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Abstract 

Regulated gene expression is crucial for maintenance of cellular homeostasis and adaptation 

to new environments. Therefore, both transcription (the first process in gene expression) and 

proteolysis (the termination of a protein’s existence) are tightly regulated. There is growing evidence 

that the proteasome, which hydrolyses many proteins in several cellular pathways, regulates 

transcription. Much of the initial indication that proteasomes are important regulators of transcription 

was derived from observations that many transcription activators are unstable even during conditions 

of robust transcription. However, recent attention to the proteasomal regulation of transcription has 

focused on non-proteolytic functions of the proteasome whereas the importance of proteolysis itself is 

often dismissed. In my thesis I tested if it was even possible for a proteolytic role to exist in the 

activation of transcription. If the proteasome is necessary to directly activate transcription several 

predictions arise. Two of these predictions are (1) transcription activators should dynamically 

disassociate with their target promoters during transcription, and (2) inhibiting the proteasome 

inhibits transcription. 

To study the dynamics of activators, I focused on a known ubiquitylated activator, Gal4, in 

which a role for the proteasome but not proteolysis has been proposed. If Gal4 were to stably 

associate with its target promoter during transcription, then a role for Gal4 proteolysis as part of 

transcriptional activation could be clearly ruled out. I have improved upon an in vitro competition 

assay to study the association of Gal4 with its target promoter. This technique clearly demonstrates 

that Gal4 maintains a dynamic association with its targets even under conditions of activation, which 

is consistent with a potential important role of proteolytic regulation of the activator during 

transcription. 

Similarly, I have also developed a new strain of Saccharomyces cerevisiae that has greater 

sensitivity to proteasome inhibitors such as MG132. This new strain is the product of genetically 

inactivating two of the three proteolytic subunits of the proteasome. The remaining proteolytic center 



is preferentially targeted by proteasome inhibitors resulting in rapid and acute inhibition of yeast 

proteasomes. This yeast strain will be a valuable tool for many researchers studying ubiquitin and 

proteolysis. Using this yeast strain to study the induction of gene expression I show that 

transcriptional induction of certain genes is indeed sensitive to proteasome inhibition, including a 

gene where there was prior ambiguity regarding the effects of proteasome inhibition. Furthermore, 

this tool is able to reveal a greater number of genes with significant changes in gene expression under 

genome-wide transcriptional profiling. 

Together my data reveal that previous claims that proteolytic function of the proteasome is 

dispensable for transcriptional activation were incorrect as my data demonstrate an important role for 

proteasome-mediated proteolysis in transcription. 
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Chapter One: Introduction 

Transcription activation and proteolytic destruction are intertwined to properly regulated gene 

expression in surprising ways. Transcription activators, proteins that bind specific DNA sequences 

and are necessary to elevate the rate of transcription of specific genes above the basal level (activate 

transcription), posses a very peculiar quality —the ability of an activator to induce transcription is 

inversely correlated with its stability (Molinari et al. 1999; Salghetti et al. 2000; Thomas and Tyers 

2000; Salghetti et al. 2001). As activators become more potent they are destroyed more rapidly, and 

the evidence suggests that the activators are destroyed through a specific and highly regulated 

pathway —the ubiquitin proteasome system (UPS). One intriguing model describing the connection 

between the UPS and transcription activators is that of transcription activator licensing. In this model 

transcription activators are ubiquitylated and ultimately destroyed as part of the transcription 

processes, thereby linking activation and destruction (Lipford and Deshaies 2003; Muratani and 

Tansey 2003). 

The antimony of pairing activation and destruction along with the lack of a mechanism make 

this model controversial. More significantly for this thesis, the licensing model provides several 

predictions —two of which are rather simple yet have complicated and contradicting data. Therefore, 

I aimed to test these predictions in ways that would resolve these controversies and provide improved 

tools to study the mechanisms of activator licensing. 

Chapter two addresses one prediction of the licensing model: if an activator is ubiquitylated 

and destroyed during the process of transcription then it cannot possibly associate stably with the 

DNA that it binds. Proteolysis of activators is not the only cause for activator turnover, but if 

proteolysis of activators does occur then activator turnover is a necessary corollary. Conversely the 

absence of activator turnover is a clear argument against the licensing model. Although there is a 

growing body of literature that suggests that transcription factors a highly dynamic (Hager et al. 

2009), one study in particular presents a new method to measure activator association with DNA in 
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vivo and concludes from this approach that the model Saccharomyces cerevisiae activator Gal4 does 

indeed lock-onto DNA in an transcription specific context (Nalley et al. 2006). Such clear results are 

precisely what are needed to test this licensing model. However, several problems lurk beneath the 

finding of Gal4 stability. Therefore, the turnover of Gal4 during transcription required further 

examination, which is carried out in the second chapter of this thesis. 

A second controversial prediction arising from the activator-licensing model is that inhibition 

of proteasome-mediated proteolysis should inhibit transcriptional activation. The biggest difficulty for 

testing the effects of proteasome inhibitors on transcription is that inhibition of the proteasome in S. 

cerevisiae is rather wimpy. Therefore, before testing the effects of inhibiting the proteasome on 

transcription, I needed to develop an improved strategy to decrease the proteolytic power of the 

proteasome. This strategy of combining chemical and genetic approaches to inhibit the proteasome is 

described in the third chapter. 

Once I had an effective means to inhibit the proteasome I could turn to address the 

consequences of proteolysis with transcription. This area of study has its own controversy: two 

different groups looked at the induction of the same gene using the same methods to inhibit the 

proteasome and arrived at two opposite results (Lipford et al. 2005; Nalley et al. 2006). I believe one 

reason such conflicting data arise is that the typical approach used to proteasome-mediated 

proteolysis pushes the edge of what is sufficient to regulate transcription. Improving the inhibition of 

the proteasome will also improve the clarity in which the connection between proteolysis and 

transcription can be studied. In fourth chapter I use this approach to study the activation of three 

inducible genes: ARG1, INO1, and CHA1. 

Given the success of using this approach at studying individual, strongly induced genes I also 

investigated the global transcription effects of inhibiting the proteasome. Previous attempts to study 

the effects of proteasome inhibition have used incomplete inhibition of the proteasome (Fleming et al. 

2002; Dembla-Rajpal et al. 2004). In the fifth chapter I demonstrate that my more thorough approach 

to inhibiting the proteasome results in an increased number of genes that are affected by proteasome 
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inhibitors. The altered expression of these genes will provide a useful resource for future work into 

the role of proteasome-mediated proteolysis in transcription. 

The sixth and final chapter provides a summary of my work and a discussion on how 

proteasome mediated proteolysis regulates transcription activators. 

 

The Ubiquitin Proteasome System (UPS) 

The ubiquitin proteasome system (UPS) is an ATP-dependent system for the regulated 

destruction of misfolded, unnecessary, or even harmful proteins from within the cell (Hochstrasser 

1996; Hershko and Ciechanover 1998; Schwartz and Ciechanover 1999; Voges et al. 1999). The 

ubiquitylation process begins with the charging of a small 76 amino acid protein, ubiquitin, onto an 

E1 ubiquitin activating enzyme in one of the two main ATP dependent steps. Ubiquitin is then passed 

on to a second enzyme, the E2 ubiquitin conjugating enzyme. Then, via an E3 ubiquitin ligating 

enzyme, the ubiquitin moiety is passed onto the substrate through the C-terminal glycine of ubiquitin 

and an amino group on a lysine in the substrate (or the N-terminal amino group). Because ubiquitin 

itself has seven lysines, more ubiquitin molecules can be attached to form chains of ubiquitin on the 

substrate. It is the conventional wisdom that polyubiquitin chains of four or more ubiquitin peptides 

attached to the substrate target the protein to the proteasome for destruction. 

The proteasome is a large ~2 megadalton complex composed of one to two 19S regulatory 

subcomplexes and a 20S core (see Figure 1.1) (Groll et al. 1997; Bochtler et al. 1999; Voges et al. 

1999; Finley 2009; Forster et al. 2009; Nickell et al. 2009).The 19S regulatory particle itself can be 

separated into a lid subcomplex and a base subcomplex. The lid of the 19S proteasome is important 

for recognition and de-ubiquitylation of target substrates. The base of the 19S proteasome is 

composed of six different ATPase subunits (Rpt1-Rpt6) and two non-ATPase subunits (Rpn1-2). The 

19S is able to unwind substrates and translocate the target into the center of the 20S core (Benaroudj 

and Goldberg 2000; Benaroudj et al. 2003; Horwitz et al. 2005; Smith et al. 2005; Peth et al. 2009). 
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The 20S core is comprised of a series of concentric heteroheptameric rings ordered 7- 7- 7-

7 to form a cylinder. The three of the seven  subunits provide the proteasome with its proteolytic 

capability. The 1 subunit, Pre3, has caspase-like proteolytic activity, preferentially cleaving after 

acidic amino acids of the peptide substrate. The 2 subunit, Pup1, is a trypsin-like protease primarily 

promoting hydrolysis following basic amino acids. Finally, the 5 subunit, Pre2, has a chymotrypsin-

like proteolytic activity with preferential cleavage following large, hydrophobic amino acids (Arendt 

and Hochstrasser 1997; Heinemeyer et al. 1997; Arendt and Hochstrasser 1999; Groll et al. 1999; 

Jager et al. 1999). All three proteases depend on a catalytic threonine that is exposed of the N-

terminal of the processed peptide and located in the center of the cylinder. Access to the proteases is 

protected by the -rings, which form a gate to the interior of the cylinder opened in vivo by the 19S 

base (Smith et al. 2005; Smith et al. 2007; Rabl et al. 2008). 

Except for the gene encoding the 3 subunit, PRE9, all genes encoding 20S subunits and 

most 19S subunits are essential for the viability of the yeast. (The 4 subunit Pre6 replaces the absent 

3 subunit in pre9 yeast (Velichutina et al. 2004)). However, it is possible to replace the catalytic 

threonine with an alanine in any one of the proteolytic subunits. This will abolish the associated 

activity of that protease yet the yeast remains viable. In fact, double mutants without trypsin-like and 

caspase-like activity or without the chymotrypsin-like and caspase-like activity are viable 

(Heinemeyer et al. 1997; Arendt and Hochstrasser 1999). (There is no specific mention of yeast 

without chymotrypsin-like and trypsin-like subunits, which may be a nonviable combination of 

deletions). Of the three subunits, the only the loss of chymotrypsin-like activity stabilized model 

substrates such as the mating type transcription repressor 2 or ubiquitin-fused -galactosidase 

(Arendt and Hochstrasser 1997; Arendt and Hochstrasser 1999). It was also the loss of chymotrypsin-

like activity that had the most pronounced affect on yeast growth at elevated temperatures. Together 

these data have been used to argue that it is the chymotrypsin-like activity that is the primary and 
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rate-limiting protease for proteasome-mediated proteolysis (Kisselev and Goldberg 2001; Kisselev et 

al. 2006). 

The importance of the UPS in the cell is reflected in the numerous cell pathways it regulates 

such as cell cycle progression (King et al. 1996; Zachariae and Nasmyth 1999), DNA repair (Krogan 

et al. 2004; Daulny and Tansey 2009), transcription (Auld and Silver 2006), protein quality control 

(Goldberg 2003), and organelle distribution (Campbell et al. 1994). Although not all ubiquitylation 

events lead to the proteasome, proteolysis is an important mechanism preventing the toxic 

accumulation of abundant or misfolded proteins and provides an irreversible step that can provide 

directionality to any given cell process. 

 

Transcription and Transcription Activators 

The process of transcription can be thought of in three phases: initiation, elongation, and 

termination. Accompanying elongation and termination are several important RNA-processing 

events. RNA polymerase II (RNApolII) is responsible for the production mRNA and the challenges 

of regulating transcription center on correct and efficient recruitment of RNApolII and regulating its 

processivity once transcription initiation has begun. The recruitment of RNApolII itself presents 

several challenges; not only must RNApolII arrive at the correct genes, it must arrive at the correct 

start sites, at the correct time. The challenges of recruiting RNApolII are accomplished between the 

cooperation of cis DNA regulatory elements typically located 5’ (upstream) of the transcription start 

site, chromatin structure, and trans regulatory proteins (transcription factors). 

A certain set of transcription factors is typically associated with RNApolII recruitment and 

transcription of the initial few nucleotides. These general transcription factors (GTF) include TFIID, 

which is a protein complex with several proteins necessary to position RNApolII at the transcription 

start site (e.g. TATA-binding protein (TBP)), TFIIB and TFIIA which bridge the binding of DNA and 

TFIID to the association of RNApolII and TFIIIF, and TFIIE and TFIIH, which assist in the ATP-
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dependent opening of DNA to start transcription (Orphanides et al. 1996; Hampsey 1998). In addition 

to the GTFs, the mediator complex commonly works to coordinate recruitment of RNApolII with the 

activator (Holstege et al. 1998; Kornberg 2005). The mediator complex has several other functions 

beyond serving as a bridge between activator and RNApolII. Srb10/Ssn3/Cdk8 regulates the activity 

of RNA polymerase by phosphorylation of the C-terminal domain (CTD) of the Rpb1 (Kuchin et al. 

1995; Liao et al. 1995), and another subunit Nut1 has histone acetyltransferase (HAT) functions 

(Lorch et al. 2000). Thus, the mediator has been proposed to facilitate the function of activators to 

recruit RNApolII, dispatch the RNApolII into an elongation phase, and facilitate re-initiation for 

subsequent rounds of transcription (Svejstrup et al. 1997; Lewis and Reinberg 2003). 

In addition to the GTFs and mediator complex, numerous co-activators, such as SAGA, RSC, 

and SWI/SNF, facilitate RNApolII recruitment and initiation (Guarente 1996; Naar et al. 2001; 

Narlikar et al. 2002). These co-activators not only provide additional scaffolding structures to 

stabilize the association of RNApolII to the promoter, but these co-activators also alter the chromatin 

architecture, both of the promoter and the transcribed region to facilitate RNApolII binding and later 

elongation. Co-activators seem to primarily function by modifying or remodeling nucleosomes to 

make the chromatin more accessible for RNApolII to transcribe the gene while at the same time 

making the nucleosome structure unfavorable for spurious transcripts to be generated from cryptic 

promoter-like elements. 

Although all these components —GTFs, mediator, co-activators, and nucleosomes —are 

necessary to have efficient and accurate transcription, the ability to regulate the levels of transcription 

in response to changing cellular needs typically operates through transcription activators. Most 

transcription activators have two general modules:  a DNA binding domain (DBD) that recognizes 

specific DNA sequences or upstream activating sequences (UAS) in the promoter and a transcription 

activation domain (TAD) that is responsible for binding and recruiting co-activators, mediator, and 

GTFs (Ptashne 1988). For example when the yeast activator Gal4 is induced it is able to bind 

components of the co-activators SAGA and NuA4, the Mediator complex, and the GTF TFIID 
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(Reeves and Hahn 2005). Transcription activators are (1) tightly controlled by the cell to adapt to 

changes in transcriptional demands, (2) flexible to interact with many different molecules of the pre-

initiation complex, and (3) specific to bind specific promoters to provide the cell with a regulated 

means to increase the transcription from particular sets of genes.  

There are multiple means to regulate transcription activators: controlling abundance (e.g. -

catenin) (Aberle et al. 1997; Hart et al. 1999; Lagna et al. 1999; Latres et al. 1999; Winston et al. 

1999), removal of inhibitory domains (e.g. NF- -B) (Sears et al. 1998; Orian et al. 1999; Moorthy et 

al. 2006; Cohen et al. 2009; Kravtsova-Ivantsiv et al. 2009), localization within the cell (e.g. Spt23) 

(Hoppe et al. 2000; Chellappa et al. 2001; Rape et al. 2001), availability of co-activator targets (e.g. 

LIM homeodomain) (Ostendorff et al. 2002; Gungor et al. 2007), and stability with co-activators (e.g. 

Gal4) (Lee et al. 2005). Interestingly the UPS regulates each of these processes (Lipford and Deshaies 

2003; Muratani and Tansey 2003). 

 

The Transcription-Proteasome Nexus 

The proteasome has been proposed to regulate several steps throughout the process of 

transcription (see Figure 1.2) (Collins and Tansey 2006). However, not all proposed mechanisms 

involve the proteolytic ability of the proteasome. Instead much of the debate is not whether there 

exists a role for the proteasome in transcription but instead it is whether the proteasome requires its 

proteolytic functions or if it uses non-proteolytic mechanisms to regulate transcription. In addition to 

proteolysis the proteasome can de-ubiquitylate, unfold, and translocate substrates making the 

proteasome somewhat of a “reverse chaperone” (Braun et al. 1999; Navon and Goldberg 2001; Liu et 

al. 2007). 

The issue of the proteasome functioning as a non-proteolytic molecule, even to the extent that 

a subcomplex of the 19S bases functions independently of the rest of the proteasome is the product of 

a spontaneous mutational suppressor of a truncated version of Gal4 (Matsumoto et al. 1980). This 
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mutant, gal4D, missing much of its activation domain, could not induce GAL gene expression. 

However a pair of spontaneous second site mutations, sug1 and sug2, suppressed the galactose 

negative phenotype (Swaffield et al. 1992). Johnston et al building on this observation proposed that 

these proteins formed a new class of transcriptional co-activators. When these mutations were 

eventually found to be components of the 19S proteasome (rpt6 and rpt4 respectively (Rubin et al. 

1996)), the relevance of the ability Rpt6 and Rpt4 as coactivators was strongly doubted. The 

importance of the proteasome in regulating transcription has come from several fronts. First, it has 

been demonstrated that the ability of the rpt6 and rpt4 mutations to suppress specific gal4 mutations 

was not simply due to increased abundance of gal4 (Russell and Johnston 2001). Second, the 

proteasome has been detected at many genes (Auld et al. 2006; Sikder et al. 2006)—although 

conclusions regarding the widespread non-overlap of 19S and 20S subunits may be a consequence of 

using tags to detect the proteasome (F. Geng, personal communication), it seems that the proteasome 

is indeed found at genes in a transcription dependent manner. Third, there is accumulating evidence 

that transcription activators are ubiquitylated and unstable (Molinari et al. 1999; Salghetti et al. 2000; 

Salghetti et al. 2001; Lipford and Deshaies 2003; Muratani and Tansey 2003). Increasing the potency 

of activators decreases the stability of activators whereas ubiquitylation of an activator allows it to 

bypass the need for an ubiquitin ligase to induce transcription. 

The idea that the proteasome functions non-proteolytically to regulate transcription has merit. 

First, the proteasome has “reverse chaperone” capabilities of unwinding substrates (Braun et al. 1999; 

Navon and Goldberg 2001; Liu et al. 2002). Second, the 19S apart from the 20S proteolytic core, can 

increase the stability of association between SAGA, Gal4, and the GAL UAS (Lee et al. 2005). Third, 

histones, which were the first substrates known to be ubiquitylated, undergo multiple post-

translational modifications. In particular, H2B can be mono-ubiquitylated on lysine-123 (Sun and 

Allis 2002). The mono-ubiquitylation of H2B is necessary for di- and tri-methylation on H3 lysines 4 

and 79 in what has been reported to be a 19S but not 20S dependent process (Ezhkova and Tansey 

2004; Laribee et al. 2007). Finally, another ATPase complex, the Cdc48 complex, has been reported 
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to destabilize the transcription repressor 2 in an ubiquitylation-dependent process (Wilcox and 

Laney 2009). Cdc48 does not have proteolytic activities and therefore any mechanism it has on 

detecting and displacing ubiquitylated 2 is non-proteolytic, providing an example of the type of non-

proteolytic remodeling that may be possible by the proteasome. 

Given the merit of non-proteolytic mechanisms of the proteasome in regulating transcription 

it is reasonable to ask if the proteolytic ability of the proteasome is even necessary to directly regulate 

transcription beyond controlling transcription factor abundance. There are at least two reasons to 

suspect that the proteolytic role of the proteasome is important to directly regulate transcription. First, 

there is growing evidence for widespread distribution of the 20S proteolytic core on chromatin 

coupled with only shaky evidence that 19S subunits are indeed separate from the 20S subunits (Auld 

and Silver 2006; Sikder et al. 2006). Second, and carrying much more weight, is the instability of 

transcription activators (Molinari et al. 1999; Salghetti et al. 2000; Salghetti et al. 2001; Lipford and 

Deshaies 2003; Muratani and Tansey 2003). It is not just the ubiquitylation of these activators that is 

associated with transcription but their instability, which is presumably a product of proteasome-

mediated proteolysis. But this then raises the question, “In what capacity is proteasome-mediated 

proteolysis directly connected to activating transcription?” The model of activator licensing may be 

relevant.  

 

The Licensing Model of Transcription Activators 

 The model of transcription activator licensing draws upon analogy with the licensing of the 

DNA pre-replication complex (pre-RC) (Stillman 1996; Drury and Diffley 2009). In the licensing of 

the pre-RC, the origin recognition complex (ORC) has bound DNA at specific sequence elements. 

During early G1 phase of the cell cycle, Cdc6 binds to ORC and facilitates the binding of MCM 

proteins. S-Cdk later activates the pre-RC and phosphorylates Cdc6, which is then ubiquitylated and 

destroyed preventing re-initiation of DNA replication. The analogy between activator licensing and 
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replication licensing however breaks down in that it is clear that replication must fire once and only 

once per cell cycle, whereas no such pressing need is placed on transcription. 

Nevertheless, the analogy is useful in laying out the three regulatory events and connecting it 

to activation. In this case, activators facilitate the binding of co-activators, GTFs, and RNApolII. 

Within the assembled initiation complex are kinases that are not only important for phosphorylation 

of the RNApolII CTD to facilitate the transition to productive elongation, but also for the 

phosphorylation of the activator. At least two activators, Gal4 and Gcn4, are known to be 

phosphorylated by a component of the Mediator complex (Ssn3/Srb10/Cdk8) and by a component of 

the GTF, TFIIH (Hirst et al. 1999; Chi et al. 2001; Lipford et al. 2005; Muratani et al. 2005). Both 

activators are ubiquitylated in response to these phosphorylation events and both are unstable, 

particularly during active transcription. Inhibiting the ubiquitylation of Gal4 and Gcn4 has led to loss 

of transcription in the case of Gcn4 (Lipford et al. 2005) and the loss of co-transcriptional processing 

in the case of Gal4 (Muratani et al. 2005). Therefore, it is suspected that Gal4 and Gcn4 and perhaps 

other activators are phosphorylated to mark that productive transcription is underway. This leads to 

ubiquitylation and subsequently destruction by the proteasome (see Figure 1.3). 

The purpose of such a regulatory system may not be immediately obvious (molecular clocks 

(O'Malley 2009) and removal of “spent” activators (Lipford and Deshaies 2003; Lipford et al. 2005) 

have been proposed), but the model not only accounts for known data but provides clear, testable 

predictions. Specifically, because I am interested in the connection between the proteasome and 

transcription, two predictions that I have tested are (1) that transcription activators cannot stably 

associate with the target promoter if proteolysis is a necessary part in the process of licensing 

activators, and (2) that inhibiting the proteasome must have some inhibitory effect on genes whose 

transcription depends on licensed activators if proteolysis is a necessary part in the process of 

licensing activators. These predictions are interesting because not only are they clear and testable, but 

there has been controversy and contradictory data that purportedly supports or refutes each of these 
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predictions. My work then will not only test these two predictions but it will resolve the controversy 

and provide improved tools to study transcription activator and proteasome function. 
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Figure 1.1: Structure and function of the 26S proteasome. The cartoon structure of the proteasome is based on average electron microscopic images of purified proteasome (Nickell et al, 2009). The structure (red font) and function (blue font) of the proteasome are listed.
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Figure 1.2: The proteasome regulates many aspects of transcription through both proteolytic (red) and non-proteolytic mechanisms (green). (a) Proteasomes interact with chromatin in response to histone H2B ubiquitylation to induce methylation of histone H3. (b) Proteasomes regulate transcription through activator turnover. (c) Proteasomes regulate co-activator and co-repressor exchange and recruitment, possibly through both proteolytic and (d) non-proteoyltic mechanisms. (e) Proteasomes are important for stable recruitment of RNA polymerase to sites of transcription, possibly acting after the first round of transcription. (f) Proteasomes might regulate progression through an elongation checkpoint. (g) 19S base subunits promote efficient transcriptional elongation. (h) Proteasome-mediated proteolytic role in tanscription-coupled repair. (i) Proteasome function may regulate accurate transcription termination.
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Figure 1.3: The Proteasome in Activator Licensing with Gal4 as a Model.  (A) Prior to activation, Gal4 is hypophosphorylated. When transcription is induced, Gal4 becomes phosphorylated by the TFIIH kinase Kin28 and the Mediator kinase Srb10. Hyperphosphorylated Gal4, Gal4c, is ubiquitylated by Mdm30. Consequently, Gal4 is polyubiquitylated and recognized by the proteasome and destroyed. (B) Overexpression of hypophosphorylated Gal4 can induce low levels of transcription. (C) Preventing ubiquityaltion by the deletion of MDM30 produces GAL1 transcripts that are not properly processed and incorporated into polyribosomes. (D) Prevention of proteolysis leads to loss of transcription. (E) With all components in place -phosphorylation, ubiquitylation, and proteolysis –efficient and effective transcription proceeds.




Chapter Two: The Turnover of Gal4 on Chromatin During Activation 

Introduction 

The Gal4 activator is the central regulator of galactose metabolism in S. cerevisiae (Johnston 

and Carlson 1992). Yeast demonstrate a marked preference for glucose as their primary carbon source 

to such an extent that yeast repress the synthesis of enzymes required to metabolize other 

carbohydrates (e.g. galactose) when grown in the presence of glucose. If, however, yeast are deprived 

of glucose and are instead supplied with galactose, transcription of a small set of genes rapidly 

increases, driven by the Gal4 activator (Ren et al. 2000). In between the active transcription of the 

induced state (galactose media) and negligible transcription of the repressed state (glucose media), the 

GAL genes have basal levels of transcription in non-inducing media (e.g. raffinose or glycerol and 

lactic acid media) (Johnston and Carlson 1992). Under the repressed and non-induced states, Gal80 

inhibits the activity of Gal4. Additionally, during repression, GAL genes are tightly controlled to 

prevent extraneous expression by the repressor Mig1 and the co-repressors Cyc8-Tup1 (Lamphier and 

Ptashne 1992; Papamichos-Chronakis et al. 2004). However, upon induction with galactose, the 

inhibitory effects of Gal80 on Gal4 are relieved in a Gal3 dependent manner thereby allowing Gal4 to 

function as an activator (Bhat and Hopper 1992). (Gal1, which is paralogous to Gal3, can also 

activate Gal4 in the presence of galactose but the concentration of Gal1 is not typically sufficient to 

relieve Gal4 repression by Gal80 except in yeast that recently induced GAL gene expression (Ptashne 

2008)). 

Gal4 has three phosphoisoforms that are resolvable by SDS-PAGE western blots (Mylin et al. 

1990; Sadowski et al. 1991; Hirst et al. 1999). Under non-inducing conditions only the faster 

migrating two isoforms (a and b) can be detected. Gal4a and Gal4b are unstable; Gal4 levels 

progressively decrease when treated with cycloheximide. The instability of Gal4a and Gal4b is 

presumably regulated by the UPS because deletion GRR1, encoding an E3 ligase, stabilizes Gal4 

when treated with cycloheximide (Muratani et al. 2005). When yeast are switched to inducing 

27



conditions a third, slower moving, phosphoisoform of Gal4 (c) can now be detected. Grr1 no longer 

regulates Gal4 in the presence of galactose and Gal4a and Gal4b become stable. However, the 

activation-associated phosphoisoform of Gal4, Gal4c, is unstable and ubiquitylated in an Mdm30-

dependent process (Muratani et al. 2005). 

Several pieces of evidence provide a compelling case that the ubiquitylation and presumably 

destruction of Gal4 occurs at its target promoters. First, the unstable portion of Gal4, Gal4c, is only 

detected during conditions that also induce Gal4-dependent transcription (Mylin et al. 1990; 

Sadowski et al. 1991; Hirst et al. 1999). Second, the kinases that are responsible for Gal4c formation 

have been identified as components of the GTF TFIIH and of the Mediator complex (Hirst et al. 

1999). Gal4 is known to interact with the Mediator complex and another GTF, TFIID, at the promoter 

(Reeves and Hahn 2005), making it plausible that Gal4c forms at the promoter. Third, Mdm30, the E3 

ligase that mediates Gal4 ubiquitylation in galactose and the instability of Gal4c, is detected at the 

GAL1 promoter when the yeast are grown in galactose (Muratani et al. 2005). Fourth, mdm30 yeast 

are galactose negative and fail to efficiently process GAL1 mRNA and incorporate those messages 

into polyribosome complexes for translation (Muratani et al. 2005). Finally, Gal4 is not unusual in 

this regards; several other activators are unstable in the context of transcription (McNally et al. 2000; 

Becker et al. 2002; Metivier et al. 2003; Reid et al. 2003; Stavreva et al. 2004; Bosisio et al. 2006; 

Johnson et al. 2008; Karpova et al. 2008; Hager et al. 2009). 

However, using a recently developed competition chromatin immunoprecipitiation (cChIP) 

technique, Nalley et al reported the turnover of Gal4 only occurs when yeast are in non-inducing 

conditions (Nalley et al. 2006). When transcription occurs, Gal4 is observed to lock onto its target 

promoter. Elaborating on this model, the Kodadek group proposed that Gal4 is stabilized by the 

monoubiquitylation through a yet unidentified E3 ligase from mammalian nuclear extracts (Ferdous 

et al. 2007; Archer et al. 2008a; Archer et al. 2008b; Ferdous et al. 2008; Archer and Kodadek 2010). 

In their model, Gal4 is recognized by a subcomplex of the 19S base (APIS), and dislodged from the 

promoter. Gal4 is mono-ubiquitylated under inducing conditions, which prevents the recognition of 
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Gal4 by the APIS complex and consequently Gal4 stably associates with the promoter and activates 

transcription. 

There are many significant problems with the model put forth by the Kodadek group. The 

primary evidence for the APIS complex comes from the ability to detect certain 19S but not 20S 

proteins from co-immunoprecipitation with Gal4 or to detect certain 19S but not 20S protein 

localization to the GAL1 promoter, (Gonzalez et al. 2002) resulting in an argument from silence for 

the independent existence of the APIS complex. Second, the evidence of Gal4 ubiquitylation in vivo 

supports that there is substantial polyubiquitylation rather than predominantly mono-ubiquitylation of 

Gal4 (Muratani et al. 2005). Similarly, the E3 responsible for mono-ubiquitylation of Gal4 remains to 

be identified. Mono-ubiquitylation of Gal4, then, may be an artificial phenomenon that was achieved 

through the use of mammalian cell extracts. Moreover, this model raises the issue of whether or not 

Gal4 stably locks onto its target promoter to activate transcription even though the whole cell 

population of the activation associated Gal4c isoform is unstable with cycloheximide treatment. 

The competitive ChIP technique used to measure the stability of Gal4 with its promoter is an 

in vivo competition assay between two activators that each bind a common DNA target-sequence. In 

this case the two activators are two distinct versions of Gal4, endogenous Gal4 and competitor Gal4, 

which compete for access at the GAL1 promoter. Endogenous Gal4 is genomically encoded and can 

be detected at the UASGAL by ChIP using antibodies directed against the Gal4 TAD. Therefore, 

although it is necessary that competitor Gal4 share a common DBD with endogenous Gal4, the 

competitor Gal4 competitor cannot have the same epitope as endogenous Gal4 and therefore it uses a 

different TAD, namely the VP16 TAD. Association of competitor Gal4 with the GAL1 promoter is 

measured by ChIP with antibodies against and N-terminal Myc-epitope tag. Finally, competitor Gal4 

is engineered to have an estrogen-binding domain (EBD) from the human estrogen receptor alpha. 

This EBD is sandwiched between the VP16 TAD and the Gal4 DBD and serves as the trigger sensor 

for the competition experiment. In the absence of ligand, EBD is bound by Hsp90 and sequestered in 

the cytoplasm away from the GAL1 promoter (Fankhauser et al. 1994; Picard 2000). Thus, in the 
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absence of an appropriate ligand, such as 17- -estradiol, only endogenous Gal4 is present in the 

nucleus. Upon addition of an appropriate ligand, Hsp90 releases competitor Gal4, which moves to the 

nucleus and competition ensues (see Figure 2.1). If Gal4 stably binds the UASGAL then endogenous 

Gal4 levels should remain constant even after competition is triggered and competitor Gal4 should 

not be detected at the GAL1 promoter. Conversely, the loss of endogenous Gal4 and the appearance 

of competitor Gal4 is evidence of competition and activator turnover. 

The Kodadek group argued, based on this assay, that Gal4 is labile under non-inducing 

conditions but locks onto the GAL1 promoter upon induction with galactose (Nalley et al. 2006). 

However, from the data that they presented it was ambiguous whether or not competitor Gal4 was 

arriving to the GAL1 promoter, and thus it was not certain that no exchange between endogenous and 

competitor Gal4 occurred. For this reason, and because Gal4c is unstable, I re-examined the stability 

of Gal4 on the GAL1 promoter using qPCR rather than ethidium bromide stained gels to quantify the 

stability of the Gal4 association with its target promoter. 

 

Experimental Procedures 

Yeast strains 

I list the strains used in the course of this study in table 2.1. The pTK0601 plasmid (Nalley et 

al. 2006), bearing the competitive Gal4 (cGal4), was transformed using the high efficiency 

transformation using lithium acetate and PEG, as described by Gietz and Woods (Gietz and Woods 

2002). I deleted PDR5 in the designated strains using gene replacement with LEU2 by homologous 

recombination. I synthesized the knockout cassette by PCR using pRS405 as a template, and 

transformed the cassette again using the lithium acetate and PEG transformation method (Gietz and 

Woods 2002). 
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Table 2.1: Yeast Strains Used in This Chapter 

Strain Genotype Source 

BY4741 Mata his3 1 leu2 0 met15 0 ura3 0 Open Biosystems 
BY4741 gal4 Mata his3 1 leu2 0 met15 0 ura3 0 gal4 ::KanMX6 Open Biosystems 

GAC101 Mata his3 1 leu2 0 met15 0 ura3 0 + pTK0601 (cGAL4, 
HIS3) 

This study 

GAC102 Mata his3 1 leu2 0 met15 0 ura3 0 gal4 KanMX6 + 
pTK0601 (cGAL4, HIS3) 

This study 

BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0 Open Biosystems 

BY4742 gal4 Mat  his3 1 leu2 0 lys2 0 ura3 0 gal4 ::KanMX6 Open Biosystems 
BY4742 

pdr5 
Mat  his3 1 leu2 0 lys2 0 ura3 0 pdr5 ::LEU2 This study 

BY4742 gal4 

pdr5 
Mat  his3 1 leu2 0 lys2 0 ura3 0 gal4 ::KanMX6 

pdr5 ::LEU2 
This study 

GAC111 Mat  his3 1 leu2 0 lys2 0 ura3 0 pdr5 ::LEU2 + 
pTK0601 (cGAL4, HIS3) 

This study 

GAC112 Mat  his3 1 leu2 0 lys2 0 ura3 0 gal4 ::KanMX6 

pdr5 ::LEU2 + pTK0601 (cGAL4, HIS3) 
This study 

 
 

Table 2.2: Plasmids Used in This Chapter 

Plasmid Features Source 

pTK0601 Myc - Gal4 DBD - ER EBD -VP16 TAD (HIS3) (Nalley et al. 
2006) 

pRS405 Yeast integrative vector with LEU2 marker (Sikorski and 
Hieter 1989) 

 
Cycloheximide Treatment 

I treated BY4742 yeast grown in CSM 2% galactose with 10 g /ml cycloheximide (Sigma) 

from a 1000x stock solution in ethanol. I collected samples 15, 30, and 60 minutes after the start of 

the cycloheximide treatment or ethanol in addition to an untreated control (t0). I reserved 2ml of each 

sample to monitor the efficacy of cycloheximide treatment by following the growth of the culture as 

determined by change in A600. The remaining culture was used for chromatin immunoprecipitation 

(ChIP) as described below. 
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Gal4 Competition 

Please refer to figure 2.1 for a diagram of the competitive ChIP procedure. For the 

competitive ChIPs done in non-inducing conditions, yeast were grown in CSM 2% glycerol 2% lactic 

acid. For the competitive ChIPs in inducing conditions, I induced GAL gene transcription by 

transferring yeast grown in CSM 2% raffinose to CSM 2% galactose. After one hour in galactose, I 

started the competition assay with 1 M 17- -estradiol (Sigma) in DMSO or 100 M 4-hydroxy 

tamoxifen (4-OHT) (Sigma) in ethanol. I collected samples 15, 30, and 60 minutes after the start of 

competition in addition to an untreated control (t0) to be processed by ChIP as described below. 

 

Chromatin Immunoprecipitation 

I used a ChIP procedure described by Muratani et al (Muratani et al. 2005). To 230 ml of 

yeast culture, I added 6.4 ml of 37% formaldehyde solution (Fisher) and cross-linked for 20 minutes 

at room temperature. I stopped the cross-linking reaction by the addition of 14.5 ml of 2 M glycine 

for 5 minutes. I then collected the yeast cells by gentle centrifugation (5 minutes at 4000 rpm) and 

washed the cell pellet twice with ice cold 1x TBS. The washed cell pellet was then flash frozen in 

liquid nitrogen. I lysed the yeast in ChIP lysis buffer (50 mM HEPES/KOH (pH 7.5), 150 mM NaCl, 

1 mM EDTA, 0.5% Triton X-100, 0.1% DOC, 0.1% SDS, 5 mM NaF) by bead beating. Cell lysates 

were sonicated to approximately 500 base pairs fragments. I incubated the sheared chromatin solution 

with protein A / protein G agarose beads (Roche) for 1 hour at 4°C. Then I collected the cleared 

chromatin solution to be incubated with the appropriate antibody. Endogenous Gal4 was monitored 

using C-10 anti-Gal4 anitbody (Santa Cruz), whereas the competitive Gal4 was followed using the 

Myc-epitope tag and the AB1 anti-Myc antibody (Calbiochem). Following overnight incubation with 

the antibodies, I added protein A / protein G agarose beads for an hour at 4°C, after which I washed 

the beads twice with ChIP lysis buffer, once with DOC wash buffer (10 mM Tris-Cl (pH 8.0), 0.25 M 

LiCl, 0.5% NP-40 alternative, 0.5% DOC, 1 mM EDTA), and twice with 25x Tris-EDTA buffer. I 

eluted the pulldown chromatin using TES buffer (50 mM Tris-Cl (pH 8.0), 10 mM EDTA, 1% SDS) 
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incubated at 65°C for 20 minutes. I reversed the cross-linking of the enriched chromatin by 

incubating overnight at 65°C. Proteins were digested using 2 g proteinase K (Roche) at 42°C for two 

hours, followed with a phenol:chloroform extraction and ethanol precipitation of the DNA. 

I quantified the amount of DNA that came down in the immunoprecipitation by qPCR with 

SYBR green PCR mix (Applied Biosystems). Calculating enrichment was done as described by 

Ezhkova et al. The automatically-derived cycle thresholds were obtained from triplicate samples of 

the immunoprecipitated DNA for both the amplicon of interest (CIPA) and a reference locus (CIPR) as 

well as corresponding threshold values from chromatin reserved from prior to the 

immunoprecipitation steps (CINA and CINR) respectively. Fold enrichment was then calculated as [2(IPR-

IPA)] ÷ [2(INR-INA)]. I used the ACT1 ORF (ACT1-Q1 ACT1-Q2 oligonucleotides) as my reference locus 

to normalize for Gal4 signal binding to the GAL1 promoter (GAL1-Q1 and GAL1-Q2 

oligonucleotides). ChIP signals are expressed as percent of the untreated (t0) control except for Figure 

2.7, which expresses the ratio of treated (or competition present) versus mock treated (or no 

competition present), and for Figure 2.8, which is expressed as percent of a competitor Gal4 bound 

after one hour of treatment with 100 M hydroxy tamoxifen in a gal4 (no endogenous Gal4) strain.   

 

Results 

Cycloheximide treatment leads to a decrease in Gal4 at the promoter 

One approach to monitor the stability of proteins is to shutdown translation with 

cycloheximide. Muratani et al used this technique to demonstrate that Gal4 is unstable, particularly 

the phosphoisoform associated with transcriptional activity (Muratani et al. 2005). The success of this 

approach to study the stability of Gal4 in whole cell extracts, motivated me to determine if the 

stability of Gal4 on chromatin corresponded with the instability of Gal4c when treated with 

cycloheximide. I treated yeast with either cycloheximide to inhibit translation or ethanol as a control 

and measured the levels of GAL1 promoter DNA bound by Gal4 at three time points post-treatment 
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by ChIP (Figure 2.2). Whereas ethanol treatment did not significantly change the Gal4 ChIP signal at 

the GAL1 promoter, treatment with cycloheximide produced a rapid and substantial loss of Gal4 

bound to the GAL1 promoter. Within fifteen minutes, nearly half the initial Gal4 signal was lost, and 

by an hour as much as eighty percent of the initial Gal4 no longer associates with the promoter. Thus, 

the loss of Gal4 on the promoter approximates the global instability of Gal4c with cycloheximide 

treatment but not the stability of isoforms Gal4a and Gal4b (Muratani et al. 2005). Furthermore, these 

results are in stark contrast to the report that Gal4 locks onto chromatin during active transcription 

(Nalley et al. 2006). Therefore, to address the disconnect between stable Gal4 observed by Nalley et 

al and unstable Gal4 that both Muratani et al and I observed, I turned to the competitive ChIP assay. 

 

17- -estradiol is not suitable for Gal4 competition assays 

 The competitive ChIP assay has the advantage over cycloheximide treatment in that —at least 

in theory —it is more direct in its ability to focus in on a single DNA binding protein (see Figure 

2.1). To demonstrate that I could obtain similar results as Nalley et al (Nalley et al. 2006) I performed 

their competitive ChIP as described using 17- -estradiol to induce competition and DMSO treatment 

for the non-competition control (Figure 2.3). Under galactose inducing conditions, the Gal4 ChIP 

signal does not significantly change from the untreated (t0) control. The DMSO treated, non-

competitive controls, have a slight increase in their Gal4 ChIP signal but overall treatment with 

DMSO does is not significantly different from the untreated (t0) control or the competition samples. 

Therefore, performed this way, there does not appear to be any significant effect by competition, and 

endogenous Gal4 appears to stably associate with the GAL1 promoter consistent with observations of 

the Kodadek group (Nalley et al. 2006). 

 The induction of GAL genes in the presence of 17- -estradiol is a novel approach that has not 

been fully characterized. Therefore, I repeated the competition experiments using a strain without 

competitor Gal4 rather than treating with DMSO as the non-competitive control. Consequently I 
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treated all samples with 17- -estradiol (Figure 2.4). As in the previous set of experiments, the 

endogenous Gal4 ChIP signal in the presence of competitor did not significantly deviate from the 

Gal4 signal prior to competition (t0). However, when yeast without competitor Gal4 were treated with 

17- -estradiol the Gal4 signal increased significantly (nearly a four-fold increase at one point) rather 

than remaining flat. This finding indicates that 17- -estradiol potentially increases the Gal4 signal 

apart during competition and as such renders the competition experiment invalid. Done properly, 

competition experiments only change one variable at a time (i.e. competitor Gal4 concentration in the 

nucleus), while keeping the other conditions constant (i.e.. the amount of endogenous Gal4). 

Treatment with 17- -estradiol, by increasing the Gal4 ChIP signal in the absence of competitor Gal4 

violates this basic tenant of carefully designed competition assays. 

 The odd phenomenon of increasing Gal4 ChIP signals through treatment with 17- -estradiol 

is only observed in the context of inducing conditions (i.e. galactose media) but not during non-

inducing conditions (i.e. glycerol-lactic acid media) (Figure 2.5). When yeast grown in non-inducing 

conditions are treated with 17- -estradiol, the Gal4 ChIP signal does not significantly change from 

initial (t0) levels of Gal4 when no competitor is present. This is the type of conditions that are 

necessary to conduct proper competition experiments, and as such it is possible to observe the rapid 

and dramatic loss of Gal4 from the GAL1 promoter. Nearly ninety percent of the signal is lost in just 

the first fifteen minutes of competition. The peculiar effect of 17- -estradiol on the Gal4 ChIP signal 

with inducing media but non-inducing media explains why Nalley et al observed that Gal4 was stable 

during inducing whereas it was unstable in non-inducing media (Nalley et al. 2006). 

 

Gal4 Turnover at An Active Locus 

 The mechanism behind the increased Gal4 ChIP signal as a consequence of treatment with 

17- -estradiol under activating conditions is unknown. If another molecule could bind to the 

estrogen-binding domain of competitor Gal4 to initiate competition and yet not artificially inflate 
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Gal4 ChIP signals in the absence of competitor Gal4, then the competition ChIP assay could be 

salvaged to test if Gal4 stably associates with its promoter. I hypothesized that 4-hydroxy tamoxifen 

(4-OHT) was possibly such a molecule. Yeasts do have known estrogen binding proteins: S. 

cerevisiae has two old yellow enzymes (Feldman et al. 1982; Burshell et al. 1984) that bind estrogen 

and the Candida albicans homologue of S. cerevisiae OYE2, EBP1 (for estrogen binding protein 1), is 

an important virulence factor and has been proposed to mediate the metabolic changes necessary for 

tissue invasion for yeast infections (Skowronski and Feldman 1989; Madani et al. 1994). 

Significantly, although Oye2, Oye3, and C. albicans Ebp1 have a strong affinity for 17- -estradiol, 

they do not efficiently bind 4-hydroxy tamoxifen (4-OHT) (Burshell et al. 1984; Madani et al. 1994). 

Thus, 4-OHT represents a ligand for the human EBD in competitor Gal4 without any known binding 

proteins in yeast and may therefore be a more suited for a Gal4 competition ChIP assay. 

 I used 4-OHT to drive the Gal4 competition assay (Figure 2.6). Unlike 17- -estradiol, 4-

OHT did not significantly alter Gal4 signals from the initial (t0) levels of Gal4 in no competitor 

controls. The increase in Gal4 after fifteen minutes of treatment with 4-OHT in the no competitor 

samples is not significantly different from the brief momentary increases in Gal4 signal observed at 

this time point for the DMSO treated control (Figure 2.3) or the effect of 17- -estradiol in non-

inducing conditions (Figure 2.5). Importantly the Gal4 ChIP signal returns to the reference (t0) levels 

rather than increasing as much as four fold as is the case for 17- -estradiol in galactose media (Figure 

2.4). When competitor Gal4 is present, treatment with 4-OHT leads to a rapid and significant loss of 

Gal4 at the GAL1 promoter. Indeed, most of the signal loss occurs by fifteen minutes with nearly two-

thirds of the initial (t0) signal gone. This rapid loss of Gal4 is consistent with the cycloheximide data 

and corresponds with the result of 17- -estradiol when the Gal4 signal from yeast with competitor 

normalized to the Gal4 signal from yeast without the competitor (Figure 2.7). Therefore, I conclude 

that Gal4 does not lock onto chromatin, contrary to what was previously reported (Nalley et al. 2006). 
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 To confirm that the disappearance of Gal4 signal, representing the turnover of endogenous 

Gal4 from the GAL1 promoter, was indeed competitively displaced, I also monitored the arrival of 

competitor Gal4 to the same promoter when 4-OHT drives competition. The association of 

competitor Gal4 is measured by ChIP using antibodies directed against the N-terminal Myc-epitope 

tag. ChIP signals from this experiment were expressed as a percentage of Myc-ChIP signal obtained 

in a gal4 strain after one hour of competition with 4-OHT representing the maximal binding of 

competitor that should be observed in the competition experiments (Figure 2.8). This experiment 

demonstrates that the competitor rapidly and efficiently arrives to the GAL1 promoter even in the 

presence of endogenous Gal4. The appearance of competitor Gal4 at the promoter is indeed 

dependent on 4-OHT to start competition, as the Myc-ChIP signal in ethanol treated yeast is not 

significantly different than strains without competitor. Thus, the elements of a competition 

experiment are behaving appropriately: endogenous Gal4 signals are relatively unaffected by 

treatment with 4-OHT alone, and competitor Gal4 arrives at the target promoter at a rate that is not 

faster than the loss of endogenous Gal4. 

 

Discussion 

 I have shown that conclusion by the Kodadek group that Gal4, upon activation, stably 

associates with the GAL1 (Nalley et al. 2006) is misfounded, based in large part on competitive ChIP 

data demonstrating the stability of Gal4 with its target promoter. However, these data were based on 

experiments that used 17- -estradiol to stimulate competition, which I discovered to have the 

unintended consequence of increasing the endogenous Gal4 signal when no competitor is present. I 

have normalized the Gal4 ChIP signal obtained in the presence of competitor Gal4 to that in which no 

competitor is present. Over the course of a competition assay this leads to a rapid decrease in Gal4 

present at the GAL1 promoter (Figure 2.7). This is consistent with competitive ChIP experiments 

using 4-OHT and ChIP data using cycloheximide treatment. These data, along with the arrival of 
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competitor Gal4 after treatment with 4-OHT, refute the conclusion that Gal4 stably occupies the 

GAL1 promoter. Instead, there is rapid turnover of Gal4 from chromatin, consistent with the expected 

behavior of a protein non-covalently bound to chromatin and does not preclude a possible role for the 

proteasome in regulating activator turnover at promoters undergoing active transcription. 

One of the unexpected and interesting findings from my work is that 17- -estradiol increases 

the Gal4 ChIP signal. The cause is unknown —more Gal4 binding at the promoter, greater 

accessibility of the Gal4 epitope, or the establishment of a cellular environment that is more amenable 

to cross-linking are the most likely options. These are each testable, and could result in improved 

techniques to study Gal4 binding to DNA or even reveal new facets of what has been thought to be a 

well characterized activator. Also unknown are the proteins through which 17- -estradiol functions to 

increase the Gal4 ChIP signal. Based on the previous characterization of OYE2 and OYE3 as genes 

encoding for estrogen binding proteins (Feldman et al. 1982; Burshell et al. 1984), and that yeast with 

the deletion of either or both genes are viable (Giaever et al. 2002; Odat et al. 2007), these two genes 

would be best candidates to begin to study how 17- -estradiol regulates Gal4. 

However, as interesting as the surprise effect of 17- -estradiol may be, I believe that the true 

significance of this work is clarifying confusion regarding the importance of activator turnover in 

transcription. Fluorescent microscopy has demonstrated that several activators are dynamic in their 

movement to and from the areas of active transcription (Hager et al. 2009). However, there are 

relatively few examples of studies that demonstrate the turnover of transcription factors that 

compliment and further validate the observations from live cell imaging. 

One of the notable examples of ChIP data demonstrating activator turnover is from the work 

of the Gannon laboratory studying, incidentally, the human estrogen receptor (hER ) (Metivier et al. 

2003; Reid et al. 2003). The association of hER  with its target promoters undergoes a cyclical 

pattern of binding and loss of binding that occurs roughly every forty minutes — substantially longer 

than the dynamic association of many activators observed using fluorescent labels, but still 
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demonstrating the point of activator turnover. Furthermore, these studies indicate that the dynamics of 

hER  and its associated transcription is dependant on the proteasome.  

 I have not addressed the role of the UPS in the regulation of activator turnover, which is the 

important future direction of this work. The processes of Gal4 turnover as described by Muratani et al 

(Muratani et al. 2005) proceeds from phosphorylation of Gal4 to form phosphoisoform Gal4c, 

Mdm30 dependent ubiquitylation of Gal4c, and presumably proteolysis through the proteasome. 

Inhibiting these steps in trans is not the ideal approach because of significant off-target effects. The 

kinases required for Gal4c formation, Kin28 and Srb10, are important for the initiation of 

transcription in general. Mdm30 is so named for its regulation of mitochondrial distribution and 

morphology, which itself is necessary for respiratory competency and regulating galactose 

metabolism in multiple and potentially complicated processes (Dimmer et al. 2002; Fritz et al. 2003; 

Neutzner and Youle 2005; Durr et al. 2006; Escobar-Henriques et al. 2006; Cohen et al. 2008). 

Therefore, if the cis elements in Gal4 can be mapped and mutated that regulate Gal4 phosphorylation 

or ubiquitylation, I would use those forms of Gal4 to study the potential connection of activator 

turnover and regulation by the UPS. Such cis mutations for the phosphorylation of Gcn4 already exist 

(gcn4-3T2S) (Chi et al. 2001; Lipford et al. 2005) and therefore, establishing the competition assay in 

Gcn4 to study the importance of phosphorylation to activator turnover may prove to be a simpler and 

more rapid approach than mapping and mutating sites of phosphorylation in Gal4. 

 cis mutations of proteins that allow ubiquitylation but not proteolytic destruction are rare and 

poorly understood. Therefore, to study the contribution of the proteasome turnover demands the 

inhibition of the proteasome. However, the impact of the proteasome on Gal4 mediated transcription 

has itself been a controversial subject with one group finding that inhibiting the proteasome blocks 

transcriptional activation (Lipford et al. 2005) and a second group reporting no effect on transcription 

from proteasome inhibitors (Nalley et al. 2006). I believe that part of the difficulty exists because the 

level of proteasome inhibition that is achieved through conventional approaches is not adequate to 

study transcription with sufficient clarity. The development of a better approach to proteasome 
39



inhibition is the purpose of the next chapter in my thesis, and the extension of this new strategy to 

studying transcription is discussed in chapters four and five. 

 I have demonstrated that there is indeed turnover of Gal4 on active promoters despite 

previous reports to the contrary (Nalley et al. 2006; Ferdous et al. 2007; Archer et al. 2008a; Archer 

et al. 2008b; Ferdous et al. 2008; Archer and Kodadek 2010) and as such there remains a possible 

important role for the UPS in regulating activators in the process of transcription. 
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Figure 2.1: Competitive Chromatin Immunoprecipitation. (A) Endogenous Gal4 with the Gal4 DNA binding domain (DBD) and Gal4 transcription activation domain (TAD) shown. (B) Competitor Gal4 with the Gal4 DBD, VP16 TAD, shown with the Myc epitope tag and estrogen binding domain (EBD). (C) Competitor Gal4 is sequestered from the nucleus by Hsp90 and endogenous Gal4 binds to its target UAS. (D) Competition is triggered through the addition of a ligand for the EBD.
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Figure 2.2: Cycloheximide treatment leads to a decrease in Gal4 at the promoter. Gal4 ChIP signal at the GAL1 promoter expressed as a percentage of non-treated signal as a function of cycloheximide treatment (blue-squares) or ethanol mock treatment (red- diamonds). n = 2; SEM; p = 0.004.
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Figure 2.3: Competitive ChIP Shows Gal4 Stability. Gal4 ChIP signal at the GAL1 promoter as a percentage of signal at t0 of competition as a function of competition time in minutes. BY4741 with competitor Gal4 had competition induced through 17-beta-estradiol (Estradiol; blue-squares) or went through a mock competition with DMSO as a vehicle control (DMSO; red-diamonds). n = 4; SEM; p = 0.06.
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Figure 2.4: Competitive ChIP under Inducing Conditions is Affected by Estradiol (No Competitor Control). Gal4 ChIP signal at the GAL1 promoter as a percentage of signal at t0 of competition as a function of competition time in minutes. BY4741 without competitor Gal4 (No Competitor; red-diamonds) compared with BY4741 with competitor Gal4 (Competitor; blue squares). n = 3; SEM; p = 0.004.
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Figure 2.5: There is no estradiol induced Gal4 ChIP artifact in non-inducing conditions. Gal4 ChIP signal at the GAL1 promoter as a percentage of signal at t0 of competition as a function of 17-beta-estradiol treatment in minutes. BY4741 without competitor Gal4 (No Competitor; red-diamonds) compared to BY 4741 with competitor Gal4 (Competitor; blue-squares). n =2; SEM; p = 0.007.
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Figure 2.6: Competitve ChIP under inducing conditions using 4-hydroxy tamoxifen. Gal4 ChIP signal at the GAL1 promoter as a percentage of signal at t0 of competition as a function of competition time in minutes. BY4741 without competitor Gal4 (No Competitor; red-diamonds) compared with BY4741 with competitor Gal4 (Competitor; blue-squares). n = 3; SEM; p = 0.002.
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Figure 2.7: Normalization of Gal4 ChIP data. Gal4 ChIP signal at the GAL1 promoter as a function of time in minutes. Cycloheximide treatment as a percentage of ethanol control (red-diamonds; n = 2). Competitive ChIP with 17-beta-estradiol as the competition trigger with the signal of endogenous Gal4 in the presence of competitor Gal4 as a percentage of endogenous Gal4 signal without competitor Gal4 (blue-squares; n = 3). Competitive ChIP with 4-hydroxy tamoxifen as the competition trigger with the signal of endogenous Gal4 in the presence of competitor Gal4 as a percentage of endogenous Gal4 signal without competitor Gal4 (green-circles; n = 3). SEM. ANOVA: p = 0.69.
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Figure 2.8: Competive ChIP under inducing conditions using 4-hydroxy tamoxifen. Myc ChIP signal (competitor Gal4) at the GAL1 promoter as a percent of competitor binding after one hour in a delta gal4 strain as a function of competition time in minutes. BY4741 without competitor Gal4 (No competitor; diamonds) compared with BY4741 with competitor Gal4 (Competitor; squares). n = 2; SEM; p = 0.04.




Chapter Three: Increased Sensitivity to Proteasome Inhibition in S. cerevisiae 

Introduction 

In this chapter I will discuss my approach to studying the proteasome by combining chemical 

inhibitors with genetic inactivation of the proteolytic subunits. Small molecule inhibitors of the 

proteasome are powerful tools to study the importance and mechanisms of the ubiquitin proteasome 

system (UPS) in many diverse cell pathways. These drugs are important, not only as tools for 

research but also as naturally synthesized compounds and as useful pharmacological agents. 

Bortezomib (Velcade/PS-341) has become a valuable proteasome inhibitor for the treatment of 

multiple myeloma (Richardson et al. 2005). In addition to bortezomib, at least four other proteasome 

inhibitors (NPI-0052, carfilzomib/PR-171, CEP-18770, and MLN9708) are in phase I or phase II 

clinical trials for the treatment of various cancers. 

However, the typical approach of inhibiting the proteasome in S. cerevisiae has produced 

several instances in which the physiological effects are much smaller than would be expected given 

the importance of the proteasome in numerous cell processes such as cycle progression (King et al. 

1996; Zachariae and Nasmyth 1999), DNA repair (Krogan et al. 2004; Daulny and Tansey 2009), 

transcription (Auld and Silver 2006; Collins and Tansey 2006), protein quality control (Goldberg 

2003; Kostova and Wolf 2003), and organelle distribution (Campbell et al. 1994). For example, 

proteomic profiling of ubiquitylated proteins routinely uses proteasome inhibitors to stabilize 

ubiquitylated population of proteins. However, these proteome wide data sets of ubiquitylated 

proteins routinely fail to detect cyclins (Mayor et al. 2007), which are classically unstable proteins 

regulated by the UPS. This is consistent with the notion that inhibition of the proteasome through 

small molecule inhibitors is often incomplete. 

A second example in which the physiological response to proteasome inhibition is much 

smaller than one would expect a priori that inhibition of the proteasome would essentially halt 

growth. However, treatment with MG132 or bortezomib has little impact on cellular proliferation 
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(Lee and Goldberg 1996; Fleming et al. 2002). In contrast to the resistance of yeast to proteasome 

inhibition, inactivation of the only E1 activating enzyme, Uba1, rapidly terminates yeast growth 

(Ghaboosi and Deshaies 2007). 

If I am going to test the prediction that inhibiting the proteasome will inhibit activation of 

transcription then it will be useful to have a yeast strain in which the effects of proteasome inhibitors 

is unambiguous. 

My strategy to improve the responsiveness of S. cerevisiae to proteasome inhibition was to 

target all three of the proteasome proteolytic subunits: the 1 subunit Pre3 with its associated caspase-

like activity, the 2 subunit Pup1 with its associated trypsin-like activity, and the 5 subunit Pre2 

with chymotrypsin-like associated activity (Arendt and Hochstrasser 1997; Heinemeyer et al. 1997; 

Jager et al. 1999). Proteasome inhibitors have a marked bias towards a single proteolytic subunit, 

most commonly the chymotryptic subunit Pre2 (Lee and Goldberg 1996; Bogyo et al. 1998; Elofsson 

et al. 1999; Kisselev and Goldberg 2001; Kisselev et al. 2006; Groll et al. 2009). The bias of 

proteasome inhibitors towards the chymotryptic activity of the proteasome has not been typically 

considered a problem because the chymotryptic activity has been presumed to be the primary and 

rate-limiting step in proteasome mediated proteolysis (Kisselev et al. 2006). Although the 

chymotryptic activity is commonly considered to be the most significant proteolytic activity, the other 

two proteases presumably make important contributions in the cell. Analysis of the mammalian 

proteasome revealed a differential requirement for each proteasome subunit depending on the 

substrate (Kisselev et al. 2006). It would be very surprising if the same were not true for the yeast 

proteasome too, considering the similarity of the yeast and mammalian proteasomes. Therefore I have 

combined the chemical inhibition of the proteasome with genetic inactivation of the two non-

chymotryptic proteasome proteases. 

Genetically inactivating the proteasome proteases is straightforward —each protease depends 

on a single catalytic threonine. Although the genes encoding each proteasome protease are all 

essential (as are most other proteasome genes (Giaever et al. 2002)) the loss of any one catalytic site 
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is not lethal. In fact yeast without the PUP1 and PRE3 catalytic threonines are also viable making it 

possible to have the proteasome operate entirely on through chymotryptic activity, the activity 

towards which most proteasome inhibitors are directed against. Therefore, treatment with an inhibitor, 

such as MG132, should acutely shutdown the remaining proteolytic activity of the proteasome. 

One other necessary step to generate yeast that are hyper-sensitive to proteasome inhibition is 

to ensure adequate concentration of MG132 in the cell. The effective intracellular concentration of 

proteasome inhibitors is not very high in wild type yeast for three main reasons: ineffective 

permeability of the inhibitors against the yeast cell wall (Lee and Goldberg 1996; Liu et al. 2007), 

efflux of the inhibitors under the control of pleiotropic drug resistance genes (Fleming et al. 2002), 

and up regulation of the proteasome subunits through the transcription activator Rpn4 in response to 

proteasome inhibition (Xie and Varshavsky 2001; Fleming et al. 2002; Ju et al. 2004; Wang et al. 

2008; Wang et al. 2010). Increasing the effective concentration by deleting a single pleiotropic drug 

response gene, PDR5, is sufficient to sensitize the yeast to many proteasome inhibitors and permits 

future study of the transcription of the proteasome genes themselves, which if transcription activation 

typically depends on proteolysis represents an interesting counter example of a transcription activator 

that is activated by inhibiting proteolysis. 

 

Experimental Procedures 

Yeast Strains 

Strains used in this study are listed in table 3.1. The strains MHY1177 and MHY178 (Arendt 

and Hochstrasser 1999), were a gift from Mark Hochstrasser. I deleted PDR5 from these strains using 

gene replacement with KanMX6 by homologous recombination using sequences flanking the PDR5 

ORF. I synthesized the knockout cassette by PCR using pYM1 (Knop et al. 1999) as a template, and 

transformed the cassette as described by Gietz and Woods (Gietz and Woods 2002). Correct targeting 

was validated by PCR. The resulting strains are GAC201 (PUP1PRE3pdr5) and GAC202 
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(pup1pre3pdr5). For -arrest experiments, GAC201 and GAC202 were converted to the a mating 

type by expressing the HO endonuclease from a URA3 selectable vector (Ycp50-HO 

(Krishnamoorthy et al. 2006); gift from Shelly Berger) followed by counter-selection with 5-FOA 

(US Biological). I verified mating type by testing growth of bar1 yeast (RC634 (Chan and Otte 

1982); gift from Brehon Laurent) in the presence of patches of potentially switched yeast and by 

growth sensitivity to -factor (Zymo Research). I confirmed that the MATa and MATa yeast had 

similar growth rates and flow cytometric profiles following nocodazole block and release. 

 

Table 3.1: Yeast Strains Used 

Strain Genotype Source 

BY4742 
pdr5 

Mat  his3 1 leu2 0 lys2 0 ura3 0 pdr5 ::KanMX6 This study 

MHY1177 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 ::HIS3 pup1 ::leu2::HIS3 [pRS317-PUP1] 
[YCplac22-PRE3] gal- 

(Arendt and 
Hochstrasser 
1999) 

MHY1178 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 ::HIS3 pup1 ::leu2::HIS3 [pRS317-pup1T30A] 
[YCplac22-pre3T20A] gal- 

(Arendt and 
Hochstrasser 
1999) 

GAC201 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 2::HIS3 pup1:: leu2::HIS3 [pRS317-PUP1] 
[YCplac22-PRE3] gal-- 

This study 

GAC202 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 ::HIS3 pup1 ::leu2::HIS3 [pRS317-pup1T30A] 
[YCplac22-pre3T20A] gal- 0 

This study 

GAC201a Mata his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 ::HIS3 pup1 ::leu2::HIS3 [pRS317-PUP1] 
[YCplac22-PRE3] gal- 

This study 

GAC202a Mata his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 ::HIS3 pup1 ::leu2::HIS3 [pRS317-pup1T30A] 
[YCplac22-pre3T20A] gal-  0 

This study 

RC634 Mata rme1 ade2-1 ura1 his6 met1 can1 cyh2 sst1-3 (Chan and Otte 
1982) 

RJD3269 Mata can1-100 leu2-3,112 his3-11,15 trp1-1 ura3-1 ade2-1 

uba1 ::KanMX6 [pRS313-uba1-204-His] 
(Ghaboosi and 
Deshaies 2007) 

 
Table 3.2 Plasmids Used 

 

Plasmid Features Source 

pYM1 KanMX6 tag (Knop et al. 1999) 
Ycp50-HO HO mating type switching (Krishnamoorthy 

et al. 2006) 
52



Proliferation assay 

I grew S. cerevisiae cultures at 30°C from an A600 nm
 0.2 in 10 ml YPAD with either 50 M 

MG132 (American Peptide) or an equivalent volume DMSO (Sigma). At the indicated time points 

following treatment, I measure the A600 nm from 1 ml of each sample. 

For the MG132 titration experiment, 10 ml YPAD cultures were started at an A600 nm 0.5 with 

the indicated concentrations of MG132. Following twenty-four hours of treatment I measured the A600 

nm from 1 ml of each sample. IC50 was approximated by first calculating the percent inhibition of the 

maximum possible inhibition (assuming no change in absorbance is that maximum) and then 

calculating the best fit curve (least squares) of the equation I = (Max · MC) ÷ (IC50 + MC) to the data 

where I is the percent inhibition for a given concentration of MG132 (MC) and Max is maximum 

inhibition. 

 

Cell cycle assays 

GAC201a and GAC202a were arrested in G1 using 30 M -factor in 10 ml YPAD cultures 

for two hours at 25°C. Samples were then treated with an additional 15 M -factor and 50 M 

MG132 (or equivalent volume of DMSO) for another hour at 25°C. I collected 1ml of culture for the 

“time zero” (t0) sample. I released the remaining culture from arrest by washing twice with YPAD 

before growing as a 9 ml YPAD culture with 50 M MG132 or equivalent volume DMSO at 30° C. I 

collected 1 ml of culture at each of the indicated time points. 

I arrested GAC201 and GAC202 in G2/M by treating 10 ml YPAD cultures with 150 g 

nocodazole (Sigma) for 90 minutes at 30°C. I then treated the cultures with an additional 75 g 

nocodazole and 50 M MG132 (or equivalent volume DMSO) for an hour at 30°C. I collected 1ml of 

culture for the “time zero” (t0) sample. I released the remaining culture from arrest by washing twice 

with YPAD before growing as a 9 ml YPAD culture with 50 M MG132 or equivalent volume 

DMSO at 30° C. I collected 1 ml of culture at each of the indicated time points. 
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From each of the arrested and released samples and from asynchronously growing yeast 

populations, I resuspend the cells in 70% ethanol and fixed at 4°C overnight. These cells were then 

washed with water, treated for 12 hours at 37°C with 1 g RNase, DNase free (Roche), sonicated, 

treated for 2 hours at 42°C with 500 g proteinase K (Roche), and stored in a 50 mM Tris-HCl (pH 

7.5) solution. 1 x 106 cells were diluted in 1 ml of SYBR gold solution (Invitrogen). I counted cells 

and DNA content using a LSR II cell analyzer (BD Biosciences). 

 

Ubiquitylation assay 

I grew 15 ml YPAD cultures treated with 50 M MG132 for the indicated time. From these 

cultures I extracted proteins by boiling in EZ buffer (60 mM Tris-HCl pH 6.8, 10% glycerol, 2% 

SDS, 2% 2-mercaptoethanol). I used the Bio-Rad protein assay to determine protein concentration to 

run 50 g protein on 8% polyacrylamide gels. These gels were transferred onto a 0.45 M 

nitrocellulose membrane (Whatman). 1:1,000 anti-ubiquitin antibody (MAB1510, Millipore) and 

1:15,000 anti-mouse-HRP (GE Health Care). I checked that equivalent amounts of protein were 

loaded using Ponceau S staining of the membrane. 

 

Results 

Combined genetic and chemical inhibition of the proteasome prevents cell proliferation 

Although proteasome inhibitors are useful tools to study the mechanism and biology of the 

proteasome, I have been concerned that the physiological response of S. cerevisiae to MG132 is too 

subtle. For example, I grew BY4742 yeast with a deletion of the pleiotropic drug response gene 

PDR5 in the presence or absence of 50 M MG132, the typical concentration of proteasome inhibitor 

used in S. cerevisiae (Figure 3.1). Under these conditions the proliferation of yeast does not halt. 

Treatment with MG132 did slow the initial growth for the first eight hours of treatment after which, 

although there is nearly a two hour delay between when DMSO treated yeast reach a given A600 nm 
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and when MG132 treated yeast reach that optical density, the shape of the growth curves a very 

similar indicating similar rates of proliferation after eight hours of MG132 treatment. Most 

significantly, this treatment did not halt growth. Similar results have been observed in MG132 treated 

yeast in increased drug uptake through ISE1 deletion (Lee and Goldberg 1998) or in bortezomib 

treated pdr5 yeast (Fleming et al. 2002). However, inactivation of the first step of the UPS, the E1 

activating enzyme uba1-204, results in rapid and dramatic growth arrest (Ghaboosi and Deshaies 

2007), supporting the conclusion that MG132 alone is insufficient to fully inhibit the proteasome. 

Therefore, I developed a new strategy combining chemical inhibition of the chymotryptic 

subunit, Pre2, with genetic inactivation of the other two proteolytic proteasome subunits, Pup1 and 

Pre3, for the purpose of improving proteasome inhibition. The new strain with pup1-T30A, pre3-

T20A mutations and deletion of PDR5 (pup1pre3pdr5) proliferated slower than its related 

PUP1PRE3pdr5 strain (Figure 3.2, compare the blue shaded squares to the green shaded circles), 

consistent with the previous report that inactivating Pup1 and Pre3 by replacing those catalytic 

threonines to alanines (Arendt and Hochstrasser 1999). (This effect may be due to this strain being a 

petite mutant as discovered by genome-wide analysis of transcription, see Chapter Five). 

Furthermore, in the context of the pup1-T30A and pre3-T20A mutations, the effect of MG132 

inhibiting proliferation was striking as there was comparatively little increase in A600 nm over the 

sixteen hours of treatment (Figure 3.2, orange solid circles). These findings support two conclusions. 

First, the standard use of the proteasome inhibitor MG132 does not fully inhibit the proteasome. 

Second, although the chymotryptic activity is considered the most important proteasome protease and 

as such is the best characterized and most commonly targeted of the proteasome subunits, the other to 

proteolytic enzymes make important contributions to the cell —at least as measured by proliferative 

growth. 

I tested the dose sensitivity of the pup1pre3pdr5 to MG132 to determine if the growth defects 

observed at 50 M concentrations of MG132 represented an appropriate level of inhibitor to use 

(Figure 3.3). Titration of MG132 from 10 M to 100 M concentrations did not significantly change 
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proliferation of PUP1PRE3pdr5 yeast over the course of one day of treatment. A similar result in a 

ise1 strain was previously reported with concentrations extending to 200 M (Lee and Goldberg 

1998). However, in the pup1pre3pdr5, the change in A600 nm after twenty-four hours of treatment was 

significant. With as little as 10 M MG132 there was a marked decrease in cell proliferation that 

rapidly decreased to an average of two cell divisions in a twenty-four hour period. The titration of 

MG132 over this scale permits for the calculation of an approximate IC50 for MG12 in the 

pup1pre3pdr5 strain as rough 24 M. This indicates 50 M MG132 is a reasonable level of 

proteasome inhibitor to target the pup1pre3pdr5 proteasome.  

 

Inhibition of the proteasome impairs progression through the cell cycle 

 If treatment of yeast with MG132 in the genetic context of pup1-T30A and pre3-T20A 

mutations results in substantial decrease in grow rates of S. cerevisiae, then a reasonable question to 

address is what stage or stages of the cell cycle were inhibited by MG132. Some of the classic 

examples of protein ubiquitylation and destruction involve the G1 and mitotic cyclins (King et al. 

1996; Zachariae and Nasmyth 1999), which would suggest multiple stages of the cell cycle 

responsible for the growth arrest for pup1pre3pdr5 cells treated with MG132. Likewise, inactivating 

the E1 ubiquitin activating enzyme uba1-204 arrests cells throughout the cell cycle (Ghaboosi and 

Deshaies 2007). To test that cell cycle arrest occurred at multiple steps in the cell cycle I labeled the 

DNA of yeast using SYBR gold and counted the DNA content per cell using flow cytometry. 

I studied the effects of proteasome inhibition on asynchronous populations after one hour of 

treatment with proteasome inhibition (Figure 3.4). Comparing cytometric profiles (Figure 3.4 A) and 

counts of cell with 1n (G1), 2n (G2/M), or intermediate (S) levels of DNA (Figure 3.4 B), I do not 

observe any dramatic changes. The loss of Pup1 and Pre3 in pup1pre3pdr5 may lead to a decrease in 

the population of cells in S phase regardless of treatment with MG132. Additionally, there may be an 

increase in the 1n DNA content cell population of pup1pre3pdr5 yeast treated with DMSO compared 

to PUP1PRE3pdr5 yeast, and a corresponding decrease in 2n DNA content. But with this effect not 
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reproduced in MG132 treated yeast, these findings may not be significant. In general analysis of the 

asynchronous population does not reveal any particular phase of the cell cycle in which the 

proliferative arrest occurs. 

Next, I synchronized the yeast populations by arresting in G2/M phase using nocodazole 

(Figure 3.5). Measuring the changes in DNA content after release from nocodazole can reveal the 

ability of yeast to exit past this stage of the cell cycle. Once again, in the PUP1PRE3pdr5 yeast, 

treatment with MG132 has negligible effect on cell cycle progression. In pup1pre3pdr5 yeast, loss of 

the Pup1 function or Pre3 function or both leads to slower progression out of 2n DNA content and 

into 1n DNA content. Treatment with MG132 seems to result in either slightly slower G2/M exist in 

pup1pre3pdr5 than treatment with DMSO or a relative flat progression through the cell cycle. 

I also synchronized the yeast populations in G1 with -factor mating pheromone (Figure 3.6). 

When released from -factor induced arrest, treatment of PUP1PRE3pdr5 yeast with MG132 

produced a slight lag in rate at which cells progressed from G1 into later stages of the cell cycle. In 

contrast, loss of Pup1 and Pre3 function in DMSO treated pup1pre3pdr5 yeast had a higher initial 

level of cells with 1n DNA content, but as the shape of the curve for progressive loss of 1n DNA 

content is similar to DMSO treated PUP1PRE3pdr5 (Figure 3.6 B) the rate of cell cycle progression 

from 1n to 2n DNA content is not dependent on Pup1 and Pre3 activity. Inhibition of the 

chymotryptic site with MG132 and loss of Pup1 and Pre3 function combine to pause the cells mostly 

in G1 but there is a fraction of cells that arrested in G2 instead (23.8 ± 0.7%; 95% CI). 

These data are consistent with the notion that impairment of the UPS in general, and 

proteolysis in particular, prevents the efficient progression through the cell cycle. Furthermore, the 

progression of through the various stages seem to highlight not only the synergistic effects of 

inhibiting the chymotryptic activity in pup1pre3pdr5 yeast but also the different relative effects of 

MG132 and loss of Pup1 and Pre3 activity. Cells released from -arrest were not greatly inhibited by 

loss of Pup1 and Pre3 function alone but were affected by MG132 treatment in PUP1PRE3pdr5 yeast 
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(Figure 3.6). In contrast, treatment of MG132 alone had negligible impact on the release from 

nocodazole-induced block but pup1pre3pdr5 exited nocodazole arrest more slowly (Figure 3.5). 

 

Inhibition of the proteasome accumulates ubiquitylated proteins 

Presumably, inhibiting the proteasome by targeting all three of its proteolytic activities delays 

proliferation and progression through the cell cycle by stabilizing unstable protein targets. It should, 

therefore, be possible to detect the accumulation of high molecular weight ubiquitylated proteins 

when the proteasome is inhibited at all three of its proteolytic sites, to an extent greater than that 

observed by treating with MG132 alone or by inactivating PUP1 and PRE3 genetically. Compared to 

untreated PUP1PRE3pdr5 yeast, the loss of the tryptic and caspase-like activity increases the 

detection of ubiquitin conjugated proteins by western blot using anti-ubiquitin antibodies (Figure 3.7 

compare lanes 1 and 6). Treating yeast with MG132 increases the accumulation of ubiquitylated 

proteins in PUP1PRE3pdr5 yeast, which is often used demonstrate the efficacy of MG132 treatment 

in yeast. However MG132 treatment increases the accumulation of ubiquitylated proteins and to a 

greater extent in pup1pre3pdr5 strains than in PUP1PRE3pdr5 (Figure 3.7). Therefore, in addition to 

the chymotryptic activity, at least one of either the caspase-like or tryptic activities of the proteasome 

contributes to the normal processing of the ubiquitin conjugated proteins. 

 

Discussion 

 I have developed a new strain of yeast with increased sensitivity to proteasome inhibitors by 

combining chemical inhibition of the chymotryptic site with genetic inactivation of the tryptic and 

caspase-like subunits to simultaneously target all three of the proteasome proteases. This approach 

elicits more dramatic effects than treatment with MG132 alone, and establishes that previous work 

with proteasome inhibitors need to be interpreted carefully because the use of proteasome inhibitors 

does not necessarily mean that the proteolytic ability of the proteasome is fully shutdown. Failure to 
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detect significant changes after treatment with a proteasome inhibitor should not be interpreted as 

proof that there is not a proteolytic role for that observed process. I have shown that there is in fact 

significant proteolytic ability within at least one, if not both, of the Pup1 and Pre3 subunits. 

Presumably it is this remaining proteolytic activity that prevents MG132 treatment alone from 

arresting proliferation. Indeed, the loss of Pup1 and Pre3 activity has a significant impact on yeast 

proliferation, cell cycle progression, and accumulation of ubiquitylated species. Because I have 

studied the loss of both subunits at once, the relative contribution of each subunit remains an 

important area for future investigation. 

 For my purposes I see this strain as valuable tool for studying the intersection of the 

proteasome and transcription. It is not a useful strain to study GAL inducible genes, because this 

strain is galactose negative and is not rescued by expression of wild-type GAL2, a common basis for 

galactose negative laboratory strains (Winston et al. 1995). However, with many other inducible 

genes that are potentially regulated by the UPS (Lipford and Deshaies 2003; Muratani and Tansey 

2003; Lipford et al. 2005), this strain is a valuable resource to study transcription. 

This new strain of yeast establishes a valuable resource for the yeast community. I have only 

begun to highlight the impact of the proteasome on proliferation, cell cycle progression, and the 

stability of ubiquitylated proteins. The later observation suggests that this strain might be particularly 

amenable to proteomic analysis of ubiquitylated proteins. The absence of classically unstable 

proteins, such as cyclins, from ubiquitylated protein data sets is a striking example of the 

incompleteness of these data sets. 

 The combination of a demonstrable growth defect and ability to use lower concentrations of 

proteasome inhibitor make this strain amenable to using plates to study the effects of proteasome 

inhibitors such as MG132, YU101, epoximycin, and carfilzomib (personal communication, Tara 

Gomez and Raymond Deshaies). One application of these plates is to screen other genes or chemical 

compounds that enhance or suppress the ability to grow in the presence of proteasome inhibitors. The 
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use of other proteasome inhibitors —YU101, epoximycin, and carfilzomib —demonstrates that this 

strain also has increased sensitivity to other chymotryptic-biased inhibitors. 
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Text Box
Figure 3.1: MG132 Does Not Halt The Proliferation Of Saccharomyces cerevisiae. BY474 ∆pdr5 yeast treated with either DMSO (Red Diamonds) or 50 µM MG132 (Blue Squares). Absorbance at 600 nm was measured for a sample from each culture  at the indicated times post treatment. n = 3; SEM; p = 0.0004.
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Text Box
Figure 3.2: MG132 and the Proliferation Of Saccharomyces cerevisiae. BY474 ∆pdr5 yeast treated with either DMSO (Red Diamonds) or 50 µM MG132 (Blue Squares). Absorbance at 600 nm was measured for a sample from each culture  at the indicated times post treatment. n = 3; SEM. ANOVA: p = 4 x 10-8.
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Figure 3.3: Titration of MG132.  PUP1PRE3pdr5 (Blue) and pup1pre3pdr5 (Red) yeast treated with the indicated concentrations of MG132. Absorbance at 600 nm was measured for a sample from each culture one hour post-treatment. n = 3;  SEM; p = 2 x 10-7.




1N 2N

600
400
200

C
el

lC
ou

nt

DNA Content

PUP1PRE3pdr5
(MG132)

1N 2N
DNA Content

600
400
200C

el
lC

ou
nt PUP1PRE3pdr5

(DMSO)

1N 2N
DNA Content

600
400
200

C
el

lC
ou

nt pup1pre3pdr5
(DMSO)

600
400
200

C
el

lC
ou

nt

1N 2N
DNA Content

pup1pre3pdr5
(MG132)

A

B

0

10

20

30

40

50

60

DMSO MG132 DMSO MG132

PUP1PRE3pdr5 PUP1PRE3pdr5 pup1pre3pdr5 pup1pre3pdr5

Percent of cells in this phase

1n s 2n

Pe
rc

en
t o

f c
el

l p
op

ul
at

io
n

64

tanseylab
Text Box
Figure 3.4: Cell cycle distribution of asynchronous populations. (A) Representative of four flow cytometric profiles counting the number of cells with a given DNA content. (B) Quantification of the percentage of cells within each cell cycle phase; n = 4; SEM. ANOVA: p = 1.
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Figure 3.5: Inhibition of the proteasome delays exit from nocodazole induced arrest. (A) Flow cytometric profiles counting the number of cells with a given DNA content as a function of time (minutes) post-release from nocodazole induced arrest. (B) Quantification of the percentage of cells with 1n DNA content as a function of time. ANOVA: p = 0.1
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Text Box
Figure 3.6: Inhibition of the proteasome delays exit from alpha-factor induced arrest. (A) Flow cytometric profiles counting the number of cells with a given DNA content as a function of time (minutes) post-release from alpha factor induced arrest. (B) Quantification of the percentage of cells with 1n DNA content as a function of time. ANOVA: p = 0.002.
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Figure 3.7: Inhibition of the proteasome leads to accumulation of ubiquitylated proteins. (A) anti-ubiquitin western blot of PUP1PRE3pdr5 and pup1pre3pdr5 treated with 50 µM MG132 for the indicated period of time (minutes). (B) Corresponding Ponceau S stain to demonstrate equivalent loading and transfer of proteins to the membrane. Lane numbers appear at the bottom.




Chapter Four: Inhibition of the Proteasome Inhibits Activation of Certain Genes 

Introduction 

In this chapter I will describe the effects of proteasome inhibition on the ability to activate 

transcription from four different model loci. If proteolytic turnover of activators is important for 

transcriptional activation then inhibiting the proteasome should have substantial impact on the ability 

to drive transcription. Although many groups examined the impact of proteasome inhibition on 

transcription (Kawazoe et al. 1998; Wallace and Cidlowski 2001; Deroo et al. 2002; Fleming et al. 

2002; Mitsiades et al. 2002; Dembla-Rajpal et al. 2004; Dennis et al. 2005; Yew et al. 2005; Kinyamu 

and Archer 2007; Lassot et al. 2007; Tirard et al. 2007; Kinyamu et al. 2008; Middledorp et al. 2009), 

the resulting data is often contradictory resulting in continued debate regarding the importance of 

proteolysis on transcription. Gal4 represents a microcosm of this debate; two separate groups have 

arrived at diametrically opposed conclusions regarding the importance of proteasome-mediated 

proteolysis on the activation of transcription (Lipford et al. 2005; Nalley et al. 2006). Both groups 

studied the activation of the same gene, GAL1, and used the same proteasome inhibitor, MG132. 

Whereas Lipford et al found that GAL induction was lost when yeast were treated with MG132 

(Lipford et al. 2005), Nalley et al reported that inhibition of the proteasome had negligible effect on 

transcription of GAL genes (Nalley et al. 2006). I have since examined this question myself to 

determine which result I have the most confidence in to build my model of how the proteasome 

regulates transcription activators. 

In light of my work developing a strain with increased sensitivity to proteasome inhibition 

(see Chapter Three), the inability to detect an impact on transcription after treatment with a 

proteasome inhibitor, such as MG132, is not compelling evidence that the proteasome is dispensable 

for transcription. Increasing the overall sensitivity of yeast to proteasome inhibitors might also 

increase the degree to which transcription is affected by proteasome inhibitors. Therefore, I 

investigated the impact of proteasome inhibition in the context of this strain. Both MHY1177 and 

MHY1178, which were the parental strains to my PUP1PRE3pdr5 (GAC201) and pup1pre3pdr5 
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(GAC202) are galactose negative and not made galactose positive by expression of wild-type GAL2, a 

common cause for the galactose negative phenotype in laboratory strains of S. cerevisiae (Winston et 

al. 1995). Although these strains were unsuitable to further analyze Gal4 dependent transcription in 

the presence of increased inhibition of the proteasome, many other active genes were available to 

study. I chose ARG1 (regulated by the activator Gcn4 (Swanson et al. 2003; Yoon et al. 2004; Govind 

et al. 2005; Kim et al. 2005; Qiu et al. 2005)) and INO1 (regulated by the heterodimeric activator 

Ino2/Ino4 (Lopes and Henr 1991; Lai and McGraw 1994; Nikoloff and Henry 1994; Graves and 

Henry 2000; Shirra et al. 2005; Esposito et al. 2010)) as genes whose induction was previously 

reported as sensitive to MG132 (Lipford et al. 2005) but had the same pallor of doubt cast over it as 

for the finding that GAL1 is sensitive to proteasome inhibition. I also selected CHA1 for my analysis, 

a gene that had not previously been analyzed for its dependence on proteasome and represents a 

different class of activated genes in that its regulation depends critically on the movement of a 

positioned nucleosome at the TATA box (Petersen et al. 1988; Bornaes et al. 1993; Holmberg and 

Schjerling 1996; Moreira and Holmberg 1998; Zawadzki et al. 2009). 

 

Experimental Procedures 

 Yeast Strains 

 Strains used in this study are listed in Table 4.1. I deleted the PDR5 gene from BY4742 using 

gene replacement with KanMX6 by homologous recombination using sequences flanking the PDR5 

ORF. I synthesized the knockout cassette by PCR using pYM1 as a template (Knop et al. 1999), and 

transformed the cassette as described by Gietz and Woods (Gietz and Woods 2002). Correct targeting 

was validated by PCR. Similarly I deleted PDR5 in W303-1a using gene replacement with a TRP1 

cassette using pRS404 as template for PCR (Sikorski and Hieter 1989). The preparation of GAC201 

(PUP1PRE3pdr5) and GAC202 (pup1pre3pdr5) is described in the methods section of Chapter 

Three. 
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 I induced GAL gene expression by addition of 20% (w/v) aqueous solution of galactose to 

yeast grown in CSM 2% raffinose for a final concentration of 2% galactose. Unless otherwise 

indicated, samples were collected one hour post galactose induction. I inhibited the proteasome by 

treating with 50 M MG132 for half an hour prior to induction to be consistent with the methods 

previously used to study the affect of MG132 on transcription (Lipford et al. 2005; Nalley et al. 

2006). 

I induced ARG1 expression by transferring yeast grown in YPAD to CSM lacking histidine 

(Formedium) and supplemented with 100 mM 3-aminotriazole (3-AT) (Sigma). Non-induced ARG1 

controls were transferred from YPAD to CSM and mock treated with a volume of water equivalent to 

3-AT used to induce ARG1. I induced INO1 by rinsing yeast grown in YPAD with water and then 

transferring the yeast to CSM lacking inositol (Formedium). Non-induced INO1 controls were 

similarly rinsed and then transferred into CSM. I induced CHA1 with the addition of 1 mg/ml L-

serine (Formedium). ARG1, INO1, and CHA1 induction proceeded for 90 minutes before collecting 

RNA for expression analysis or formaldehyde cross-linking for ChIP analysis. I inhibited the 

proteasome by treating with 50 M MG132 at the time of induction. 

 
Table 4.1: Yeast Strains Used 
 
Strain Genotype Source 
BY4741 pdr5 Mata his3 1 leu2 0 lys2 0 ura3 0 pdr5::KanMX6 This study 
W303-1a pdr5 Mata leu2-3,112 trp1-1, can1-100, ura3-1, ade2-1, his3-

11,15, ypb1-1 pdr5::TRP1 
This study 

GAC201 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 2::HIS3 pup1:: leu2::HIS3 [pRS317-PUP1] 
[YCplac22-PRE3] gal- 

This study 

GAC202 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 

pre3 2::HIS3 pup1:: leu2::HIS3 [pRS317-pup1T30A] 
[Ycplac22-PRE3] gal-  0 

This study 

 
Table 4.2: Plasmids Used 
 
Plasmid Features Source 
pYM1 KanMX6 selectable marker (Knop et al. 1999) 
PRS404 TRP1 selectable marker (Sikorski and 

Hieter 1989) 
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RNA extraction and analysis 

I collected RNA from 15 ml of yeast at mid-log phase growth (A600 nm = 0.6 – 1.0) using a 

Hot Phenol RNA extraction method (Collart and Oliviero 1993). Cells were lysed in RNA extraction 

buffer (50 mM sodium acetate (pH 4.8), 0.5% SDS, and 10 mM EDTA) and an equal volume of acid 

(pH 4.3) phenol (Sigma) by incubating at 65 °C for one hour. Samples were chilled on ice for five 

minutes, centrifuged for five minutes, and the aqueous phase was collected for purification through 

another extraction with acidic (pH 4.3) phenol and an extraction with 25:24:1 

phenol:chlorofom:isoamyl alcohol (Sigma). Samples were precipitated in ethanol for less than 20 

minutes at –20°C. RNA was resuspend in nuclease free water. Contaminating DNA was removed 

with DNase I (invitrogen). 1 g of RNA was used for first strand cDNA synthesis with SuperScript II 

reverse transcriptase (invitrogen). 

 I quantified cDNA by qPCR with SYBR fast PCR mix (Kapa Biosystems). Expression was 

calculated relative ACT1 by 2ACT1-GOI where ACT1 is the signal from the ACT1 ORF (ACT1q1 and 

ACT1q2 oligonucleotides) and GOI is the gene of interest. GAL1 gene signals in induction time 

course experiments were normalized setting the maximum signal to 1000 arbitrary units to minimize 

the noise of experiment-to-experiment variation in GAL1 induction. (1000 was selected because the 

median expression of GAL1 was 951 fold above ACT1 expression). 

 

Chromatin Immunoprecipitation 

 For ChIP I fixed 50 ml of yeast culture with 1.5 ml paraformaldehyde solution (37% (w/v) 

paraformaldehyde (Sigma) in 1x phosphate buffer solution (PBS) and 0.2% 10N KOH) for 30 

minutes. Cross-linking was stopped with 3 ml 2.5 M glycine for 5 minutes at room temperature 

before washing the cells with PBS. Cells were lysed in 800 l lysis buffer (50 mM HEPES (pH 7.5), 

15 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5% SDS, 0.1% DOC) by bead beating. Cell lysates 

were sonicated to approximately 500 base pairs median fragments. Chromatin was incubated with 

1:1000 dilution of anti-Rpb3 antibody (1Y26, Neoclone) overnight at 4 °C followed with an hour 
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incubation at 4 °C with a 1:100 dilution of rabbit anti mouse IgG antibody (invitrogen) before 

pulldown with protein A sepharose beads (GE Healthcare). Immunoprecipitated chromatin bound to 

protein A sepharose beads was washed in IP buffer (50 mM HEPES (pH 7.5), 15 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% SDS, 0.1% DOC), high salt buffer (50 mM HEPES (pH 7.5), 50 mM 

NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% DOC), lithium-DOC buffer (10 mM Tris-

HCl (pH 8.0), 1 mM EDTA, 0.25 M LiCl, 5% NP-40 alternative, 5% DOC), and twice with 10x Tris-

EDTA (TE) buffer (10 mM Tris-HCl (pH 8.0), 100 mM EDTA) before elution for 20 minutes in 

elution buffer (100 mM NaHCO3, 1% SDS). Eluted chromatin and input chromatin were reverse-

cross-linked overnight at 65 °C. Samples were treated with 1.5 mg proteinase K (Roche). DNA was 

purified with a phenol:chloroform extraction and precipitated in ethanol and stored in TE buffer. 

 I quantified the amount of DNA that came down in the immunoprecipitation by qPCR with 

SYBR fast PCR mix (Kapa Biosystems). I calculated enrichment as described by Ezhkova et al 

(Ezhkova and Tansey 2004). Automatically-derived cycle thresholds were obtained from triplicate IP 

samples for both the amplicon of interest (CIPA) and a reference locus (CIPR) as well as corresponding 

threshold values from input chromatin (CINA and CINR respectively). Fold enrichment is then 

calculated as [2(IPR-IPA)] ÷ [2(INR-INA)]. I used V(L) intergenic sequence as my reference to normalize for 

Rpb3 binding. 

 

Results 

GAL gene induction is impaired by proteasome inhibition 

 Given my interest in the connection between the proteasome and Gal4 function and in light of 

the controversy regarding the effect of proteasome inhibition on GAL1 induction (Lipford et al. 2005; 

Nalley et al. 2006) I have analyzed the expression of GAL1 genes in the presence or absence of the 

proteasome inhibitor MG132. Following the same protocol as both Lipford et al and Nalley et al of 

inhibiting the proteasome with 50 M MG132 half an hour prior to induction with galactose, I 
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observed greater than five-fold inhibition of GAL1 induction compared to DMSO control samples 

after an hour of induction (Figure 4.1). The effects of proteasome inhibition on transcription are 

detectable as early as 15 minutes post-induction (students t-test p = 0.07; n =5) and continue to 

increase over the course of the hour. This result demonstrates a significant dependence on 

proteasome-mediated proteolysis in the activation of GAL1 contrary to the report of Nalley et al. 

To alleviate concerns that MG132 may affect GAL1 expression in a strain specific context I 

also tested the response of GAL1 expression to MG132 in the yeast strain W303-1a pdr5, whereas 

previously I worked with BY4741 pdr5 (Figure 4.2). Once again I detected approximately five-fold 

decrease in transcription in both strains, ruling out differences between these two strains. 

 I decided to determine if the effects of MG132 inhibition were limited to just GAL1 or 

extended to other strongly induced Gal4 regulated genes. Therefore, I measured the transcription at 

GAL2, GAL7, and GAL10 in addition to GAL1 (Figure 4.3). All genes, despite having different levels 

of expression relative to each other, demonstrated a typically five-fold decrease in activation when 

treated with MG132. Therefore, I am convinced of the importance of the proteolytic ability of the 

proteasome to strongly induce Gal4 dependent transcription sharp contrast to the report of Nalley et al 

(Nalley et al. 2006). 

 

Proteasome Inhibition of Transcription Activation Is Sensitive to the Activity of Pup1 or Pre3 or 

Both Subunits 

 The parental strains to make PUP1PRE3pdr5 and pup1pre3pdr5 were galactose negative. 

Therefore, to use PUP1PRE3pdr5 and pup1pre3pdr5 to study gene activation I looked at the 

transcriptional effects of proteasome inhibition on the activation several other genes. ARG1 

transcription is induced, along with several other genes, by amino acid starvation through the 

transcription activator Gcn4 (Swanson et al. 2003; Yoon et al. 2004; Govind et al. 2005; Kim et al. 

2005; Qiu et al. 2005). This activator, like Gal4 is both well characterized and unstable during 

conditions associated with its function (Meimoun et al. 2000; Chi et al. 2001; Shemer et al. 2002; 
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Lipford et al. 2005). Like Gal4, Gcn4 is phosphorylated two kinases associated with the transcription 

initiation complex, Kin28 and Pho85. Gcn4 is ubiquitylated by the essential E3 ligase Cdc4 and 

inactivation of the temperature-sensitive version of Cdc4 by shifting to the non-permissive 

temperature results in the loss of transcription in response to amino acid starvation (Lipford et al. 

2005). Furthermore, inhibition of the proteasome also prevented induction of Gcn4 target genes. 

However, based on the debate over GAL1 dependence on the proteasome this later finding has been 

doubted (Kodadek 2010). I hypothesized that this was the type of situation that would benefit from 

increased sensitivity to proteasome inhibition. I used the histidine analogue 3-AT to induce ARG1 

transcription in both PUP1PRE3pdr5 and pup1pre3pdr5 strains (Figure 4.4). In the essentially wild-

type proteasome context of PUP1PRE3pdr5 I find a non-statistically significant decrease in ARG1 

activation when yeast were treated with MG132 (t-test p = 0.111; n = 5). When I examined ARG1 

activation in pup1pre3pdr5 yeast treated with MG132 not only was there a significant inhibition of 

transcriptional activation but the levels of ARG1 expressed were now comparable to the basal level of 

expression consistent with failure to induce the ARG1 gene. I conclude the ARG1 activation is 

dependent on the proteasome activity. Whereas in my PUP1PRE3pdr5 yeast I could find a significant 

loss of ARG1 expression, the combined activity of MG132 and loss of Pup1 and Pre3 yielded 

unambiguous results consistent with the potential of this strain to more clearly study the connection 

between proteasome-mediated proteolysis and transcription. 

 To begin to determine where the loss of proteasome function was regulating transcription I 

looked at the recruitment of RNApolII to the early ORF of ARG1. If the proteasome was necessary 

for the signaling pathway upstream of Gcn4 or for the initiation of transcription then the loss of 

proteasome function should lead to the loss of RNApolII recruitment. Conversely, defects in 

elongation should still permit for significant detection of RNApolII at the early ORF. I performed the 

ChIP with antibodies against the Rpb3 subunit of RNApolII and I observed recruitment of RNApolII 

to the ARG1 locus in PUP1PRE3pdr5 yeast only when yeast were treated with 3-AT (Figure 4.5). 

MG132 did not affect this recruitment, consistent with the inability to detect a significant loss if 
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ARG1 transcription. In pup1pre3pdr5 yeast, I detected lower Rpb3 ChIP signals with in 3-AT 

induction conditions than what I observed in the PUP1PRE3pdr5 strain. This is in contrast to the 

level of transcripts observed in these strains. Nevertheless, treatment with MG132 further decreases 

the level of RNApolII at ARG1 to levels that are now similar to RNApolII when the ARG1 

transcription is off. These data are consistent with impairment in transcription initiation as a result of 

impairing the proteolytic function of the proteasome. 

 I looked at a different locus, INO1, to begin to gauge how general common sensitivity of 

transcription activation to proteasome inhibition in S. cerevisiae. The INO1 gene is activated through 

the heterodimeric activator Ino2 and Ino4 in response to depletion of inositol (Lopes and Henr 1991; 

Lai and McGraw 1994; Nikoloff and Henry 1994; Graves and Henry 2000; Shirra et al. 2005; 

Esposito et al. 2010). In PUP1PRE3pdr5 yeast, treatment with MG132 does not inhibit activation 

and, if anything, elevates the level of INO1 expression (Figure 4.6). In contrast, the loss of at least on 

of the activities of Pup1 and Pre3 hinders the activation of INO1. Furthermore, consistent with 

synergistic effect of MG132 treatment with the loss of Pup1 and Pre3 proteolytic activities, INO1 

transcription becomes even lower, suggesting a critical dependence on proteasome function for the 

activation of this gene. The levels of RNApolII recruitment to INO1 display a pattern similar to the 

ARG1 locus (Figure 4.7), which belies the difference in the effect of the Pup1 and Pre3 subunits alone 

on transcription. In the case of INO1 the transcription levels correspond very accurately with 

RNApolII levels. 

 Not all inducible genes are dependent upon proteasome-mediated proteolysis. CHA1 is 

induced by multiple signals, such as stress to the cell wall integrity triggered by treatment with Congo 

red (Garcia et al. 2004) or with elevated temperatures (A. Leung, Personal Communication). 

Alternatively, excess serine levels in the media induce CHA1 expression (Petersen et al. 1988; 

Bornaes et al. 1993; Holmberg and Schjerling 1996), which is the method I selected to use to induce 

CHA1 because it provides a rapid and robust response with little secondary impact on the cell as 

compared to heat shock. Induction of CHA1 with serine was unaffected by addition of MG132 in both 
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the PUP1PRE3pdr5 and pup1pre3pdr5 strains (Figure 4.8), providing an example of a gene not 

dependent on proteasome-mediate proteolysis for activation. The recruitment of RNApolII at this 

locus is affected by the triple inhibition of loss of Pup1 and Pre3 function with the addition of MG132 

(Figure 4.9). However, the level of Rpb3 detected at CHA1 remains substantially higher than when 

no serine is added to the cell, and this residual presence of RNApolII may explain why I observe 

CHA1 transcription even when I inhibit the proteasome in pup1pre3pdr5 yeast.  

 

Discussion 

 I have examined the effects of proteasome inhibition on four model inducible genes. Using 

MG132 to inhibit the proteasome, GAL induction is significantly reduced. However, the variability 

between different laboratories and the knowledge that MG132 incompletely inhibits the proteasome 

leaves uncertainty regarding the degree to which proteasome mediated proteolysis is necessary for 

GAL gene induction. For example, in my analysis, MG132 inhibits GAL gene induction by 

approximately eighty percent. The nature of the remaining twenty percent of transcription is also of 

interest. Does this represent a proteasome independent set of transcripts or does this remaining 

transcription reflect the incompleteness of inhibition achieved by biasing the inhibition of the 

proteasome to the chymotryptic activity? I believe that the data from ARG1 and INO1 in the 

pup1pre3pdr5 support that residual GAL transcription arises from incompletely inhibiting the 

proteasome rather than reflecting transcription that is independent of proteasome mediated proteolysis 

because the more thorough inhibition of the proteasome in pup1pre3pdr5 significantly reduces the 

level of transcripts produced to near basal amounts. Inactivating Pup1, Pre3, and deleting PDR5 in a 

strain that is galactose positive will allow this hypothesis to be tested. 

 The differences in effect of loosing Pup1 and Pre3 proteolytic activity between ARG1 and 

INO1 transcription lead to an interesting problem. It makes sense that, as has been described in vitro 

(Kisselev et al. 2006), that the rate at which proteolysis for a given substrate should be differentially 
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dependent on each of the proteolytic functions. For example loss of the caspase-like activity would 

have a significant effect on proteins with many acidic residues but not on those with relatively few 

acidic amino acids. But although the rate of proteolysis may depend on the substrate’s composition, 

proteolysis should eventually occur. Furthermore the non-proteolytic processes of the proteasome —

de-ubiquitylation, unfolding, and translocation —should inhibit the function of a substrate. If there is 

a limited potential to increase the proteasome recruitment to an actively transcribed gene compared to 

a much greater potential to increase the recruitment of the critical proteasomal substrate, say an 

activator, then slowing down the rate of proteolysis would lead to occupied proteasomes that cannot 

function. Proteasomes without caspase-like or tryptic activities will be jammed with to-be-digested 

substrates differently than proteasomes with inhibited chymotryptic activity. 

 The relationship between the rate of proteolysis and substrate composition 

emphasizes the need to identify the important proteasome substrates in transcription. Inhibition of the 

proteasome leads to loss of RNApolII concentration to the very 5’ of the ORF, consistent with a 

defect in recruitment. The instability and ubiquitylation of transcription activators make these proteins 

primary candidates. The characterization of the UPS regulation of Gcn4 provides valuable tools in 

testing the contributions of activator proteolysis. In addition to inhibiting proteolysis acutely in the 

pup1pre3pdr5 strain and inhibiting ubiquitylation using Cdc4 temperature sensitive mutants, the 

phosphorylation of Gcn4 can be blocked using cis mutations to three threonines and two serines that 

are necessary for Gcn4 phosphorylation (gcn4-3T2S). Importantly, although gcn4-3T2S cannot be 

ubiquitylated by Cdc4, induction of ARG1 still occurs even with thermal inactivation of Cdc4 

temperature sensitive mutants. If the report that gcn4-3T2S can also activate ARG1 when treated with 

MG132 extends to the pup1pre3pdr5 strain then it will be useful to study the changes in the initiation 

complex that are recruited to Gc4n regulated promoters, such as ARG1. Furthermore, the ability of 

gcn4-3T2S to activate transcription in the context of proteasome inhibition is suggestive that the basic 

amino acid sensing pathway remains intact and that the defect is indeed with transcription. 
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Figure 4.1: MG132 Treatment Inhibits GAL1 Induction. GAL1 expression relative to ACT1 and normalized to GAL1 expression after one hour of galactose induction as a function of galactose induction time (minutes). Treatment 50 µM MG132 (red diamonds) or mock treatment with DMSO (blue squares). n = 5; SEM.
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Figure 4.2: MG132 Inhibits GAL1 Expression in Different Genetic Backgrounds. GAL1 expression one hour post induction relative to ACT1 and normalized to GAL1 treated with DMSO. DMSO (Blue) and 50 µM MG132 (Red) in both BY4741 ∆pdr5 and W3031a ∆pdr5. n = 5; SEM.
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Figure 4.3 MG132 Inhibits the Expression of Multiple GAL Genes. (A) Expression of GAL1, GAL2, GAL7, and GAL10 relative to ACT1 after one hour of induction. DMSO treatment (Blue) and 50 µM MG132 (Red). (B) Ratio of expression in DMSO to MG132 treatment from above.  n = 5; SEM. 
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Figure 4.4 Proteasome Inhibition Leads to Loss of ARG1 Induction. ARG1 expression ninety minutes post induction with 3-AT relative to ACT1. DMSO treatment (Blue) and 50 µM MG132 (Red). n = 5; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 0.15. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 0.039. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 1 x 10-5. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 0.12.
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Figure 4.5 Proteasome Inhibition Leads to Loss of RNApolII at ARG1. ChIP signal from anti-Rpb3p ChIP at the ARG1 5’ ORF relative to V(L) intergenic sequence for when ARG1 transcription is OFF (water) or ON (3-AT). n = 5; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 0.78. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 0.0016. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 0.29. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 0.59.
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Figure 4.6 Proteasome Inhibition Leads to Loss of INO1 Induction. INO1 expression ninety minutes post-induction by inositol starvation relative to ACT1. n = 4; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 32. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 0.001. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 0.013. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 0.038.
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Figure 4.7 Proteasome Inhibition Leads to Loss of RNApolII at INO1. ChIP signal from anti-Rpb3p ChIP at the INO1 5’ ORF relative to V(L) intergenic sequence for when INO1 transcription is OFF (CSM) or ON (-inositol). n = 4; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 0.46. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 0.001. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 0.03. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 0.11.
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Figure 4.8 Proteasome Inhibition Does Not Affect CHA1 Induction. CHA1 expression ninety minutes post-induction by serine addition relative to ACT1. n = 2; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 0.71. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 6 x 10-10. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 0.15. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 2 x 10-9.
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Figure 4.9 Proteasome Inhibition and Rpb3 Recruitment with CHA1 Induction. ChIP signal from anti-Rpb3p ChIP at the CHA1 5’ ORF relative to V(L) intergenic sequence for when CHA1 transcription is OFF (water) or ON (serine). n = 2; SEM. PUP1PRE3pdr5 DMSO ON compared to PUP1PREpdr5 MG132 ON, p = 0.29. PUP1PRE3pdr5 MG132 ON compared to PUP1PRE3pdr5 DMSO OFF, p = 0.0030. pup1pre3pdr5 DMSO ON compared to pup1pre3pdr5 MG132 ON, p = 0.0069. pup1pre3pdr5 MG132 ON compared to pup1pre3pdr5 DMSO OFF, p = 3.1 x 10-5.



Chapter Five: Proteasome Inhibition and Global Transcription 

Introduction 

 In this chapter I will discuss the effects on global transcription of treating yeast with the 

proteasome inhibitor MG132. In contrast to similar studies in the past (Fleming et al. 2002; Dembla-

Rajpal et al. 2004) I am doing this in the context of inactive PUP1 and PRE3, which as I have 

demonstrated increases sensitivity to proteasome both at the physiological level of proliferation 

(Chapter Three) and the level of transcriptional activation (Chapter Four).  

A surprisingly small number of genes were identified as targets of the proteasome inhibitor 

PS341 (bortezomib/Velcade) in a time-series study of transcription (Fleming et al. 2002). This study 

is noteworthy as both one of the first genome-wide characterization of the proteasome and its 

inhibitors and in its contribution for understanding the proteasome in S. cerevisiae. It was from this 

study that the drug efflux-pump PDR5 was convincingly demonstrated to inhibit the potency of 

proteasome inhibitors in vivo. Furthermore, Fleming et al identified Rpn4 as an important regulator of 

the transcriptional response to PS341. Rpn4 is an important activator that induces the expression of 

most proteasome subunits and ubiquitylation in response to decrease proteasome activity (Fleming et 

al. 2002; Dembla-Rajpal et al. 2004). Even after four hours of treatment, the majority of the genes 

with expression altered after treatment with PS341 depend on functional Rpn4. 

Another set of analysis, by the Rymond group, found substantially more genes with 

expression that was elevated in the presence of proteasome inhibitor, in this case MG132 (Dembla-

Rajpal et al. 2004). Included in their set of genes that were induced by proteasome inhibition were 

proteasome subunits, genes likely involved in responding to general cellular stressors such as 

temperature, and mitochondrial function. 

One other notable genome wide analysis of the proteasome examined the association of the 

proteasome to genes rather than the effects of proteasome inhibition on transcription (Auld et al. 

2006). The Silver laboratory performed these ChIP-on-chip (microarray analysis of DNA from a 

chromatin immunoprecipitation) experiments using epitope tagged versions of Pre1 (20S proteasome 
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-subunit), Rpt1 (19S proteasome base), and Rpn11 (19S proteasome lid) to determine the 

distribution and overlap of these subunits. Tagging proteasome subunits alters the stability of the 

proteasome (F. Geng, personal communication), and consequently to what extent a proteasome 

subunit associates with chromatin independently of the other subunits remains in doubt. However, 

this study did suggest that the majority of proteasome association with chromatin was with highly 

transcribed genes, consistent with the possible role of the proteasome as a regulator and even 

facilitator of transcription. 

I examined the data from these experiments to better understand how the proteasome 

regulates transcription. In particular I was looking for classes of genes that were both repressed by 

proteasome inhibition and bound by the proteasome subunit Pre1 (the 20S component) to reveal 

common regulatory patterns. Instead, I found that there was relatively little overlap between the two 

expression data sets or with either of the expression sets and Pre1 ChIP signals (Figure 5.1). Indeed 

the consistency among the expression data was particularly poor for repressed genes. The poor level 

of agreement among the data sets might reflect differences in the activity of the drugs used, strain 

differences, and laboratory-to-laboratory variation such as what I found with GAL1 transcriptional 

inhibition by MG132 (Chapter Four). Alternatively, the data might be due to failure to completely 

inhibit the proteasomal activity. I showed that the combined chemical and genetic approaches to 

target all three proteolytic sites of the proteasome increases my ability to detect a role of proteasome-

mediated proteolysis in transcriptional activation for certain genes (Chapter Four). With the strain 

that I developed and characterized that have increased sensitivity to proteasome inhibition, I can study 

the genome wide transcription effects of inhibiting proteasome-mediated proteolysis without concern 

that the inhibition of the proteasome may be incomplete. Furthermore, studying the genome wide 

effects of proteasome inhibition can give new insights on the importance of the Pup1 and Pre3 

proteasome subunits in the cell. 

Based on the time series data from Millenium Pharmaceuticals (Fleming et al. 2002) the peak 

of transcriptional response to MG132 was at one hour of treatment. Therefore, I selected that time of 
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treatment for my analysis. Neither of the two expression studies used commercially available arrays, 

therefore I chose to use a Nimblegen array because it provided comprehensive coverage of the S. 

cerevisiae genome with, at the time of my experiments, the largest and most recently updated arrays 

commercially available. Furthermore, the microarray facility at Vanderbilt University Medical 

Center, where this set of experiments was conducted, had previously used this platform with success 

(V. Amman, personal communication). 

 

Experimental procedures 

Yeast strains 

 I list the strains used in the course of this study in Table 5.1. The preparation of the strains 

GAC201 (PUP1PRE3pdr5) and GAC202 (pup1pre3pdr5) was described in the methods section of 

Chapter Three. 

 Yeast were grown in YPAD cultures at an initial A 600 nm of 0.5. One part of the sample was 

left untreated while the remaining sample was treated for one hour with 50 M MG132. (Samples 

treated for two and four hours with MG132 were also collected for later analysis). 

 

Table 5.1: Yeast Strains Used 

 
Strain Genotype Source 
GAC201 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 pre3 ::HIS3 

pup1 ::leu2::HIS3 [pRS317-PUP1] [YCplac22-PRE3] gal- 
This Study 

GAC201 Mat  his3-11 leu2-3,112 ura3-52 lys2-801 trp1-1 pre3 ::HIS3 

pup1 ::leu2:HIS3 [pRS317-pup1-T30A] [YCplac22-pre3-T20A] 
gal-  0 

This Study 

 
RNA extraction and purification 

 I collected RNA from 15 ml of yeast using a Hot Phenol RNA extraction method. Cells were 

lysed in RNA extraction buffer (50 mM sodium acetate (pH 4.8), 0.5% SDS, and 10 mM EDTA) and 

an equal volume of acid (pH 4.3) phenol (Sigma) by incubating at 65 °C for one hour. Samples were 

chilled on ice for five minutes, centrifuged for five minutes, and the aqueous phases was collected for 
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purification through another extraction with acidic (pH 4.3) phoenol followed with a 

phenol:chloroform:isoamyl alcohol extraction. Samples were precipitated in ethanol for 20 minutes at 

–20°C. RNA was resuspend in nuclease free water. Contaminating DNA was removed with DNaseI 

(Roche). RNA was further purified by passing the RNA solution through RNeasy coloumns (Qiagen) 

and delivered to the Vanderbilt University Medical Center Functional Genomics Shared Resource 

Center  (FGSRC) for labeling and hybridizaiton. 

 

Labeling and Hybridization 

 All RNA Preps submitted to the FGSRC were run on an Agilent 2100 Bioanalyzer to assess 

RNA integrity. Those samples meeting minimum requirements of RNA integrity number of 7.0 and 

greater were used to generate cDNA targets for hybridization to Nimblegen arrays. 10ug of total RNA 

from each sample was reverse transcribed at 42 °C using 400 units Superscript II (Invitrogen) in the 

presence of 6 g anchored oligo dT and an Amino-allyl tagged dUTP (Sigma).  Final concentrations 

of dNTP's in the reaction were 200 M dA,dG,dC, 51 M dT, and 149 M AAdUTP (Sigma).  cDNA 

targets generated were incubated with NaOH to hydrolyze any remaining total RNA, then neutralized 

with HCl, and cleaned over Qiaquick PCR Purification columns (Qiagen) following manufacturer’s 

protocol with the exception of the following:  Two washes were completed with 80% ETOH instead 

of PE buffer and the elution was completed with nuclease-free H2O instead of EB buffer.  The targets 

were dried to completion and then coupled to either ester-linked Cy3 dyes (GE) in 0.1 M Sodium 

Bicarbonate, pH. 9.0 for 120 minutes in a 20 l volume. After quenching of unbound dye with 4 M 

Hydroxylamine (Aldrich) Cy3 targets were cleaned up over Qiaquick columns (Qiagen).  The targets 

were quantitated and then a total of 125 ng of each target was dried to completion.  Each target was 

resuspended in one of Nimblegen’s Sample Tracking Controls, mixed with Hyb cocktail, heat 

denatured and then loaded on the 12-plex arrays, following standard Nimblegen protocols.  The 

targets were hybridized 16 hours at 42 °C on a Maui Hyb Station (BioMicro Systems, Inc., 4 chamber 

model) mixing program B per Nimblegen protocol.  Following post hybridization washes, as per 
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standard Nimblegen protocol, all arrays were scanned on an AXON 4000B scanner and gene 

expression levels were determined using the associated feature extraction software (V. Amman, 

personal communication). 

 

Data Analysis 

 Support for the data analysis of the microarrays for feature extraction and the determination 

of significant difference between PUP1PRE3pdr5 and pup1pre3pdr5 using log-odds ratios was 

provided by D. Vaka and J. Huang. Significance for comparisons between untreated and MG132 

treated samples was based on p-values < 0.05 from student’s t-test and FDR values < 0.05 when 

indicated. Cluster analysis using a Self Organizing Map algorithm and heatmap generation was done 

using MeV_4_5 software (Saeed et al. 2003). Identification of promoter motifs was done using 

CERES software (Morris et al. 2010). Data from the Fleming et al microarray experiments was 

retrieved using yMGV (Lelandais et al. 2004). Data from Dembla-Rajpal et al and Auld et al 

experiments was obtained in the supplemental data (Dembla-Rajpal et al. 2004; Auld et al. 2006). 

 

Results 

Meta-analysis of previous genome wide studies of the proteasome 

 I examined the published data sets from three genome-wide analysis of the proteasome in S. 

cerevisiae. Millenium Pharmaceuticals characterized the small molecule proteasome inhibitor that 

they developed, PS341 (bortezomib/Velcade), in a times series set of experiments (Fleming et al. 

2002). I compared the genes described as significant after one hour of treatment to those genes 

discovered by the Rymond group (Dembla-Rajpal et al. 2004), which looked at MG132 on using a 

macroarray of dot blots using P33 labeled nucleotide probes. The degree of overlap between these two 

data sets was rather poor (Figure 5.1). For example, of the 1026 genes Dembla-Rajpa et al 

determined to be significantly induced upon MG132 only 65 (6%) were common to the genes 
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identified by Fleming et al as significantly induced with PS341. In comparison 13 of the 1026 genes 

al in the Dembla-Rajpa et al up-regulated set were also in the repressed genes reported by Fleming et. 

 I also compared the effects of proteasome inhibition on gene expression to genome 

localization of the 20S proteasome subunit Pre1 by the Silver laboratory (Auld et al. 2006). I did not 

expect to find a significant number of genes that were induced with proteasome inhibitor to have high 

concentrations of proteasome associated at the locus. Consistent with that expectation, none of the 

genes reported to be induced by Fleming et al were reported to have strong Pre1 ChIP signals 

associated with their locus, and only 1% of the over expressed genes in the Dembla-Rajpal data set 

were represented in the anti-Pre1 ChIP enriched genes. There were only marginally more repressed 

genes in common with the Pre1 binding, which was not strong support for direct regulation of those 

genes by the proteasome. 

 The disparity between these data and my findings that the use of chemical inhibition of the 

proteasome can be improved by combining small molecule inhibitors with genetic inactivation of 

non-targeted proteolytic subunits was sufficient motivation to study the genome wide transcriptional 

effects of proteasome inhibition in strains without active Pup1 and Pre3. 

 

Transcriptional consequences of inactive pup1 and pre3 

 Before examining the effects of acute treatment with proteasome inhibitor in yeast without 

active Pup1 and Pre3, I wanted to determine what the transcriptional consequence of these 

inactivating mutations on their own had. Therefore, I compared gene expression of untreated 

PUP1PRE3pdr5 to untreated pup1pre3pdr5 yeast. This analysis revealed relatively few genes that 

were significantly affected (Figure 5.2). Many of the genes with altered expression in pup1pre3pdr5 

yeast were mitochondrial encoded. The level of transcripts detected was towards the lower limits of 

signal consistent with a loss of mitochondrial transcription and perhaps genome. Furthermore, many 

of the other genes that were detected as having significantly lower expression in the pup1pre3pdr5 

strain than the PUP1PRE3pdr5 strain were nuclear genes encoding for mitochondrial functioning 
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proteins such as ATP-synthase or components of the electron transport chain (ETC) (Table 5.2). 

Other genes with decreased expression in pup1pre3pdr5 yeast include several hexose transport 

proteins. Thus, the overall picture that arises from this analysis is that pup1pre3pdr5 are respiratory 

deficient. Of the few genes are expressed at significantly higher levels in pup1pre3pdr5 yeast (Table 

5.3), PRE3 is notable, representing a proteasomal subunit, which, because the loss of proteasome 

function induces the expression of proteasome subunits, may reflect that a degree Rpn4 accumulation 

and activation. Beyond the changes in these few genes, untreated pup1pre3pdr5 is nearly 

indistinguishable, transcriptionally, from PUP1PRE3pdr5.  

 
Table 5.2: Genes with significantly lower gene expression in pup1pre3pdr5 compared to 
PUP1PRE3pdr5. (ETC: Electron Transport Chain; mtRNA: mitochondria RNA). 
 

GENE Fold Change p Function Complex 
Q0130 OLI1 689.00310 0.00000   ATP synthase 
Q0105 COB 89.85021 0.00133   ETC 
Q0050 AI1 84.95832 0.00175 mtRNA processing   
Q0110 BI2 40.11398 0.00000 mtRNA processing   
Q0065 AI4 38.60458 0.00037 mtRNAprocessing   
Q0045 COX1 29.09804 0.00011   ETC 
Q0075 AI5_Beta 27.69429 0.00069     
Q0070 AI5_Alpha 18.60562 0.00105 mtRNA processing   
Q0160 SCE1 15.66131 0.00053 mtRNA processing   
Q0055 AI2 14.56365 0.00157 mtRNA processing   
YDL181W INH1 13.60847 0.00087   ATP synthase 
Q0080 ATP8 10.49211 0.00357   ATP synthase 
Q0085 ATP6 8.12190 0.00039   ATP synthase 
YHR092C HXT4 7.98329 0.00022 Hexose transport   
Q0275 COX3 7.13139 0.00008   ETC 
YKL163W PIR3 5.51305 0.00070 Cell Wall Stability   
YDR342C HXT7 4.57266 0.00013 Hexose transport   
YDR343C HXT6 4.45961 0.00003 Hexose transport   
YOR065W CYT1 4.45574 0.00048   ETC 
YHR001W-A QCR10 3.69016 0.00127   ETC 
YOL058W ARG1 3.60404 0.00099 Amino acid biosynthesis   
YFL014W HSP12 3.04083 0.00113 Cell Stress   
YGR183C QCR9 2.60904 0.00013   ETC 
YEL024W RIP1 2.38070 0.00036   ETC 
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Table 5.3: Genes with significantly higher gene expression in pup1pre3pdr5 compared to 
PUP1PRE3pdr5. 
 

GENE 
Fold 

Change p Function Complex 
YKL071W YKL071W 11.33949 0.00016     
YJL001W PRE3 3.46515 0.00218   Proteasome 
YBR085W AAC3 3.36576 0.00071 Mitochondrial ATP transport   
YNR034W SOL1 2.59116 0.00114     
YEL071W DLD3 2.52412 0.00031     

 
 
Expression Differences Upon Treatment with MG132 

 To test the effects of proteasome inhibitor on transcription, I looked at the effects of MG132 

in the PUP1PRE3pdr5 yeast. Using an FDR threshold of 0.05, no genes were significantly reported 

as being changed. With a less stringent threshold of significance (p value < 0.05), only 72 genes of 

the 5777 assayed were reported as significantly changed. Even with this generous threshold, the fold 

change for these genes is relatively modest, as apparent by the similarity of the heatmap of the 

statistically significant changes in expression (Figure 5.3). The leftmost three columns represent the 

Log2 expression of untreated PUP1PRE3pdr5 yeast. The expression of these three roughly matches 

those of the right set of three values of expression after one hour of MG132 treatment. These data 

reflect the general resistance of this PUP1PRE3pdr5 strain to MG132, which may be due in part to 

the expression of the proteasome subunits on a plasmid. Because of the lack of substantial changes in 

the expression profile, I did not invest significant time further investigating the data I obtained for 

PUP1PRE3pdr5. Instead I turned my attention to focus on the transcription changes of pup1pre3pdr5 

yeast in response to MG132 treatment. 

 The combination of chemical inhibition with MG132 and genetic inactivation of the catalytic 

sites of Pup1 and Pre3 results in an increase in the number of genes that change in response to 

proteasome inhibition as compared to PUP1PRE3pdr5 (Figure 5.5). Using the same threshold for 

significance, 671 genes change in response to MG132, which is nearly ten times the number detected 

in PUP1PRE3pdr5. Between pup1pre3pdr5 and PUP1PRE3pdr5 there is limited overlap in genes 
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with significant changes in expression, which may reflect a bona fide difference in genes regulated by 

the proteasome or represent a high false positive rate tolerated to detect any significant level of 

change in PUP1PRE3pdr5 yeast. Importantly, there are no cases in which a gene was induced in 

pup1pre3pdr5 and repressed PUP1PRE3pdr5, or vice versa. Using a more stringent cutoff of an FDR 

threshold less than 0.05, 59 genes still are determined to be significantly altered in expression in 

response to MG132 treatment (Figure 5.4).  

In contrast to PUPPRE3pdr5, in which the heatmap of untreated samples was nearly identical 

with samples treated with MG132 (Figure 5.3), the left-side (untreated) of the pup1pre3pdr5 heatmap 

does not look like the right-side (treated). In fact, there are rather striking examples of strongly 

induced and strongly repressed genes (Figure 5.4). However, unlike comparing the difference 

between untreated pup1pre3pdr5 and untreated PUP1PRE3pdr5, no clear pathways are obvious in 

this set.  

To be able to make sense of the large number of genes changing in pup1pre3pdr5 I search for 

transcription factor binding motifs that were either enriched in genes that were induced by MG132 

treatment or genes that were repressed by MG132. I used this approach for several reasons. First, 

common transcription factor motifs in the promoter represent a potential set of genes with a common 

regulator, which would be useful as comparison to Gcn4 regulation of ARG1 and Ino2/Ino4 regulation 

of INO1 in order to better define what steps in transcriptional activation are changed in a proteasome-

dependent manner. Second, genes that share common transcription factor motifs often belong in the 

same cellular pathway, which provides a biological meaning to the changes in gene expression that 

are occurring. Finally, this approach was simplified by the availability of a searchable database of 

yeast promoters with their corresponding binding motifs, based on both sequence prediction and 

empirical evidence from ChIP experiments (Morris et al. 2010). 

The log2 fold change in the significant genes that I found in this experiment took on a nearly 

normal distribution (Figure 5.6 A): very few genes had substantial changes in excess of four-fold 

more (yellow) or less (blue) than untreated yeast, whereas the majority of genes found to be 
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significantly different had one and half to two fold changes. Moreover, with slightly more than half 

the significant genes induced in response to MG132, it becomes straightforward to test if transcription 

factor motifs predicted by the CERES algorithm to be enriched in induced genes actually are 

enriched. If a transcription factor motif is incorrectly predicted by the CERES algorithm to be 

enriched for induced genes, then plotting log fold changes of the genes that have a given motif reveals 

whether such genes are randomly assorted with up (yellow) or down (blue) regulated genes or if there 

is indeed a particular bias for up-regulation (yellow). Rpn4 (Figure 5.6 B) an activator that is known 

to induce transcription of proteasome encoding genes in response to proteasome inhibition provides 

an example for this type of analysis. CERES identified this as a motif commonly occurring in genes 

induced by MG132, as is demonstrated by plotting the log fold change for genes with Rpn4 motifs. 

Similarly, Fhl1, which regulates many ribosomal subunits, which Fleming et al observed to be 

repressed in response to proteasome inhibition is detected in my analysis as significantly enriched in 

the repressed gene category (Figure 5.6 C). 

Other transcription factors with enrichment in induced genes are Hsf1 (Figure 5.7 A), Msn2 

(Figure 5.7 B), Msn4 (Figure 5.8 C). These are genes commonly associated with response to cell 

stress such as heat-shock, osmotic stress, or accumulation of unfolded proteins as would occur with 

severe inhibition of the proteasome. Not observed in previous genome-wide studies, there is 

significant enrichment of Gcn4 (Figure 5.8 A), Rap1 (Figure 5.8 B), and Sfp1 (Figure 5.8 C). These 

represent amino-acid biosynthesis genes (Gcn4) and ribosomal genes (Sfp1) that indicate that 

concomitant with an increase in chaperones and proteins in the UPS to handle the accumulation of 

unfolded and damaged proteins there is a decrease in translation to prevent further accumulation of 

protein levels. 

Compared to previous analysis of transcription response to proteasome inhibition, my 

analysis tended to pick out different genes (Figure 5.9). Part of this is expected because the 

physiological effects of proteasome inhibition are different in the pup1pre3pdr5 than typical wild 

type strains. However, the degree of overlap with the other two data sets surprisingly low, particularly 
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with Dembla-Rajpal with not only lower agreement as a percentage of the genes they identified but 

also in terms of disagreement as to the direction in which genes responded to proteasome inhibitor.  

I also compared the genes that I found significant to the genes that Auld et al identified as 

being bound by Pre1 (Figure 5.10) because having found more genes that were repressed by 

proteasome inhibition, I speculated that I would find more genes that were differentially regulated in 

response to MG132 that were bound by Pre1. To a modest extent this is true (25 repressed genes with 

significant Pre1 binding compared to 15 genes in the Debmla-Rajpal and Fleming datasets 

combined). However, the majority of Pre1 bound sites did not significantly change. 

 

Discussion 

One of the most striking features of studying global gene expression changes in response to 

proteasome inhibition is the relatively small number of genes that are affected. The number of genes 

that I identified as significantly changed represents little more than ten percent of the entire genome. 

Considering the importance of the proteasome to the cell, as evidenced by the growth defects of 

pup1pre3pdr5 yeast treated with MG132, there is a robustness in transcription to proteasome 

inhibition that is not just the result of incompletely targeting the three proteolytic sites. I believe that 

this robustness occurs for two reasons. First, the patterns of gene expression observed with treatment 

of the cells with proteasome inhibitor – increase in proteasome subunits and chaperones and 

corresponding transcriptional decrease in protein synthesis – provide a buffer on the impact of loss of 

proteasome function. Second, much of the evidence that leads to the hypothesis of a direct role of the 

proteasome in transcription is based on studies of inducible genes. My study, and the previous gene 

expression profiles, used rich media that did not induce many genes. Consequently the genes that tend 

to provide evidence for a role of the proteasome in transcription are off or at basal levels throughout 

these experiments. One notable exception is Gcn4 and its transcriptional targets. ARG1 expression 

was modestly (1.4 fold) decreased by proteasome inhibition. This is unexpected when its expression 
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should be towards basal levels. Nevertheless, observing many Gcn4 targets as repressed by 

proteasome inhibition is encouraging for use of this activator in studying the connection between 

proteolysis and transcriptional activation. In contrast to Gcn4, Msn2 dependent transcripts are 

induced in the context of proteasome inhibition. This is interesting because Gcn4 and Msn2 are 

regulated by similar pathways such as Srb10 (Chi et al. 2001). Thus, the separation of response 

between Gcn4 and Msn2 is interesting and studying the two in parallel could prove insightful for how 

the UPS stimulates activators such as Gcn4 but inhibits Msn2. 

Related to the small number of genes that were observed to be regulated by the proteasome, 

there is relatively little overlap between Pre1 binding and MG132 regulated gene expression. This is 

an important concern, because if the proteasome-mediated proteolysis is directly involved in 

regulating transcription it should not only be detected with actively transcribed genes but also be 

associated with those genes that significantly change in response to MG132. The differences in genes 

observed in studying Pre1 binding and proteasome inhibition may be due to strain differences, 

consequences of using tagged proteasome subunits for ChIP, or once again the inability to look at 

inducible genes in rich YPAD media.  

One of the unanticipated findings is the loss of mitochondrial gene expression in 

pup1pre3pdr5 even without treatment with MG132. It will be interesting to determine if this reflects a 

loss of transcription or a more severe loss of mitochondrial DNA. Generating another pup1pre3pdr5 

strain will be important to test if the mitochondrial defect is a consequence of prolonged loss of Pup1 

and Pre3 function or if it represents a unique event in the history of this particularly strain. On-the-

other hand, the pup1pre3pdr5 strain had a very similar transcription profile to PUP1PRE3pdr5 yeast, 

suggesting that other significant changes are not already occurring that would complicate studying 

transcription in pup1pre3pdr5. 

The one significant result from this work is that it highlights the contribution of removing 

Pup1 and Pre3 to improving the ability to detect transcriptional defects as a consequence of acute 

proteasome inhibition with MG132. There was significantly more numerous and larger changes in 
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response to MG132 in the pup1pre3pdr5 strain than with the PUP1PRE3pdr5 yeast, validating it as 

an important tool to study transcription and proteasome-mediated proteolysis. 
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Figure 5.1: Meta-analysis of previous genome wide studies of the proteasome. (A) Venn diagram of genes repressed by MG13 (Red; (Dembla-Rajpal et al, 2004) and PS341 (Blue; Fleming et al, 2002) compared to genes bound by Pre1 (Green; Auld et al, 2006).  (B) Corresponding diagram of genes induced by MG132 (Red; Dembla-Rajpal et al, 2004) and PS341 (Blue; Flemng et al, 2002) compared to genes bound by Pre1 (Green; Auld et al, 2006). (C) Disharmony between the two expression data sets. Genes observed as repressed by Dembla-Rajpal et al (Red) and induced by Fleming et al (Blue). (D) Inverse, corresponding data of genes that Debla-Rajpal et al observed as induced whereas where observed by Fleming et al as repressed.
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Figure 5.2: Expression differences between PUP1PRE3pdr5 and pup1pre3pdr5 without MG132 treatment. Heatmap of genes with significantly different (log-odds) between PUP1PRE3pdr5 yeast (Samples A1, A2, A3 – black x-cluster) and pup1pre3pdr5 yeast (Samples B1, B2, B3 – grey x-cluster). Genes encoded in the mitochondrial genome are indicated in red. Genes necessary for mitochondrial-mediated respiration are indicated in sky-blue. 
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Figure 5.3: Expression differences in PUP1PRE3pdr5 between untreated and one hour treatment with MG132. Heatmap of genes with significantly different (p < 0.05) between untreated PUP1PRE3pdr5 yeast (Samples 0 (A-C)) and PUP1PRE3pdr5 treated with MG132 for one hour (Samples 1 (A-C)).
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Figure 5.4: Expression differences in pup1pre3pdr5 between untreated and one hour treatment with MG132. Heatmap of genes with significantly different expression (FDR < 0.05) between untreated pup1pre3pdr5 yeast (Samples 0 A-C) and PUP1PRE3pdr5 treated with MG132 for one hour.
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Figure 5.5: Comparison of significantly differentially expressed genes in response to MG132 treatment – PUP1PRE3pdr5 compared to pup1pre3pdr5. (A) Venn diagram of genes repressed by MG132 in PUP1PRE3pdr5 (Red) and pup1pre3pdr5 (Blue). (Significance is p < 0.05). (B) Venn diagram of genes induced by MG132 in PUP1PRE3pdr5 (Red) and pup1pre3pdr5 (Blue). (Significance is p < 0.05). 
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Figure 5.6: Identification of common promoter motifs in genes in which expression is responsive to MG132 treatment. (A) Distribution of Log2 fold change from 0 to 1 hours of treatment. Induction of expression after one hour of treatment with MG132 in yellow. Repression of expression in response to MG132 treatment in Blue. (B) Example of an activator, Rpn4, with binding motifs enriched in genes with increased expression in response to MG132. (C) Example of an activator, Fhl1, with binding motifs enriched in genes with increased expression in response to MG132.
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Figure 5.7: Common promoter motifs in genes in which expression is induced by MG132 treatment. (A) Log fold change in expression of genes with Hsf1 binding motifs in their promoters. (B) Log fold change in expression of genes with Msn2 binding motifs in their promoters. (C) Log fold change in expression of genes with Msn4 binding motifs in their promoters.
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Figure 5.8: Common promoter motifs in genes in which expression is repressed by MG132 treatment. (A) Log fold change in expression of genes with Gcn4 binding motifs in their promoters. (B) Log fold change in expression of genes with Rap1 binding motifs in their promoters. (C) Log fold change in expression of genes with Sfp1 binding motifs in their promoters.
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Figure 5.9: Comparison of my significant genes with previous genome wide studies of proteasome inhibition. (A) Overlap of genes repressed in response to MG132 treatment (Red; Dembla-Rajpal et al, 2004), (Green; Current work), or to PS341 (Blue; Fleming et al 2002). (B) Overlap of genes induced in response to MG132 treatment (Red; Dembla-Rajpal et al, 2004), (Green; Current work), or to PS341 (Blue; Fleming et al 2002). (C) Disharmony between the two expression data sets. Genes observed as induced by Dembla-Rajpal et al (Red) and Fleming et al (Blue) compared to those that were repressed in my data set (Green). (D) Disharmony between the two expression data sets. Genes observed as repressed by Dembla-Rajpal et al (Red) and Fleming et al (Blue) compared to those that were induced in my data set (Green).
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Figure 5.10: Comparison of significantly differentially expressed genes in response to MG132 treatment to localization of Pre1 across the genome (A) Venn diagram of genes bound by Pre1 (Red) and repressed by MG132  (Blue). (B) Venn diagram of genes genes bound by Pre1 (Red) and induced by MG132 (Blue). 




Chapter Six: Protein Turnover and Transcriptional Activation 

My research focused on addressing if the proteasome regulates transcriptional activators 

through licensing in which activators are ubiquitylated and destroyed as part of transcription. From 

this model of activator function, two testable models arise. 1) Activators should not stably associate 

with their target promoters when transcription occurs. 2) Inhibition of proteolysis should inhibit the 

ability to activate transcription. To test the first prediction, that activators do not lock onto promoters 

during transcription, I used the classical activator Gal4 to demonstrate that this activator is labile and 

undergoes turnover on the promoter during conditions of active transcription (Chapter Two). I have 

also used Gal4 to demonstrate sensitivity of transcriptional activation to proteasome inhibition 

(Chapter Four). Developing a new strain of yeast that has increased sensitivity to proteasome 

inhibition (Chapter Three), I also demonstrated that two other inducible genes, ARG1 and INO1, 

failed to activate when treated with MG132 (Chapter Four). However, not all genes are regulated by 

the proteasome in this fashion. Activation of CHA1 is not affected by shutdown of the proteasomal 

proteases (Chapter Four). I also extended my work with the new yeast strain, which improves 

inhibition by combining chemical inhibition of MG132 with the genetic abolition of the critical 

catalytic sites of Pup1 and Pre3, to characterizing the whole genome transcriptional defects of loosing 

proteasome function. The improved method of proteolytic inhibition enables the detection of many 

more genes under the control of the proteasome than is possible by simple treatment of MG132 

without inactivating Pup1 and Pre3 (Chapter Five). 

Activator turnover may occur by non-proteasome-mediated means through other chaperones 

or by basic association-dissociation kinetics. Furthermore, proteasome inhibition may not regulate 

transcription through transcription activator but by stabilizing repressors or impairing the signaling 

pathways for induction. However, given the known role of ubiquitylation and ubiquitin ligases in 

regulating several model activators such as Gal4 and Gcn4 and the importance of proteasome-

mediated proteolysis for hundreds of genes in the yeast cell, the potential for the proteasome to 
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regulate transcription at the level of the activator is not only a plausible model, but one that seems to 

best account for the known data. 

Many improved techniques and basic characterization of the impact of the proteasome on 

transcription should provide for the ability to advance the understanding of the mechanisms of how 

the proteasome regulates transcriptional activation. The corrected system for studying transcription 

activator turnover, the improved inhibition of the proteasome, and a list of genes that are regulated by 

the proteasome are tools that my work provides that can be combined with existing and new 

mutations in model activators (e.g. Gal4 and Gcn4) and the promoters of the genes that they target 

(e.g. GAL1 and ARG1) and emerging data regarding the positioning of proteasomes across the 

genome and in response to changes in transcription to advance this field. 

The immediate steps that I would take would be to use the activator Gcn4 and its mutant 

variant gcn4-3T2S, which by virtue of its inability to be phosphorylated also bypasses the requirement 

for ubiquitylation and functional proteolysis to drive transcription (Lipford and Deshaies 2003). The 

changes in the recruitment of the initiation complex should be investigated in detail as presumably 

proteasome inhibition decreases the levels of RNApolII that can be recruited to Gcn4 regulated 

promoters. The gcn4-3T2S mutant may also be a tool to determine if ubiquitylation and proteolysis 

regulate activator turnover. 

I have shown that the typical approach of treating yeast with MG132, even with an impaired 

drug efflux system from deleting PDR5, does not achieve a very strong phenotype. Cell proliferation 

in this context continues to occur, and it has been documented that several known ubiquitylated 

proteins, such as cyclins, are notably absent from proteomic profiling of ubiquitylated proteins even 

when MG132 or other proteasome inhibitors are used to stabilize ubiquitylated substrates. I have 

demonstrated that a much more robust inhibition of the proteasome can be accomplished by not only 

targeting the chymotryptic proteasome subunit with MG132 but by also removing the catalytic 

centers of the tryptic and caspase-like subunits. This approach results in significant impairment of the 

cell proliferation and increased accumulation of ubiquitylated substrates. The combined chemical and 
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genetic inhibition of the proteasome should thus provide a valuable technique for other researchers 

studying the biology and mechanisms of the UPS. 

My work also suggests that more research needs to be directed to the contributions of the 

tryptic and caspase-like subunits of the proteasome to various cell processes. I am working on a next 

generation version of yeast that not only is amenable to studying galactose induction but also is able 

to separate the relative contributions of Pup1 and Pre3. This work may revise our current model of the 

chymotryptic subunit being the rate limiting subunit for all processes regulated by the proteasome. 

Such information would not only alter our understanding regarding the function of the proteasome but 

might also redesign approaches to inhibiting the proteasome in human disease. 

My work has examined two predictions of the proteasome to regulate transcription. The 

natural consequence of destroying activators during transcription is that there should be rapid 

turnover of the activator. The results of Nalley et al for Gal4 using competitive ChIP to measure this 

turnover provided compelling evidence that a potent and unstable activator none-the-less locked onto 

the promoter during transcription (Nalley et al. 2006). However, when using this technique I noticed 

that 17- -estradiol in the absence of competitor Gal4 increased the level of endogenous Gal4 detected 

with ChIP. This fact alone explained the apparent stability of Gal4. An alternative means of inducing 

competition using 4-hydroxy tamoxifen did not induce the same artifact. Using this method 

demonstrated that Gal4 does not lock onto the promoter during active transcription but remains 

dynamic.  

My work studying the effects of proteasome inhibitors accomplished two things. First, my 

work led to the development of a new strain that has increased sensitivity to proteasome inhibition. 

Not only did this technical improvement lead to an improved means to study the proteasome in 

transcription but it also provides a useful resource to study other pathways regulated by the UPS. 

Moreover, this strain demonstrates the importance of Pup1 and Pre3 to the biology of S. cerevisiae. 

Inactivation of these two proteasome subunits results in decreased proliferation, accumulation of 

ubiquitylated protein, and even impacts the activation of certain genes. These subunits have typically 
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been considered secondary to the chymotryptic activity of Pre2, but my data suggest that further 

investigation needs to be directed towards the tryptic and caspase-activities alongside the 

chymotryptic subunit. 

Finally I have shown that, while not a universal mechanism for regulating transcription, 

inhibition of the proteasome can inhibit the induction of certain genes. These data reshape our 

understanding of the proteasome in transcription. Previous means of inhibiting the proteasome by 

chemical means using MG132 alone have had difficulty revealing the role of proteolysis in 

transcription. However, inhibiting multiple subunits by combining chemical and genetic approaches 

demonstrates an important role of proteolysis in regulating transcriptional activation. Given the 

current evidence, an important regulatory role of the proteasome through proteolysis is plausible. 

What then would be the role of proteasome-mediated proteolysis in transcription? As central 

regulators of gene expression, transcription activators are likely targets of proteolysis. Targeting 

activators would generate a cycle of activator recruitment, transcription, and activator destruction 

followed by renewed activator recruitment and so on. Thus, when this cycle of activation is arrested 

(at renewed activator recruitment), transcription rapidly stops. I propose that a key function of 

proteasome-mediated proteolysis is to maintain such transcriptional programs in a responsive state to 

fluctuations in the signaling environment. 

Proteasome-mediated proteolysis may also provide dynamic control to the process of moving 

from an assembled initiation complex to effective transcription elongation. The assembled initiation 

complex —including not just RNApolII and its general transcription factors, but also the mediator 

complex, several co-activators, and critically the activator itself —must be re-arranged to permit 

efficient transition to the elongation phase of transcription. There has been speculation that in the 

process of transcriptional activation there is a special pioneer round of transcription (Jiang and Gralla 

1993; Yudkovsky et al. 2000; Ansari and Hampsey 2005; Arndt and Winston 2005; Malik et al. 

2007; Singh and Hampsey 2007; Tran and Gralla 2008; Kaderi et al. 2009). In this round of 

transcription, the transition from initiation to elongation phases occurs without fully recruiting 
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components of the elongation or the co-transcriptional RNA processing machinery. Instead this initial 

round of transcription remodels the chromatin along the gene to facilitate greater efficiency in 

subsequent rounds of transcription, an effect that has been termed “transcriptional memory” (Ng et al. 

2003; Xiao et al. 2005; Kaderi et al. 2009). I propose that instead of there simply being a pioneer 

round and then suddenly efficient transcription, there is instead a gradual transition from inefficient 

transcription to effective transcription that is accelerated by the ubiquitylation and subsequent 

proteolysis of activators. 

In my model of how proteolysis activators transcription (see Figure 6.1) there is a clear 

progression wherein the activator is first phosphorylated (Figure 6.1-B), then ubiquitylated (Figure 

6.1-C), and ultimately destroyed (Figure 6.1-D). Initial, or pioneer, rounds of transcription are 

inefficient, with slow rates of transcription and failure to recruit elongation factors and co-

transcriptional RNA processing enzymes (Figure 6.1-A). Phosphorylation of the activator alters the 

association of the transcriptional initiation complex so that RNApolII can transition more quickly 

from being recruited to the promoter into the elongation phase of RNA synthesis. However, the 

phosphorylation of potent activators, such as Gal4 and Gcn4, might be too effective, causing 

premature escape of RNApolII before the phosphorylation of RNApolII at its CTD and before the 

recruitment of elongation and co-transcriptional processing complexes (Figure 6.1-B). 

Ubiquitylation, therefore, functions analogously to a resistor in an electrical circuit in that it stabilizes 

the progression of RNApolII from an initiated to elongating state (Figure 6.1-C). How precisely this 

is achieved is not yet clear. One possibility is that ubiquitylation serves as a scaffold to stabilize the 

initiation complex by increasing the interaction surface. Alternatively, instead of being recognized by 

the initiation complex, ubiquitin because of its bulk in an already massive initiation complex could 

act as a wedge to misalign the initiation complex into an arrangement that delays the escape of 

RNApolII from the promoter. In addition to its role as a “resistor,” ubiquitylation of the activator also 

serves to recruit the elongation factors (Hobeika et al. 2007) and the proteasome, which is required 

for efficient histone methylation (Ezhkova and Tansey 2004; Laribee et al. 2007) and transcriptional 
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elongation (Ferdous et al. 2001; Lassot et al. 2007). So far the evidence points to non-proteolytic 

roles for the proteasome in the processes of histone methylation and RNApolII elongation. The 

proteolytic role of the proteasome, therefore, is to modulate the resistance of activator ubiquitylation 

(Figure 6.1-D) and to bail out stalled RNApolII (Svejstrup 2003; Somesh et al. 2005). An activator 

with multiple conjugated ubiquitin proteins conjugated not only is a more powerful “resistor” but now 

becomes a target for proteolysis resulting in the dual benefit reducing the resistance and increasing 

the dynamics of the activator to be more responsive to changes in inducing signals. 

In my model, ubiquitylation and proteolysis is one means to transition to efficient 

transcription. Cycles of ubiquitylation and proteolysis speed the change from inefficient and 

ineffective pioneer rounds of transcription to a state of “transcription memory” —be it delocalization 

of the chromatin to the nuclear periphery (Brickner and Walter 2004; Brickner 2009; Brickner 2010), 

the formation of chromatin loops (Ansari and Hampsey 2005), opening the chromatin by nucleosome 

remodeling (Kundu et al. 2007), or nucleosome modifications such as methylation of histone H3 on 

lysine 36 (Xiao et al. 2007; Youdell et al. 2008). Once this transition to a “transcriptional memory” 

state has been achieved, RNApolII is more effectively phosphorylated, elongation factors and co-

transcriptional RNA processing complexes are more effectively recruited, and the cycles of 

ubiquitylation and proteolysis of the activator are no longer necessary to increase efficient 

transcription (Li et al. 2010). Instead ubiquitylation and subsequent proteolysis of the activators 

maintains the sensitivity of the promoter complex to changes in the activating signals (Figure 6.1-E). 

There are several predictions that naturally arise from this model. First, this need not be a 

universal model for the function of transcriptional activators at all genes. Genes that are transcribed at 

low levels will not exhibit the same hallmarks of activator ubiquitylation and proteolysis that will 

occur at genes with high levels of induced transcription. Similarly, weak activators may be 

phosphorylated without pushing the rate of polymerase escape beyond the rate of phosphorylation of 

RNApolII and recruitment of elongation factors and co-transcriptional RNA processing complexes. 

Furthermore, activators do not have to be the sole target of ubiquitylation. The same pattern of 
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phosphorylation, ubiquitylation, and degradation of the human estrogen receptor co-activator SRC-3 

has been documented (Wu et al. 2007). Finally, prolonged activation should not be dependent on 

ubiquitylation and proteolysis, but only the initial build up to efficient transcription will be dependent 

on ubiquitylation and proteolysis. 
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Figure 6.1 Model of How Ubiquitylation and Proteolysis of a Transcription Activator Might Regulate Transcription. (A) Activator (green) recruits RNApolII (red) and the initiation complex. In this “pioneer” round of transcription RNApolII is inefficient. (B) Phosphorylation of the activator increases the rate at which RNApolII can escape. For a potent activator this process is too efficient. (C) Ubiquitylation of the activator alters the conformation of the initiation complex providing “resistance” against the excessive rate of escape induced by phosphorylation. (D) This buys time for the phosphorylation of RNApolII and recruitment of elongation and co-transcriptional RNA processing complexes (green halo around RNApolII). The “resistance” imposed by ubiquitylation is relieved by proteolytic turnover of the activator. (E) In a state of “transcriptional memory”, RNApolII is more efficiently phosphorylated along with more rapid recruitment of the elongation and co-transcriptional RNA processing complexes. Thus, while phosphorylation may enhance transcription, the cycle of ubiquitylation and proteolysis is not as necessary as in the early rounds of transcription.




Appendix: Publications Produced in the Course of This Thesis 

 

Collins, G.A. and Tansey W.P. The proteasome: a utility tool for transcription? Current Opinions in 

Genetics and Development (2006) 16:197-202 

A review I wrote with Dr. Tansey summarizing the recent advances in connecting the proteasome to 

transcription. In this review we discussed the potential of both the proteolytic and non-proteolytic 

roles of the proteasome throughout transcription. 

 

 

Leung, A. Geng, F. Daulny, A. Collins, G. Guzzardo, P. Tansey, W.P. Transcriptional control and the 

ubiquitin-proteasome system. Ernst Schering Foundation Symposium Proceedings (2008) 75-97. 

A review, that Dr. Tansey and the yeast group of the Tansey laboratory wrote on how the UPS 

regulates multiple steps of the transcription process. 

 

 

Collins, G.A. Lipford, J.R., Deshaies, R.J. Tansey, W.P. Gal4 turnover and transcription activation. 

Nature (2009) 461:E7 

A brief communications arising to Nature, which on the basis of my work (see Chapter 2), 

demonstrates that an artifact exists in the competitive ChIP signals for Gal4 when 17- -estradiol is 

used to trigger competition. This artifact leads to the mistaken conclusion that Gal4 “locks” onto 

promoters during activation. I demonstrated that 4-hydroxytamoxifen is a more suitable trigger for 

studying Gal4 competition because it does not lead to the same artificial increase in Gal4 binding as 

was observed with 17- estradiol. Making this adjustment to the competition ChIP results in finding 

that Gal4 is labile and does not lock in on the promoter, which is a result that is in better agreement 

with previous literature describing the behavior of Gal4 and other activators. 
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Collins, G.A., Gomez, T.A., Deshaies, R.J. Tansey, W.P. Combined chemical and genetic approach to 

inhibit proteolysis by the proteasome. Yeast Submitted 

A paper describing the need for a more sensitive strain of yeast to proteasome inhibitors such as 

MG132 and demonstrating that the combination of chemically targeting the chymotryptic subunit 

with genetic inactivation of the tryptic and caspase-like subunits of the proteasome results in such a 

strain (see Chapter Three). This strain is characterized for defects in proliferation, cell cycle 

progression, stability of ubiquitylated proteins (Chapter Three), and activation of transcription 

(Chapter Four). 
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