (the
same 23 that we study). They use their method to explain
the evolution of transcription factor turnover for a collec-
tion of genes. Here the transcription factor changes which
genes it regulates while preserving the function of the
genes. Gasch et al. [15] also study changes in which reg-
ulon members that are regulated by certain transcription
factors.
We further expect to be able to investigate more com-

plicated problems with very similar ideas in which there
is simultaneously a rewiring of transcription factors and a
turnover of genes.
No numerical investigation such as ours can produce

definitive biological results, but the fact that our first case
in Table 1, top row, is similar to a well known case is
promising since our results find a team of three tran-
scription factors instead of one in the published results.
Table 1 shows the 12 cases with the highest skew scores,
and for the top 5 we have included figures. These seem
to suggest rewiring of teams of transcription factors. Of
course it is desirable to have some of these cases checked
experimentally.
It may be significant that eight of the twelve cases in

Table 1 involve only two branches, namely branches 4 and
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Fig. 7 Histogram of Skewness Scores. The histogram of all skewness scores for the max blocks of all modules and all branches is shown in blue.
The horizontal axis reports the two-digit truncation of skew and the height is the number of max blocks that had that score. The moving average in a
sliding window of size 7 is shown in red. Note the long tail on the right, which corresponds to the high skewmax blocks that we are most interested in

112. While branch 4 includes Saccharomyces cerevisiae
and relatives, branch 112 includes Candida albicans and
relatives. Those species have been reported in cases of
rewiring in the literature.
For each module and each branch of the tree we have

computed a block (except for a small number of cases).
The existence of a max block is not evidence of significant
rewiring, and in fact there is no apparent test of statis-
tical significance. Our solution to this complication is to
examine the blocks that have the greatest skewness. For
each module and each branch of the tree we compute the
skewness of the resulting max block. Figure 7 is the his-
togram. The distribution has a long tail consisting of high
skew scores. We believe that several cases in this flat tail
represent actual cases of rewiring.
We believe that the understanding of the evolution of

transcription networks will have to invoke teams of tran-
scription factors and teams of genes in some essential
form.
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