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Abstract

Background: A comparison of transcriptional profiles derived from different tissues in a given species or among
different species assumes that commonalities reflect evolutionarily conserved programs and that differences reflect
species or tissue responses to environmental conditions or developmental program staging. Apparently conflicting
results have been published regarding whether organ-specific transcriptional patterns dominate over species-specific
patterns, or vice versa, making it unclear to what extent the biology of a given organism can be extrapolated to
another. These studies have in common that they treat the transcriptomes monolithically, implicitly ignoring that
each gene is likely to have a specific pattern of transcriptional variation across organs and species.

Results: We use linear models to quantify this pattern. We find a continuum in the spectrum of expression variation:
the expression of some genes varies considerably across species and little across organs, and simply reflects
evolutionary distance. At the other extreme are genes whose expression varies considerably across organs and little
across species; these genes are much more likely to be associated with diseases than are genes whose expression
varies predominantly across species.

Conclusions: Whether transcriptomes, when considered globally, cluster preferentially according to one component
or the other may not be a property of the transcriptomes, but rather a consequence of the dominant behavior of a
subset of genes. Therefore, the values of the components of the variance of expression for each gene could become a
useful resource when planning, interpreting, and extrapolating experimental data from mouse to humans.
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Background
The laboratory mouse has been the top choice organ-
ism to model human physiology and disease for decades.
The underlying assumption is that the molecular, cellu-
lar, and developmental pathways are essentially conserved
between human and mouse, and, in general, among pla-
cental mammals. The architecture of these pathways is
broadly reflected in cellular, tissue, and organ transcrip-
tomes. Therefore, transcriptome comparisons across mul-
tiple homologous organs between human and mouse, or
across multiple mammalian (or vertebrate) species, have
been extensively carried out. Early studies concluded that
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transcriptional patterns are more similar between homol-
ogous organs of different species than between different
organs from the same species [1–5], supporting, in prin-
ciple, the use of the mouse as a model of human biol-
ogy. Recent results have suggested, however, that these
observations may arise from the analysis of a relatively
small number of organs that exhibit a disproportionately
large number of organ-specific genes. Indeed, by includ-
ing a larger panel of organs in the analysis, Lin et al. [6]
show that transcriptional patterns have overall diverged
substantially between human and mouse, separating the
species more than the organs. This has led to a highly
charged debate [7].
In most cases, the conclusions are essentially of a

qualitative nature, obtained after visually inspecting the
projection of the transcriptome samples into a space of
reduced dimension. Indeed, each transcriptome can be
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represented as a point in an n-dimensional space, its
coordinates corresponding to the expression values of
n genes (in human–mouse comparisons, n is typically
around 15,000, the number of orthologous protein-coding
genes between the two species). Dimensionality reduc-
tion is often obtained using principal component analysis
(PCA) or related techniques. In PCA, the original values
(gene expression levels) are linearly transformed into a
set of uncorrelated variables called principal components
(PCs). This transformation is defined in such a way that
the first PC has the largest possible variance, and each
succeeding component has the highest variance possible
under the constraint that it is orthogonal to the preceding
components. Typically, the two or three first components
are chosen and the samples (transcriptomes) are plotted
in the corresponding two- or three-dimensional space.
The debate is usually centered on whether the samples
projected into this space of reduced dimension visually
cluster by species [6, 8, 9] or by organ [1–3, 10]. Visual
analysis, however, is qualitative in nature, and therefore,
has a strong subjective component. To produce, instead,
a quantitative criterion, and to avoid, at the same time,
the information loss implicit in dimensionality reduction
methods, we used here the modularity of the correla-
tion network of the transcriptome samples with respect to
the partition of the set of samples, either by organ or by
species.
Moreover, the approach above implicitly assumes an

average behavior for genes, ignoring that each gene may
have a specific pattern of expression variation across
organs and species. In fact, we recently showed [11], using
transcriptome comparisons of a large collection of human
cell lines and mouse organs, that a substantial fraction
of genes exhibits constrained expression simultaneously
across organs and species within vertebrates. These genes
are likely to contribute little to the clustering of tran-
scriptomes in either direction. On the other hand, among
the genes whose expression is unconstrained, some may
exhibit transcriptional patterns that vary mostly across
organs or mostly across species.We previously used linear
models to quantify, for each gene, the relative contri-
bution of these two factors (species and organ) to the
variation of expression of each individual gene, comparing
human and mouse organs [12]. However, since we used
only two species, the estimates of variance across species
were unreliable. Here, we extend this approach by analyz-
ing previously published transcriptional data in matched
samples from six orthologous organs in seven vertebrate
species [2]. Using linear models, we quantify, for each
gene, the amount of expression variation that originates
from variation across organs and from variation across
species.
We find that a large fraction of the variance in gene

expression (about 70 % on average) can be explained by

either organ or species, with the contribution of organ,
on average, being larger than that of species. However, we
find strong differences between genes in their pattern of
expression variation. Genes whose expression varies con-
siderably across species and little across organs lead, as
expected, to a species-dominated clustering. These genes
exhibit features characteristic of housekeeping genes, and
divergence of their expression essentially reflects evo-
lutionary distance. Genes whose expression varies con-
siderably across organs and little across species lead, in
contrast, to an organ-dominated clustering. These genes
should be specific to a few organs and be essential for
their function. Using the projection score [13], we found
that a small subset of these genes neatly reproduces the
clustering obtained when using all genes. For these genes,
animal (and, in particular mouse) models may be particu-
larly appropriate. Interestingly, we found that these genes
are much more likely to be associated with diseases than
genes whose expression varies considerably across species
but little across organs.

Results and discussion
We used gene expression values estimated by RNA-seq
in a panel of six organs in seven different vertebrate
species from [2]. We restricted the analyses to the set
of 6283 protein-coding genes that could be identified
as orthologs across the seven species (“Methods”) and
used log-transformed expression values, originally com-
puted as cRPKMs, a slightly modified version of the more
common RPKM measure, which considers only reads
mapping to orthologous genes [2]. Using PCA and hier-
archical clustering, we found that if the transcriptomes
are considered globally, the samples cluster preferentially
by organ (Fig. 1a, b). To quantify the visual interpre-
tation of the clustering/PCA and to overcome the loss
of information implicit in this interpretation, we carried
out a modularity analysis [14]. Given a network and a
grouping of nodes, the modularity measures the degree
to which nodes are preferentially connected within the
groups (Fig. 1c and “Methods”). Modularity is calculated
as the excess number of edges compared to randomly con-
nected nodes, divided by the total number of edges (see
“Methods”). In our case, modularity is computed on the
network constructed from gene expression correlations
between samples when the data is grouped by organ or
by species. Grouping by organ yields higher modularity
than grouping by species, robustly for any threshold on
the correlation defining the network edges (Fig. 1d).
The clustering in Fig. 1a is dominated by the organs,

in agreement with published results using transcriptome
data on the same or a similar set of organs and species
[2, 3]. However, Lin et al. [6] suggested that this organ-
dominated clustering is the consequence of the analy-
sis of a limited number of organs, characterized by a



Breschi et al. Genome Biology  (2016) 17:151 Page 3 of 13

Fig. 1 Hierarchical clustering (a) and PCA (b) based on the expression of 6283 orthologous genes in six organs from seven species show a
predominant clustering of organs. Gene expression is computed as log10-normalized cRPKM, with a pseudocount of 0.01. Pearson’s correlation
coefficient is computed for each pair of samples. The distance metric used for clustering is again Pearson’s correlation coefficient, and a complete
linkage algorithm is applied to the Pearson’s correlation coefficients between each pair of samples. PCA was performed on the same log10-normalized
cRPKM, after centering and scaling the expression of each gene across all samples. c Example of a network built from the pairwise correlation
coefficients (top). In such a network (bottom), samples are nodes, and edges are drawn when two samples have a correlation coefficient higher than
a given threshold (0.73 in the example, which gives 290 edges, as in the last point of d). Network nodes are colored either by organ (left) or species
(right), which are the factors used to compute the modularity (see “Methods”). dModularity analysis for the network of gene expression correlations
made from six tissues and seven species. The modularity is given as a function of the number of edges in the network, when vertex type is organ
(circle) or species (triangle), and when the genes considered are all genes (gray) or only the projection score genes (black). cc correlation coefficient,
PC principal component, PCA principal component analysis, prjSc projection score

large number of organ-specific genes. We re-analyzed Lin’
et al. data using modularity. When restricting to the five
organs in common with the dataset in Barbosa-Morais
et al. [2] (brain, liver, kidney, heart, and testes), which
are the organs with a higher number of organ-specific
genes in Lin et al., organ modularity was indeed higher
than species modularity (Additional file 1: Figure S1A).
However, when using instead the five organs that in
Lin et al. have fewer organ-specific genes, species mod-
ularity was higher than organ modularity (Additional
file 1: Figure S1B), supporting clustering by species. This,
indeed, suggests that global transcriptome clustering by
organ or species depends on the organs considered (as
also recently reported by Sudmant and colleagues [15]).
While Lin et al. used amore extensive set of genes (around
15,106 genes), as they only required orthology between

human and mouse, the results are comparable to those
obtained when using only the vertebrate orthologs of the
Barbosa-Morais study [2], even though these genes are likely
to be more conserved (Additional file 1: Figure S2A, B).
To identify the set of genes that contribute signif-

icantly to the separation between the Barbosa-Morais
et al. samples [2], we used the projection score [13]
(“Methods”, Additional file 1: Figure S3A). We identified
256 genes that capture most of the variation between sam-
ples. PCA and clustering based only on these genes reca-
pitulated veryprecisely and actually increased the resolution
of the results found using the entire set of orthologous
genes (Fig. 2a, b), with nearly no change in modularity
(Fig. 1d), and allowed us to identify clearly organ-specific
genes whose expression is conserved throughout all ver-
tebrates (Additional file 1: Figure S3B). Nearly all these
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B
Fig. 2 Hierarchical clustering (a) and PCA (b) based on the expression of 256 genes identified by the projection score [13] show a stronger
organ-dominated clustering than when including all genes. Clustering and PCA were performed in the same way as in Fig. 1. cc correlation
coefficient, PC principal component, PCA principal component analysis

genes have unconstrained gene expression. Indeed, fol-
lowing the criterion in Pervouchine et al. [11], we used
a dynamic range minimum threshold of two (i.e., a
difference in expression greater than two orders of mag-
nitude) to identify 3622 genes with unconstrained expres-
sion across the species and organs in the Barbosa-Morais
et al. dataset (Additional file 2: Table S1). These genes
include 255 of the 256 genes that drive the clustering of all
samples.

To estimate the relative contribution of the variance
across organs and across species to the total variance of
the expression levels of a given gene, we used linear mod-
els (“Methods”). More precisely, we built a linear model
for each gene, in which the gene expression level was
decomposed into the contribution of the organ, the con-
tribution of the species, and an additional residual error.
Thus, as in the ANOVA type of analysis, the total gene
expression variance (or total sum of squares, SST) across
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all observations/samples can be decomposed into three
variances: across organs, across species, and the residual
variance. The relative contribution of each of these factors
to the total gene variance in expression can then be com-
puted as the relative proportion of each variance with
respect to the total variance (“Methods”).
The results of the aforementioned variance decompo-

sition of gene expression applied to the data in Barbosa-
Morais et al. [2] are shown in Fig. 3a. On average, more
than 70 % of the total variance in gene expression can
be explained by either organ or species, with the con-
tribution of organ (41 %) being larger than the con-
tribution of species (31 %), consistent with the global
organ-dominated clustering. The relative contribution of
each factor depends on the evolutionary distance sep-
arating the species compared, with the relative contri-
bution of organ decreasing with distance, and that of
species increasing (Fig. 3b). Although it is known that
gene sequence and gene expression level evolve partic-
ularly rapidly in testis [1], the same trend is observed
when testis is removed from the analysis (Additional file 1:
Figure S4). In 3255 genes (52 %), variance across either
organ or species accounted for at least 75 % of the total
variance (Fig. 3c). Among these, we identified 1528 genes
that vary substantially more across organs than species
(defined as having a proportion of organ variance at least
twice that of species), and 819 genes that vary substan-
tially more across species than organs (defined as having
a proportion of species variance at least twice that of
organ). Many genes with a large fraction of the variance
explained by either organ or species, however, show lit-
tle absolute variance (Additional file 1: Figure S5), and
therefore, whether the variance is dominated by organ
or species is nearly irrelevant. Thus, we intersected them
with the set of 3622 unconstrained genes, and identified
1245 unconstrained genes varying preferentially across
organs and 268 unconstrained genes varying preferentially
across species. We will refer to these genes as tissue-
variable genes (TVGs) and species-variable genes (SVGs),
respectively. Predictably, the use of TVGs only resulted
in an organ-driven clustering (Fig. 3d, Additional file 1:
Figure S6A). Including only SVGs resulted, in contrast,
in a species-driven clustering (Fig. 3e, Additional file 1:
Figure S6B). Modularity analysis quantifies these obser-
vations (Additional file 1: Figure S7). Consistent with the
larger absolute variance across organs (Additional file 1:
Figure S5), most of the 256 genes identified by the pro-
jection score method as driving the clustering are TVGs
(219, i.e., 86 %), and almost none are SVGs (five, i.e., 2 %,
Fig. 3f).
In general, SVGs exhibit properties characteristic of

housekeeping genes, and gene ontology (GO) analysis
does indeed indicate that they are involved in basic cel-
lular functions (Additional file 1: Figure S8), compared to

TVGs. As expected, SVGs are evolutionarily older than
TVGs, since 19 % of them are present across all meta-
zoans [16], compared to only 4 % of TVGs (Fig. 4a,
“Methods”). In SVGs, divergence in gene expression is
almost directly related to evolutionary divergence. Indeed,
we computed the Pearson’s pairwise correlation of expres-
sion across genes between human and each other species
for each organ separately, as in Barbosa-Morais et al. [2].
We observed a strong dependence and steep decline when
increasing the evolutionary distance for SVGs, which was
very moderate for TVGs (Fig. 4b).
We also found that promoters of TVGs show stronger

sequence conservation than those of SVGs (p = 4× 10−4,
Mann–Whitney test, Fig. 4c, “Methods”), and that they
tend to overlap CpG islands less frequently [17] (p =
6×10−5, chi-squares test, Fig. 4d, “Methods”). It has been
shown that promoters of housekeeping genes are associ-
ated with higher CpG island overlap [18]. On the other
hand, TVGs show a weaker H3K4me3 signal, a histone
modification typical of transcription initiation (as mea-
sured by the ENCODE Project in five mouse organs [12]).
Instead, SVGs are enriched in this mark, compared to
TVGs (p(Heart) = 2×10−2, Mann–Whitney test, Fig. 4e,
Additional file 1: Figure S9), even for a subset of genes
with comparable expression levels (“Methods”). Again,
this difference has been observed between the promoters
of housekeeping genes and tissue-specific genes (see, for
instance, [19]).
It is sensible to assume that animalmodels will be partic-

ularly appropriate for genes whose expression varies con-
siderably across organs, but little across species (TVGs).
Interestingly, we found that TVGs are more likely to be
associated with diseases (as reported in OMIM [20] and
the GWAS catalogue [21]), than SVGs (Fig. 4f).
Our results overall show that meaningful organ-

and species-dominated transcriptome clustering can be
obtained by selectively considering genes with high varia-
tion across organs and little across species, and vice versa.
Ultimately, the clustering will be dominated by the factor
(organ or species) that dominates the variance. A similar
outcome can be produced, therefore, on the whole set of
orthologous genes by employing gene expression normal-
ization methods that shift the variance in one direction
or another. Most dramatically, if we scale the expres-
sion of each gene across organs (species), the variance of
expression across organs (species) would be canceled out.
Consequently, TVGs increase their relative variance con-
tribution by species when scaling across organs, and SVGs
increase their relative variance contribution by organ
when scaling across species (Fig. 5a). When performing
PCA on all genes after normalization, transcriptomes con-
sistently cluster by species or organ depending on whether
scaling of gene expression has been performed by organ
or by species (Fig. 5b, c).
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Fig. 3 a Proportion of expression variance explained by species (x-axis) and by organs (y-axis) for each of the 6283 orthologous genes (dots) using
linear models. The dashed lines at y = 2x and x = 2y identify the genes in which species-explained variance is twofold greater than organ-explained
variance, and in which tissue-explained variance is twofold greater than species-explained variance, respectively. We restricted to the genes for
which either species or tissue explains at least 75 % of the variance (dashed line at x + y = 0.75), and defined two sets of genes: genes whose
expression varies considerably across species and little across tissues, SVGs (green), and genes whose expression varies considerably across tissues
and little across species, TVGs (orange). b Box plot representing the distribution of the proportion of gene expression variance across organs (light
yellow) or between human and each other species (dark yellow). When considering more evolutionarily distant species, the proportion of variance
across organs decreases, while that between species increases. c Number of genes in distinct bins of proportional residual variance (histogram) and
cumulative proportion of genes at increasing bins of proportional residual variance. Altogether, 75 % of orthologous genes have less than 35 %
residual variance. d PCA based on the expression of TVGs only shows an organ-dominated arrangement of the samples in the space defined by the
first two PCs. e PCA based on the expression of SVGs only shows a species-dominated arrangement of the samples in the space defined by the first
two PCs. f Same as (a), with different color scale, which highlights the higher variance across organs of genes identified by the projection score [13]
(black), compared to the rest of the genes (gray). PC principal component, PCA principal component analysis, SVG species-variable gene, TVG
tissue-variable gene

Our model does not take into account inter-individual
gene expression variation within a given species. However,
single measurements in genes whose expression varies

considerably across individuals in a given species are not
informative of the expression of the gene in that species.
Thus, when compared across multiple tissues among
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Fig. 4 a Proportion of genes in each category that have a one-to-one ortholog in human, fly, and worm, as defined by the modENCODE consortium
[16]. b Pearson’s correlation coefficient between gene expression in each human organ and the corresponding one in every other species. The
correlation is computed across all the genes in each class separately. c Promoter sequence conservation measured as the average PhastCons signal
at TSS (in a window between 3000 bp upstream and 500b p downstream of the TSS). Promoter sequence conservation is higher for TVGs than for
SVGs (p = 4 × 10−4, Mann–Whitney test). Proportion of genes with a promoter category based on CAGE signal [27]. Broad: All the promoters of a
gene are broad; sharp: all the promoters of a gene are sharp; mixed: a gene has at least one broad and one sharp promoter; unassigned: none of the
promoters of a gene have an assigned category. d Proportion of genes in each category covered by CpG islands (as defined in Wu et al. [17]). SVGs
have higher CpG island coverage at their promoter than TVGs (p = 6 × 10−5, chi-squares test). e H3K4me3 average signal at TSS (±3000 bp) of a
subset of SVGs, heart-specific TVGs, and others. Genes in each category are filtered to have comparable levels of expression (“Methods”). f Proportion
of genes in each category with an associated GWAS trait or OMIM disease. cc correlation coefficient, SVG species-variable gene, TSS, transcription
start site, TVG tissue-variable gene
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)
Fig. 5 a Proportion of expression variance explained after centering and scaling each gene expression across species (x-axis) or across organs (y-axis)
for the 6283 orthologous genes. When centering and scaling across species, the variance explained by species is 0 and there is only variance
explained by organ (x-axis). Conversely, the y-axis is the proportion of variance explained by species after the variance across organs becomes 0
because of centering and scaling across organs. Dots are colored based on the class assigned to each gene. A PCA is performed on the gene
expression of all 6283 orthologous genes after centering and scaling their expression across organs (b) or across species (c). The first PCA shows a
species-dominated clustering, while the second one shows an organ-dominated clustering. PC principal component, PCA principal component
analysis, SVG species-variable gene, TVG tissue-variable gene

species, they may appear to exhibit a stochastic behavior,
and could potentially contribute to residual variation.
To assess the impact of inter-individual variation in our
results, we used gene expression data produced by the
GTEx consortium [22] in multiple tissues from multi-
ple post-mortem donors. In the work by Melé et al. [23],
we had previously estimated that the average contribu-
tion of inter-individual variance to the global variance
of gene expression was on average very low (5 %), and
here we have found that it is only slightly higher in SVGs
than TVGs (Additional file 1: Figure S10A). Because the
estimates of the variance decomposition in Melé et al.
are inferred from a larger set of tissues than those avail-
able in Barbosa-Morais et al. [2], we performed the vari-
ance decomposition only on the organs common with
the Barbosa-Morais et al. study, and found that in these
organs, inter-individual variance was even lower (4 % on
average, Additional file 1: Figure S10B). These results sug-
gest that inter-individual variation has little impact on our
estimates of inter-organ and inter-species variation.

Conclusions
Transcriptome comparisons reveal to what extent the
biology of a given organism can be extrapolated to
another. Regarding specifically human andmouse, intense
debate exists as to whether organ transcriptomes, when
taken globally, cluster preferentially by organ or by
species. This is central to the use of mouse as a model
of human biology. Here we used a modularity analysis
to measure quantitatively such a preference, beyond the
mere visual inspection of the output of dimensionality-
reduction techniques typically used to address this ques-
tion. We specifically used modularity to analyze the
results in Lin et al. [6]. These have been challenged on
the basis of a potentially flawed experimental design [7].
Human organ samples and mouse organ samples in the
initial study by Lin et al. were sequenced in two differ-
ent batches, making it, indeed, impossible to separate the
effect of the batch from that of the species. However,
our analysis of the modularity of the correlation networks
indicates that the batch effect is unlikely to be the dom-
inant factor, because when we restrict the analysis of the
Lin et al. data to the five organs common to the Barbosa-
Morais et al. study [2], the clustering observed is by organ
and not by species.

It is not our main aim here, however, to take a
position on whether human and mouse transcriptomes
are preferentially conserved across organs or species, but
rather to address the limitations of an approach based
on global transcriptome comparisons. This implicitly
assumes an average behavior for genes, ignoring that each
gene has a characteristic pattern of expression variation
across species and organs. Our results show, indeed, that
there is continuum in the spectrum of expression varia-
tion, at one extreme of which are genes whose expression
varies considerably across species and little across organs
(and, therefore, lead to a species-dominated clustering),
and at the other extreme of which are genes whose expres-
sion varies considerably across organs and little across
species (and lead, therefore, to an organ-dominated clus-
tering). Therefore, whether transcriptomes, when con-
sidered globally, cluster preferentially according to one
component or the other, may not be as much a generic
property of the transcriptomes, but rather a consequence
of the dominant behavior of a subset of genes. Our
results actually suggest that the organ-dominated cluster-
ing obtained using the Barbosa-Morais et al. whole tran-
scriptome dataset may actually be driven by a small subset
of genes whose expression varies largely across organs,
and little across species (Additional file 1: Figure S3B).
To assess the impact of inter-individual variation in our

estimates of inter-organ and inter-species variation, we
have used gene expression data frommultiple tissues from
multiple human donors. Unfortunately, such data do not
exist for other species, which has prevented us from using
a more general approach, in which tissues, species, and
individuals within species are considered as factors in the
linear models.
We believe that by investigating the patterns of expres-

sion variation across species and tissues specifically for
each gene, we can provide a more meaningful answer
to the question of whether the biology of an organism
can be extrapolated to another. Indeed, the behavior of
genes whose expression is variable across organs but sta-
ble across species (that is, the genes that exhibit similar
patterns of expression variation across organs in differ-
ent species) may be more confidently extrapolated across
species than that of genes whose pattern of expression
variation differs substantially between species. Interest-
ingly, those genes with conserved expression patterns
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across vertebrate species (and for which, therefore, the
mouse may be a good model of human biology) are
more often associated with diseases than genes with non-
conserved expression patterns across species. We believe,
therefore, that the values of the components of the expres-
sion variance that we have attached to each gene could
become a useful resource when planning, interpreting,
and extrapolating experimental data in mouse and other
vertebrate model organisms to human.

Methods
RNA-seq sample clustering based on gene expression
Gene expressionmatrix
Raw cRPKM values were obtained from the study by
Barbosa-Morais et al. [2]. To have a balanced design,
the original matrix was restricted to species for which
the same six organs were available (see below). The
final matrix consisted of seven vertebrates, including
human, chimpanzee, rhesus, mouse, opossum, platypus,
and chicken, and six organs, including brain, cerebellum,
heart, liver, kidney, and testes.
We restricted the analyses to protein-coding genes with

a one-to-one orthology relationship in the seven species.
We used the orthology relationships of the Barbosa-
Morais et al. study [2], which include 6787 orthologous
genes. Of these, we retained 6393 orthologs after check-
ing for consistency against each annotation set in Ensembl
v65, for each species (genome and annotation files from
the Barbosa-Morais study can be found in Additional
file 3: Table S2). Finally, we intersected this set with the list
of one-to-one protein-coding orthologs between human
and mouse provided by the mouse ENCODE consortium
[12], to get a final matrix consisting of expression values
for 6283 genes in 42 samples (Additional file 3: Tables S3
and S4).

Hierarchical clustering and PCA
In Figs. 1a and 2a, the samples are clustered hierarchi-
cally based on their pairwise Pearson’s correlation coef-
ficients of gene expression values, where cRPKM are
log10-normalized after adding a pseudocount of 0.01. The
samples are then clustered on the vector of the correlation
coefficients, with one minus Pearson’s correlation coeffi-
cient (1 − |r|) as a distance metric, using the complete
linkage clustering algorithm.
In Additional file 1: Figure S6A, B, the samples and

genes are clustered hierarchically based on gene expres-
sion values directly. Again cRPKM are log10-normalized
after adding a pseudocount of 0.01 and the complete link-
age clustering algorithm is applied on Euclidean distances.
PCA, as shown in Figs. 1b, 2b and 3d, e, was performed

on cRPKM values normalized in the same way, but cen-
tered and scaled across all the samples for each gene.
PCA, as shown in Fig. 5b, c, however, was performed after

centering and scaling the normalized cRPKM for each
gene across all the organs in a given species (Fig. 5b),
and across all the species for a given organ (Fig. 5c),
respectively.

Networkmodularity
The modularity of a graph with respect to some divi-
sion (or vertex types) measures how good the division
is, or how separated the different vertex types are from
each other. In this study, we build a graph where sam-
ples are vertices (or nodes). Two vertices or samples are
connected if the Pearson’s correlation coefficient between
them, computed on the gene expression values, is higher
than a certain threshold (excluding connections of a sam-
ple with itself ). As in hierarchical clustering and PCA,
gene expression values are log10-transformed cRPKM
after adding a pseudocount of 0.01. The vertex types on
which the modularity is computed are either the organ or
the species classification. To compute the modularity, we
used the function modularity() from the R package
igraph v0.7.1, which implements the following definition
[14]:

Q = 1
2m

×
∑
i

∑
j

[(
Aij − ki × kj

2m

)
δ(ci, cj)

]
, (1)

where m is the number of edges, Aij is the element of the
adjacency matrix A in row i and column j (corresponding
to vertices i and j, respectively), ki is the degree of i, kj is
the degree of j, ci is the type (or component) of i, cj that
of j, the sum goes over all i and j pairs of vertices, and
δ(x, y) = 1 if x = y, and δ(x, y) = 0 otherwise.
Finally, the modularity is plotted as a function of the

network density, which is defined as the actual number
of edges (based on the threshold of the correlation coef-
ficient) over the total number of possible edges. We set
self-connection to 0 in the adjacency matrix even though
samples share an identity with themselves, to ensure self-
connection does not inflate the modularity calculation.
Conclusions are robust to setting self-connection to 1.

Projection score
The projection score is a measure of the informativeness
of a subset of variables with respect to PCA visualiza-
tion [13]. Here, we subset the variables, i.e., the genes,
based on increasing thresholds of their variance across
all samples (as a ratio to the maximum variance). For
each subset of genes, the projection score is computed
over 100 permutations with respect to the first three
PCs (Additional file 1: Figure S3A), and the subset with
the highest score is selected for further analyses. This
subset includes 256 genes (Additional file 3: Table S5),
and their log10-transformed cRPKM values are shown in
Additional file 1: Figure S3B.
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Linearmodels, variance decomposition, and SVG and TVG
definition
The expression of each gene in a given sample is usually
dependent on the identity of the sample, which here is
represented by the organ and the species of origin. More
formally, for an individual gene, a linear model can be
built that describes its expression as the sum of the factors
organ and species and a residual term:

yij = μ + orgi + spcj + εij, (2)

where yij is the expression of a gene in organ i (of no
organs) and species j (of ns species), μ is the basal expres-
sion level of the gene, orgi is the coefficient for organ i, spcj
is the coefficient for species j, and εij is the residual term.
Thus, as in the ANOVA type of analysis, the total

gene expression variation for each gene (or total sum of
squares, SSTg) across all samples can be decomposed into
three variations: variation across organs (SSOg), variation
across species (SSSg), and a residual variation (SSRg):

SSTg = SSOg + SSSg + SSRg, (3)

where

SSTg =
no∑
i=1

ns∑
j=1

(yij − ȳ··)2, (4)

SSOg = ns
no∑
i=1

(ȳi· − ȳ··)2, (5)

SSSg = no
ns∑
j=1

(ȳ·j − ȳ··)2, (6)

SSRg =
no∑
i=1

ns∑
j=1

(yij − ȳi· − ȳ·j + ȳ··)2, (7)

and

ȳ·· =
no∑
i=1

ns∑
j=1

yij, (8)

ȳi· = 1
ns

ns∑
j=1

yij, (9)

ȳ·j = 1
no

no∑
i=1

yij. (10)

The relative contribution of each factor to the total
gene expression variation can then be computed as the
relative proportion of each variation with respect to the
total. The linear model was implemented using the func-
tion lm() from basic R. A convenient in-house wrapper
is available at https://github.com/abreschi/Rscripts/blob/
master/anova.R.
In a two-factor linear mixed model, the factors organ

and species can be considered as giving an independent
additive contribution to the gene expression level with

variances σ 2
o and σ 2

s , respectively, along with an indepen-
dent additive contribution of the residual term that has
variance σ 2

e . In this case, the relative contribution of each
factor (e.g., organ) to the gene expression variation can
be thought of as the variance of that factor over the sum
of the variances of both factors plus the residual variance
(e.g., σ 2

o /(σ 2
o + σ 2

s + σ 2
e ) [23]). The linear mixed models

were implemented by using the function lmer() of the R
package lme4 v1.1-7.
As the correlation between the relative contributions

with the linear model and with the linear mixed model is
very high for both factors (Additional file 1: Figure S11A,
B), we decided to use the linear model, which requires no
estimation step and is more intuitive.
To remove genes with relatively low variability of

expression, we filtered them based on their dynamic
range, computed on cRPKM after adding a pseudocount
of 0.01. The dynamic range for each gene is defined as
the difference in order of magnitudes between the maxi-
mum and the minimum expression across all samples. We
used a minimum threshold of 2 orders of magnitude [11],
to retain only the most variable genes, which we refer to
as unconstrained. Within this set of unconstrained genes,
we further considered genes for which either species or
organ explains at least 75 % of the variance (dashed line
at x + y = 0.75 on Fig. 3a and f), and defined two sets
of genes: genes whose relative variation of expression is
twofold greater across species than across organs (SVGs)
and genes whose relative variation of expression is twofold
greater across organs than across species (TVGs). The
unconstrained genes that are neither SVGs nor TVGs are
referred to as others.
To find the distribution of the proportion of expres-

sion variation between human and each other species
(Fig. 3b), we built a linear model for all the organs of
human and the other species. The gene expression val-
ues were log10-normalized, after adding a pseudocount of
0.01, and centered and scaled within each sample. Since
gene expression is known to evolve much faster in testis
[1], we performed the same analysis excluding testis. We
found the same result (Additional file 1: Figure S4).

Properties of SVGs and TVGs
GO analysis
The GO term enrichment analysis in Additional file 1:
Figure S8 was performed separately for each set of
genes, with respect to all 6283 orthologous genes in the
matrix, used as background. The enrichment is tested
with the hypergeometric test implemented in the R pack-
age GOstats v2.34.0. Ensembl gene IDs are converted to
entrez gene IDs via the R package org.Hs.eg.db v3.1.2, and
mapped to gene ontology through the R package GO.db
v3.1.2. The GO terms associated with the biological pro-
cess hierarchy are sorted by their p values corrected for

https://github.com/abreschi/Rscripts/blob/master/anova.R
https://github.com/abreschi/Rscripts/blob/master/anova.R
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multiple testing (Benjamini–Hochberg correction [24]),
and the top ten significantly enriched terms are shown for
each group of genes.

Evolutionarily conserved genes
We computed the fraction of evolutionarily conserved
genes as the proportion of genes in each class that
were identified as being orthologous between human,
fly (Drosophila melanogaster), and worm (Caenorhabditis
elegans) as defined by the modENCODE consortium [16].

Promoter analysis
Promoter sequence conservation. The promoter seq-
uence conservation was computed for a window of 2000
bp upstream and 500 bp downstream of the transcription
start site (TSS) of each gene. A gene TSS is defined as the
most 5′ base of the gene. PhastCons scores [25] in this
window are averaged from the bigwig file with the bwtool
software [26] and this average is taken as a measure of
promoter sequence conservation.

CpG island coverage. For each base in a 6000-bp win-
dow around the TSS (±3000 bp) of the human genes of
our set of one-to-one orthologs, we computed a binary
overlap with CpG islands, as annotated in [17]. We
then computed the proportion of genes in each class
with at least one overlapping CpG island, as shown in
Fig. 4d.

H3K4me3 signal. We compared the intensity of the
H3K4me3 mark at the promoter of each category of
gene in the five organs for which ChIP-seq experiments
were available from the mouse ENCODE consortium [12]
(Additional file 3: Table S6), namely cerebellum, heart,
kidney, liver, and testes. As H3K4me3 is a mark known to
be present at the promoter of the majority of actively tran-
scribed genes, we restricted our comparison to a subset of
TVGs specific to each organ, and to a subset of SVGs and
others that are comparable to this subset of TVGs in terms
of number of genes and expression values.
To select genes specific to each organ, we required the

genes to be common to multiple species and shared by a
limited number of organs. As shown in Additional file 1:
Figure S12, five is the number of species for which we have
the maximum number of genes specific to one organ and
present in this number of species.We identified 1086 such
genes (Additional file 1: Figure S13).
For each subset of TVGs specific to a given organ,

we selected a subset of SVGs and other genes with the
same number of genes and a similar expression. To select
genes with comparable expression, we binned the expres-
sion values of SVGs, other genes, and TVGs specific to
one organ in 50 expression bins. Then, for each bin, we

randomly selected a number of genes from each class, cor-
responding to the minimum number of genes available in
that bin.
The average signal intensity for each mark was com-

puted around the TSS (±3000 bp) at each 10-bp bin for the
three classes of genes in each organ (Fig. 4e and Additional
file 1: Figure S9).

GWAS andOMIM analyses
For each category of genes, we computed the proportion
of genes with an associated disease in the OMIM database
(http://omim.org/, version updated to June 2014) or a trait
in the GWAS catalog (https://www.ebi.ac.uk/gwas/, ver-
sion updated to June 2014). For the genes associated with
a GWAS trait, we used the gene reported in the catalog,
when available.

Analysis of inter-individual variation in GTEx
Gene expression values (RPKM) for the latest pub-
lic GTEx release were downloaded from the GTEx
portal (http://www.gtexportal.org/home/datasets/, file:
GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_rp
km.gct.gz). To apply linear models to a balanced design
matrix with organs and individuals, we retained gene
expression data from the only four donors for which
most of the organs in Barbosa-Morais et al. [2] were
available (cerebellum, heart, kidney, liver, and testis;
Additional file 3: Table S7). To remove genes with rela-
tively low variability of expression, and for consistency
with the previous analyses, we filtered them based on
their dynamic range, computed on cRPKM after adding
a pseudocount of 0.01 (see “Linear models, variance
decomposition, and SVG and TVG definition”). To
estimate the proportion of expression variation across
organs and donors, we built a linear model for each
individual gene that describes its expression as the sum
of the organ and donor factors and a residual term
(see “Linear models, variance decomposition, and SVG
and TVG definition”). The relationship between the
relative variation across donors and organs is shown in
Additional file 1: Figure S10B.

Additional files

Additional file 1: Figures S1–S13. File with all supplementary figures,
from S1 to S13. (PDF 871 kb)

Additional file 2: Table S1. Intersection between gene sets identified by
variance decomposition and dynamic range. (PDF 14 kb)

Additional file 3: Table S2–S7. Spreadsheet with multiple tables, from
S2 to S7. Table S2. List of genome assemblies and annotation files used in
the Barbosa-Morais et al. study. Table S3. List of 6283 protein-coding
orthologs in the seven species studied here. Table S4. Several attributes
for the 6283 orthologs. This table includes for each of the 6283 orthologs
(rows), the following attributes (as columns): col 1: human gene ID
(Ensembl), col 2: absolute sum of squares across organs, col 3: absolute
sum of squares across

http://omim.org/
https://www.ebi.ac.uk/gwas/
http://www.gtexportal.org/home/datasets/
http://dx.doi.org/10.1186/s13059-016-1008-y
http://dx.doi.org/10.1186/s13059-016-1008-y
http://dx.doi.org/10.1186/s13059-016-1008-ypdf
http://dx.doi.org/10.1186/s13059-016-1008-y
http://dx.doi.org/10.1186/s13059-016-1008-yxlsx
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species, col 4: absolute residual variation, col 5: proportion of variation
across organs, col 6: proportion of variation across species, col 7: category
assigned based on the proportions of variation across organs and species
(see “Methods” for details), col 8: dynamic range, col 9: constrained class
based on dynamic range. The final gene sets can be obtained by requiring
the value in col 9 to be “unconstrained”. Table S5. List of genes identified
by projection score. Table S6. List of the mouse ENCODE ChIP-seq
datasets used here. Table S7. List of GTEx sample IDs used in the variance
decomposition. (XLSX 777 kb)
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