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Abstract

In addition to detecting novel transcripts and higher dynamic range, a principal claim for RNA-
sequencing has been greater replicability, typically measured in sample-sample correlations
of gene expression levels. Through a re-analysis of ENCODE data, we show that replicability
of transcript abundances will provide misleading estimates of the replicability of conditional
variation in transcript abundances (i.e., most expression experiments). Heuristics which
implicitly address this problem have emerged in quality control measures to obtain ‘good’ dif-
ferential expression results. However, these methods involve strict filters such as discarding
low expressing genes or using technical replicates to remove discordant transcripts, and are
costly or simply ad hoc. As an alternative, we model gene-level replicability of differential
activity using co-expressing genes. We find that sets of housekeeping interactions provide a
sensitive means of estimating the replicability of expression changes, where the co-express-
ing pair can be regarded as pseudo-replicates of one another. We model the effects of noise
that perturbs a gene’s expression within its usual distribution of values and show that perturb-
ing expression by only 5% within that range is readily detectable (AUROC~0.73). We have
made our method available as a set of easily implemented R scripts.

Author Summary

RNA-sequencing has become a popular means to detect the expression levels of genes.
However, quality control is still challenging, requiring both extreme measures and rules
which are set in stone from extensive previous analysis. Instead of relying on these rules,
we show that co-expression can be used to measure biological replicability with extremely
high precision. Co-expression is a well-studied phenomenon in which two genes that are
known to form a functional unit are also expressed at similar levels, and change in similar
ways across conditions. Using this concept, we can detect how well an experiment repli-
cates by measuring how well it has retained the co-expression pattern across defined gene-
pairs. We do this by measuring how easy it is to detect a sample to which some noise has
been added. We show this method is a useful tool for quality control.
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Introduction

Recent analyses of RNA-seq have emphasized the value added by experimental designs with
more samples, permitting better estimation of biological and technical variability [1-4]. Unfor-
tunately, this does not automatically translate into an experimental design decision for more
replicates (biological or technical), largely due to the relatively high cost of RNA-seq, which
can range anywhere from 10c to $10 per Mbp [5]. Study design is further complicated by com-
plex dependencies on the platform chosen, library preparation and normalization methods; all
these factors affect the concordance of downstream differential expression analysis, as a recent
set of large scale studies have systematically demonstrated [5-9]. While researchers have to be
aware of the pitfalls that can arise when designing their experiment, they receive only modest
feedback in the experimental data itself as to whether their choices were successful. While
many optimized protocols or best practices exist, there are few means for assessing the quality
of a given transcriptomic study, particularly outside of purely technical concerns and where
focusing on novel biology.

Systematic and large scale studies assess new technologies for appropriate guidelines and
best practices at great cost, time and effort. When microarrays began to be used for drug devel-
opment, the Food and Drug Agency (FDA) set up the MicroArray Quality Control (MAQC)
for general standards of practice in order to assure high quality and replicability [10]. In a simi-
lar fashion for RNA-seq, Sequencing Quality Control (SEQC or MAQC-III) and the Associa-
tion of Biomolecular Resource Facilities (ABRF) were tasked to determine a set of gold-
standard pipelines, protocols and metrics for assessment [5,9].

Extensive work and funding were put into these efforts: evaluating terabytes of data, across
numerous preparation conditions, platforms, sample types, experiment sizes, read depths,
computational quantification methods, statistical measurements and other diagnostics. The
projects successfully identified the strengths and weaknesses of various aspects of RNA-seq
but, alarmingly, could not generalize these findings to a consensus gold-standard method or
technique. Different platforms gave different biases, depending on the chemistry of the reac-
tions, length of the reads, the amplification of the sample and method of degradation of ribo-
somal RNA, to name a few. These are reflected in underlying sequence-based biases from GC
content, genome size and gene size.

Many of these properties are addressed directly in quality control practices which have a
strong history in microarray analyses and can be applied to RNA-seq without too much loss of
generality. A notable example is batch detection and correction, long identified as critical in
microarrays (e.g., [11]), and for which methods have been adapted for use in RNA-seq [7,12].
Technical quality control metrics attached to the samples, such as RNA integrity [13], read cov-
erage, GC content, etc. (e.g, RSeQC [14], RNA-SeQC [15]), may also be applied without alter-
ation to RN A-seq analyses, even if the effect of such biases may be technologically dependent.
Novel quality control assessments for RNA-seq have also been developed or adapted such as
the irreproducible discovery rate (IDR), initially developed for CHIP-seq data [16], and then
applied by ENCODE to RNA-seq data [17]. Competing statistical approaches to detect replica-
ble signals (e.g., SERE [18]) are also in use. In all these cases, the quality control is more focused
on identifying or correcting purely statistical properties without exploiting biology in any way.
The latter task is challenging precisely because the biology depends on the exact experiment
being performed.

Similarly, spike-ins of known concentrations of RNA, such as those of the External RNA
Control Consortium (ERCC) [19], can be used for quality control in specific cases and to identify
technical artifacts but they are useful precisely because they are independent of the biology of the
experiment. Even so, their results suggest variation in expression from experiment to experiment
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that is large enough that there is no way to universally ‘normalize away’ our biases in a one-size-
fits-all manner [7]. Instead of standardizing reads, filters are recommended to remove unwanted
variation, which in the case of the recommendations from SEQC/MAQC-III, includes discard-
ing a third of the genes with low expression levels and those outside a fold change (FC) threshold
between samples (which was algorithm dependent, log, FC ~1-2). But these are general rules
whose relevance must vary from case to case. How well do these heuristics generalize to carefully
designed experiments conducted in an entirely different biological system?

In most individual labs, there will be little to no data to assess this question directly. Few
labs can afford experimental designs which use samples purely as replicates for quality control.
This is unfortunate, since often the experimental design is specifically intended to address
noise in the biological system. There is no easy and systematic way of seeing whether this
worked, outside of the experiment giving expected results, but it is unexpected results that are
particularly valuable. Ideally, the results that are used for validation can provide a finely cali-
brated sense of performance without impinging on the capacity for novel discovery, but this
will be challenging since the same data will likely be used in both cases. As a consequence of
this, assessment of RNA-seq efficacy in any targeted experiment is typically difficult, relying on
experts in the particular experimental system finding the results plausible (but not too obvi-
ous). The few truly generally applicable quality controls are extremely coarse, and focus more
on technical properties, such as read depth, coverage, and related measures.

Ideally, each lab could conduct their own RNA-seq quality control, relying either on costly
replicates, or some sub-class of ‘expected’ result which does not diminish the freedom to obtain
other unexpected results. Our approach to this problem is to focus on modelling the behavior
of tightly co-expressed genes. Gene-pairs which are very tightly co-expressed can be thought of
as a form of a pseudo-replicate and have the advantage of reflecting a broadly applicable bio-
logical property orthogonal to the tested variation in most studies, which are usually based on
differential expression. Of course, to the extent we rely on ‘knowing’ pairs of genes are co-
expressed to determine experimental success, we diminish our ability to find we were mistaken
about this property. To deal with this issue, our analysis relies on weak relationships across
many genes but no strong knowledge of any single gene and only a tiny fraction of gene-gene-
pairs or ‘housekeeping interactions’[20].

In this paper, we demonstrate a straightforward but surprisingly powerful method, which
we have named AuPairWise, to measure replicability by modelling the effects of noise within
observed co-expression. Because of the breadth and extent of co-expression, it provides a sensi-
tive, yet general means of performing a quality control. We argue this in roughly three steps.
We begin our analysis by performing some sample and replicate-based analyses of RNA-seq
quality to establish general properties. Second, we show how common heuristics for quality
control appear in a co-expression based framework. Finally we provide a means of directly
quantifying this by disruption of known co-expression pairs using a model based on empirical
distributions of expression data.

By providing a direct quality control measure, we hope to make it straightforward to cus-
tomize experiments to do better than a general heuristic—such as discarding all low-expressing
genes—would normally permit. We make our software available in a convenient form for bioin-
formatic use (https://github.com/sarbal/AuPairWise).

Results
Part |: Reviewing replicability

Two measures of expression replicability in RNA-seq. Before assessing replicability, it’s
necessary to provide a sense of the meaning which we attach to the term. Broadly, replicability
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in RNA-seq is used in two quite different ways, one focusing on the replicability of estimates of
mean gene expression (sample-level replicability) and the other on variation in gene expression
(gene-level replicability). The earliest method is to assess whether a given pair of samples is
well correlated across its transcripts or genes. This measures whether genes have similar
expression in the two samples and by this standard, all RNA-seq has high enough replicability
that we never need worry. Unfortunately, this doesn’t map to a very experimentally useful mea-
sure since most experiments are concerned with a gene’s variation in expression under chang-
ing conditions (i.e., for differential expression). To see why these two forms of replicability do
not align, consider an early reference experiment [21] which reported high replicability in a
given pair of samples from the liver, as measured by a correlation across transcripts of Spear-
man’s r; = 0.976 (p<le-15, Fisher’s transformation) (Fig 1A). But this correlation is partially a
property of transcript abundances having an approximate transcript-specific range defined
regardless of tissue. As we can see, the correlation comparing the liver and the kidney is also
very high (Fig 1B), and indeed, variation from one experiment [22] to another is sufficient to
make correlations across tissues within an experiment appear much greater than those within
tissues but across experiments (Fig 1C).

Rather than this sense of replicability, we are primarily concerned with the degree to which
changes in expression for a given gene are replicable (i.e., gene-level replicability or self-correla-
tion). While the importance of replicability in terms of differential expression has been appreci-
ated from the first MAQC forward [23], it is difficult to generalize from differences due to
specific conditions (e.g., tissues vs disease) to make cross-experiment comparisons characteriz-
ing quality control. It is this differential expression sense of replicability that is useful in most
biological experiments, but the problem in even assessing it within a given experiment is that it
requires enough samples to at least partially replicate the entire experiment. Additionally, the
degree to which genes show replicable differences will depend in part on the degree to which
they show condition-dependent variability at all.

A contradiction between the replicability measures. As a brief experiment to further
motivate a different metric of replicability, consider data for which we have a replicate for each
expression measurement across multiple conditions for each gene; essentially, extending Fig
1A to even more conditions and plotting all the points at once. We show this using reference
data from ENCODE in Fig 2, where each point represents a gene under a given condition with
x-values being the initial expression measure and y-values being the replicate measurement
(for that gene under that condition, see Materials and Methods section “Measuring replicabil-
ity: correlations and sample estimates”). First, we show the gene-gene correlations for each
sample (Fig 2A, each sample is a color, we show 9 of the 18 samples for clarity) and then the
overlay of these as a replicate-replicate plot (Fig 2B). Clearly, there is a high level of correlation
between the measurements of expression. We can display specific genes in that same plot by
highlighting them; each with quite distinct dynamic ranges (colored in Fig 2C and 2D). Because
genes will only vary within their own dynamic range, collectively measuring replicability
ignores the gene specific variation. A given gene’s measured expression could be well correlated
with the same gene when measured in the replicate data (the subset highlighted in Fig 2C) or
poorly correlated (subset highlighted in Fig 2D), but the correlation across genes for a given
condition would not reveal it: the fact gene A is higher in expression than gene B is not at all
condition dependent (because of the disjoint dynamic ranges). Thus, the more genes have an
approximate set point in expression, the more trivially replicable the correlation of transcript
abundances between two samples regardless of condition, and the less the two measures of rep-
licability have any relation. Ironically, one of the chief claims made of RNA-seq-that it has
high dynamic range-would only increase this tendency, since it provides more ‘space’ for each
transcript to occupy a separate expression domain, yielding perfect but meaningless sample-
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Fig 1. Individual genes have similar expression levels in many tissues. Samples replicate one another to some degree, regardless of the conditions
under which they are measured, i.e., whether it is actually a biological replicate or not. (A) Liver expression levels within the same experiment are very highly
correlated (Spearman’s rs = 0.976, Pearson’s r = 0.999). (B) Liver expression is moderately correlated to kidney expression within the same experiment
(Spearman’s rs = 0.837, Pearson’s r = 0.894). (C) Liver expression levels in two different experiments are less well correlated than that between tissues
(Spearman’s rs = 0.846, Pearson’s r = 0.537).

doi:10.1371/journal.pcbi.1004868.9001
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Fig 2. Simpson’s paradox in expression data. (A) Sample-sample replicability plots are possible for each of the 18 conditions tested. Shown are a
representative set of 9 sample-sample plots. Each point represents a gene with X and Y values being the two expression measures, i.e., original and
replicate. Different samples are shown in different colors. (B) We overlay all these individual sample-sample plots onto the same axes to give the aggregate
view of expression across samples and their replicates. This allows us to determine replication of gene variation across samples. (C) Some genes replicate
well; changing their expression in a consistent way across samples and their replicates. We have highlighted genes which are positively correlated with their
replicate across the samples and also have no overlapping dynamic ranges. Note that sample-sample correlations across this set of genes would be high
even if the labels identifying samples were permuted (inset of “Gene A” shows labelled samples). (D) There are also genes which are negatively correlated
with their replicates across samples (inset of “Gene B” shows labelled samples). And because they also do not have overlapping dynamic ranges the
sample-sample correlation across these genes would remain high for any given sample pair.

doi:10.1371/journal.pcbi.1004868.9002
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sample correlations. Note that here, as in the rest of this paper, we are concerned solely with
gene-level mapping and use ‘transcript abundance’ to refer simply to a given gene’s expression.
Transcript variability for a given gene is, of course, a topic of great interest, but are challenging
in their own right. We focus here on establishing more basic properties first.

Part Il: Refining replicability through expression co-variation

Defining ‘replicability’ when measuring expression variation. Rather than measuring
dynamic range by the number of genes differentiable by their expression within some range,
we really need to know the number of conditions differentiable by the expression of each gene.
That is, a gene has a ‘good’ precision over its dynamic range when change in its expression pro-
vides information about the condition under which it was measured. In future, we will use ‘rep-
licate’ to refer exclusively to gene-level replication (or self-correlation), in which we consider
whether a gene’s variation from condition to condition is replicable when the same conditions
are re-measured. This is similar to the idea of checking if genes are reproducibly being detected
as differentially expressed, i.e., if genes are DE in both replicates, but we are measuring correla-
tions and not fold changes.

To assess this for each gene, we would like a range of conditions which we expect that gene
to vary under, i.e,, different tissues, varying time points or treatments. We would also like repli-
cates for each of those conditions. With these, we can measure the degree to which, for each
gene, its variation is distinguishable. One experiment that fits this general design was
ENCODE’s RNA-seq profiling experiment (GSE35584), which looked at various biological cell
lines under multiple treatments. We take ENCODE’s own labelling of the data into two batches
to define the grouping of the data into sets of samples. ENCODE performed a number of per-
turbations likely to be genome-wide in effect. In this case, if a gene’s changed expression is
meaningful, it should be correlated with its replicate across the range of conditions. However,
not all genes are expected to show differential activity, and particularly if they are only mod-
estly perturbed. For each gene, we can measure whether it does, in fact, show variation that is
consistent when the same condition is measured (across all conditions). In the ENCODE data
(20,635 genes detected), we find after multiple test correction that over 16,000 genes were sig-
nificantly correlated (q<0.05, Fisher’s transformation, Holm-Bonferroni corrected) with their
replicates across the samples (Fig 3A), giving us a coverage of approximately ~78% of the genes
in this experiment (77.7%—Student’s T, or 78.2%—Fisher’s transformation).

If we assume this correlation distribution holds constant, we can estimate that to signifi-
cantly (q<0.05) cover 90% of the transcriptome we would need to increase the number of sam-
ples to over 50, and for 95% coverage, over a hundred samples (Fig 3B, see Materials and
Methods section “Measuring replicability: correlations and sample estimates” for more
details). Similarly, we can assess the potential coverages of prior experiments based on their
sample count, and, as a proxy, assess how replicable their results are for particular genes. Evalu-
ating 1,451 publicly available experiments, we estimate that many experiments only have
enough samples to produce significantly replicable results for a small fraction of the genome,
with only 34% of experiments assessed having coverage above 50% (Fig 3C). Even though the
whole transcriptome is measured in these experiments, using correlation as quantification
demonstrates that we are not powered to detect variation sensitively for most of the genes with
low sample sizes. Of course, this is subject to the important caveat that the experiments are,
indeed, expected to produce replicable variation between control and experimental conditions
only for a small fraction of genes: those actively relevant to the experimental perturbation.

One potential confound in this analysis is that increasing artifacts would broadly seem likely
to increase the correlation of replicates, so long as the artifacts were maintained across
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doi:10.1371/journal.pcbi.1004868.9003

replicates. Of course, this would be a problem with any sort of replication (if artifacts replicate,
replication doesn’t help as much). This can be controlled for since such artifacts would generi-
cally improve the correlation between a gene and all others, rather than specifically itself in the
replicate data.

We calculated the correlation of each gene with all others in the replicate data to provide
such reference information. We then calculated the rank of a gene’s correlation with itself ver-
sus all other genes within the experiment. If the variation in expression that a gene shows is
meaningful, we would expect it to have a higher correlation to the replicate of itself than other
genes. We do observe from the distribution of self-correlation (i.e., gene-level replicability as
previously defined) versus correlations to other genes (i.e., co-expression, co-regulation) that
genes are much better correlated to themselves in replicate data than to other genes (Fig 4)
with almost 20% even being better correlated with their measurement in the replicate data than
with any other gene in the replicate data (4,024 genes). This suggests that having closely repli-
cating gene profiles is a relatively common occurrence in high quality data.

The average correlation of the genes in the experiment is high (Pearson’s r = 0.97, SD 0.04).
If we relax our definition slightly so that the gene has to rank its replicate within the top 10%, we
see that 90% of the genes pass that threshold and that they have an average correlation of 0.9.
We have used this mean value as a cutoff (Pearson's r = 0.9) to characterize ‘reasonable’ replica-
bility for our further analysis of this study. This is more stringent than simple significant correla-
tion; we are requiring it to be above the mean of genes with a non-parametric ‘preference’ to be
correlated with themselves and close to the point nearest the top right corner (best perfor-
mance). Of course, because actual biological co-expression exists (a fact we will exploit), pristine
results in self-correlation are not to be expected and all downstream results are robust to any
reasonable variation in this threshold. We discuss the potential role of normalization creating
generic correlation across all genes in the “Robustness analysis of AuPairWise” section.

Mapping general QC heuristics to the replicability of expression changes. We now
move on to see whether this analysis of replication matches standard heuristics. The SEQC
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doi:10.1371/journal.pcbi.1004868.9004

concluded that low expressing genes, equivalent to 1/3™ of the measured dynamic range of the
whole experiment, and genes with lower fold changes between conditions (<log, FC 1~2)
should be discarded from analyses [9]. To assess these thresholds independently, we measure
their downstream impact on replicability in our reference ENCODE data. For each gene, we
plot in Fig 5C its total mean expression (x-values) against its average fold change between con-
ditions (y-values), and then color points according to their replicability, measured as the corre-
lation a given gene shows with its replicates across the conditions. This allows us to visualize
how the SEQC criteria align with our own definition of replicability.

Overall, most of the genes with low replicability (red points in Fig 5C) are low expressing
genes and have low fold changes. Indeed, if we wish to threshold the data for particular fold
changes and expression levels so that they are replicable as we have defined the term, we would
end up with results similar to the SEQC guidelines (blue dashed lines in Fig 5). Applying the
fixed guidelines and removing the bottom third of expressing genes leaves us with 97% of
genes showing good replicability (Pearson’s r>0.9 across replicates, p<le-15, Fisher’s transfor-
mation [24], Fig 5A), as compared to 61% of genes in the data overall. Likewise, poor replicabil-
ity is concentrated at low fold changes in the data with irreproducible genes (Pearson’s r<0.9,
Fig 5B) having a mean fold change of 2/0.48 and reproducible genes (Pearson’s r>0.9) having
a significantly higher mean fold change of 2/41.08 (p~2.34e-154, Wilcoxon test), similar to the
threshold suggested by the SEQC experiments. One difference from the SEQC evaluation is
that the irreproducible genes are not subject to their two criteria (mean expression and fold
change) independently; we can see that there is some dependency between the two constraints
and past a certain fold change, filtering on expression would not make a substantial difference
(i.e., there are little to no genes with very high FC and low mean expression). We also note that
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doi:10.1371/journal.pcbi.1004868.9g005

although our definition of a “reproducible gene” here is set by a somewhat arbitrary threshold
of 0.9, the mean correlation shows the same trend across the two criteria, perhaps even more
distinctly (S1 Fig). Thus, we suggest self-correlation across conditions is a more useful and
practical way of defining replicability.
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Part Ill: Using co-expression as a proxy for replicability

A co-expression heuristic to estimate gene expression replicability. Motivated by our
view that a gene’s co-expression across conditions with itself in a replicate is a useful view of
replicability, we wished to determine how this could generalize to comparisons between differ-
ent genes that are very tightly co-expressed or even stoichiometrically co-regulated. In the
same way that a gene should be well correlated with itself across conditions, we hypothesize
that there are gene-pairs whose functional relationship is so specific, that the pair can be treated
as pseudo-replicates of one another. These pairs will show similar expression profiles and
where that does not occur, we can infer poor replicability within a given data set. We call these
pairs of genes “housekeeping interactions”. Selection of these pairs is described in further detail
in the Materials and Methods section “Selecting co-expressed pairs” while much of the
remainder of this paper provides evidence that these pairs serve as an extraordinarily sensitive
means to detect disruption within data.

Proteins in complexes have been found to be highly co-expressed, such as in the proteasome
[25,26], and these genes respond to changes in the cell or tissue in a tightly regulated way. This
stoichiometry-where parts of a protein complex are required in fixed quantities—can be used
as a useful filter to obtain candidate gene-pairs. We thus derived this set of gene-pairs—our
housekeeping interactions—Dby extracting the top co-expressing partners from a large scale
meta-analysis of co-expression data [27], and those that were annotated as protein complexes.
That co-expression data is separate from the remainder used in this work (and thus may be
thought of as training data for the analyses conducted here). We note that while no individual
pair is guaranteed to be correct, our principal interest is in enriching for tight co-expression so
that aggregate signals are detectable.

The top co-expressed pairs in the housekeeping interaction list are between a unique set of
1,117 genes (i.e., some genes occur multiple times). We observe that these genes are enriched
for cellular functions related to the cell cycle (e.g., GO:0051301 cell division p<4.82e-89) or a
cellular structure (e.g., GO:0000776 kinetochore p<4.91e-40) amongst similar others (S1
Table). We expect enrichment for these functions primarily because we have selected for genes
that intersect with those annotated as protein complexes. We also suggest that these basic bio-
logical functions are plausible as characteristic of the set of genes with housekeeping interac-
tions which will remain under regulatory control, even once subject to experimental
perturbation (i.e., some subset of the pairwise relationships will be held constant or necessarily
co-disrupted). We also consider pairs defined by strongly conserved co-expression across spe-
cies as a secondary test set and a set defined purely by protein interaction as a third set.

Modelling the impact of perturbations on co-expression to estimate gene expression
replicability. For any of these tightly regulated gene-pairs, we expect that variation in the
expression of one gene should match the variation in expression of its co-regulated partner,
and it is this matching which we evaluate in the following. Going through our methodology in
steps, a gene’s expression levels in an experiment along with the same data for the gene’s co-
expression partner gives two gene expression profiles (Fig 6A). It would be expected that if the
expression data for these genes shows some differential signal across samples (i.e., biological
differences), these two profiles would show a high correlation across the samples (Fig 6B).
However, if one or more samples have low precision in its estimate of the gene expression, this
will weaken their correlation. Of course, for the genes to serve as equivalent to replicates, they
must be subject to primarily independent sources of error. This is clearly not wholly true-mini-
mally, they’re drawn from the same sample-but co-expression which is conserved, defines a
protein complex or is seen in many independent experiments seems unlikely to be due to
shared artifacts (although we evaluate this).
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it to be an outlier that is disrupting the co-expression indicated by the otherwise good linear fit. The residuals of the points scores the sample (regressing from
the line of best fit), and the (E) scores in aggregate allows us to draw an (F) ROC and calculate an AUROC, testing how well we the outlier was detected. We
also calculate a p-value (Wilcoxon test) to compare the distributions of the average AUROCSs of the co-expressed pairs and an equal number of random
pairs.

doi:10.1371/journal.pcbi.1004868.9006

We quantify the strength of the co-expression relationship by introducing “noise” into the
experiment through the perturbation of the expression levels of the gene in a particular sample
(Fig 6C). In our case, the noise added is a particularly subtle form of modification since we
only nudge the gene’s expression by a slight amount to another value identically sampled from
its expression distribution. Thus, in our case, 10% noise (perturbed) means that the original
expression value is nudged up by enough to put the gene 10% higher in the rank that its new
value takes relative to all of the expression values observed for that gene, the empirical distribu-
tion of its expression. Thus, if we rank standardize the data, the new value is sampled uniformly
from samples ranking within 10% (out of all samples) of the original sample’s rank. Note that
this is not a 10% change in its rank but a 10% change out of the total. Linear interpolation
between adjacent sample ranks allows us to sample continuously. Put simply, a gene’s expres-
sion level in one sample is replaced by its expression level in another sample. If that sample was
the one with the closest expression level, the noise is low and if it is was the furthest, the noise
is high.

Note that this is a subtle enough shift that it can never be detected from the gene’s expres-
sion alone; the distribution of expression values is essentially unchanged. If a small perturba-
tion (i.e., low noise factor) is detectable, it indicates that the relationship between gene-pairs
must be very clear (outliers are easy to identify, Fig 6D). Equivalently, if a large perturbation is
not detectable, it indicates an experiment with noisy data in which there are other samples that
are still more aberrant than one where noise has been introduced.

Using the distribution of samples detected as outliers for each gene-pair (Fig 6E, see Materi-
als and Methods section “Perturbation: the noise model”), we can predict the perturbed sam-
ple, and from this determine the area under the receiver operating characteristic curve
(AUROG, Fig 6F) to characterize how well all the gene-pairs (in aggregate) picked out the per-
turbed sample (see Materials and Methods section “Perturbation: the noise model”). Repeat-
ing this through all samples gives an average AUROC at a particular noise factor-where an
AUROC of 0.5 means that the noisy sample was undetectable, while an AUROC of 1 means
that the perturbed sample is always being correctly ranked as the poorest. Thus having a high
ability (i.e., a high AUROC) to detect even low noise is indicative of good performance-and
good replicability as we now define it- while experiments with weaker performance will exhibit
little change in response to noise and have lower AUROC:s. Systematically perturbing the sam-
ples by the addition of “noise”, and measuring the effect (the AUROC) each perturbation has
on the gene-pairs in aggregate can be used to quantify the quality of the experiment. As an
analogy, this is like yelling in a room; if the noise is undetectable, the data is noisy to begin
with, whereas if even a small noise is easily detected, the data is ‘quiet’ (shows pristine co-
expression). It’s important to note that this model provides a relative ranking of all samples for
their degree of noise; it is not the equivalent of a model which attempts to detect ‘differential’
samples. Thus, AUROC performance ranking the perturbed sample does not map to a categor-
ical judgment that a particular sample is detected as different; just that it is correctly ranked as
the most perturbed sample.

Application of co-expression for noise estimation in reference datasets. To test our con-
cept, we selected the BrainSpan reference set as it contained a large number of samples. Using
the set of co-expressed gene-pairs we derived, we varied ‘noise’ levels and sample sizes and
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doi:10.1371/journal.pcbi.1004868.9007

recorded the resulting AUROC:s. First, we note that randomly sampling a new expression value
in a given sample for each gene (from within that gene’s expression distribution) completely
disrupted the co-expression at that sample within the experiment and we could perfectly iden-
tify the disrupted sample (Fig 7A, 100% noise factor, i.e. random). And with no noise, the
AUROC was 0.5, since no signal from the gene-pairs could be used to distinguish the ‘dis-
rupted’ sample from any others in that case. In this reference data with 500 samples, 5% noise
was enough to increase the AUROC to 0.73.

We then systematically queried the space of different sample sizes versus noise (Fig 7B), and
observe similar trends. Low noise (<1%) across all sample sizes had average AUROC: close to
0.5, indicating that variation below that is undetectable in the dataset. While specific noise lev-
els are shown in Fig 7B, we could alternatively ask what level of noise is detectable to a particu-
lar accuracy (Fig 7C). If we set the AUROC to 0.6 (i.e., low but significant detectability,
equivalent to a Mann-Whitney p~1le-15), approximately 3.2% noise added to a sample (out of
100 samples) disrupts co-expression enough to correctly identify the sample at that level. This
drops to 2.5% noise when the data has 500 samples, and increases to 4.1% for 50 samples.

To observe the general range of values in other experiments, we ran the analyses on a further
83 RNA-seq experiments, of varying sample sizes. The noise factors that would give an
AUROC of 0.8 ranged between 3% and 40% and were inversely correlated to sample size
(Spearman’s r, = -0.48, S2A Fig). This is not a surprising finding, however, it reaffirms that one
of the most important influences of the quality and outcome of an experiment is the number of
samples. Even so, for some smaller sampled experiments (<10), we recorded smaller detectable
noise factors, similar to some of the larger experiments.

Robustness analysis of AuPairWise. Having demonstrated that the method detects subtle
disruption, we wished to establish proper use and controls. First, we assess the relative efficacy
of this method to what real replicates would measure (Fig 8A). Instead of the subset of co-
expressed pairs, we looked at all genes in the samples, paired to their replicate. As expected,
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doi:10.1371/journal.pcbi.1004868.9g008

replicates perform better than the co-expressed pairs (shaded lines versus solid in Fig 8A) with
true replicates allowing us to detect the addition of noise at a level ~1.25 times lower than co-
expression replicates (averaged across all ROCs; e.g., if 5% noise is detectable at a particular
AUROC with co-expression, a true replicate could detect 4% noise).

To better characterize these properties, we measured the performance of all possible gene-
pairs (ranked from highly co-expressed to not at all). Dividing all the gene-gene correlations
into centile bins, we measured the performance of these “centile pairs” under different noise
factors (Fig 8B). We expect that the stronger the correlations (higher centiles with better co-
expression), the higher the average AUROC will be. We can see that it requires highly co-
expressed pairs (in the 90™ centiles or greater in this experiment at 50% noise) to achieve per-
formance close to the stoichiometric pairs, suggesting that the stoichiometric co-expression
pairs are a particularly effective set to detect RNA-seq sample quality. Since these centiles are
with reference to the maximum possible performance in this dataset, a perfect ranking with
respect to them for our fixed set is not expected.

While we focused on high co-expression in protein complexes, we also wished to assess
other plausible housekeeping interactions (S3A Fig). Our second set of gene-pairs consisted of
highly co-expressed genes that were conserved across yeast and mouse (see Materials and
Methods section “Selecting co-expressed pairs”). We also wished to assess a set of gene-pairs
obtained independent of all expression data. We therefore looked at protein-protein interac-
tion pairs that are part of protein complexes without regard to co-expression. Out of all the sets
of pairs tested, the human stoichiometric co-expression pairs (i.e., those using PPI data and
prior expression) performed the best, the yeast-mouse co-expressing pairs also showed good
performance, while the purely protein-protein pairs showed moderate performance.
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As a negative control, we selected sets of random pairs of similar number to the number of
stoichiometric pairs, and once again ran the analyses. One striking feature of these results is
that random pairs exhibit modest performance in all cases. Intuitively, one might think that
random pairs could have some form of co-expression that would be detectable in aggregate,
perhaps due to a few real and highly co-expressed pairs having been randomly selected or a
more broadly distributed weak effect across all gene-pairs, not unlike the principle underlying
correction for batch effects. Any factor other than biology which contributes to co-variation
across samples could introduce this as an artifact and normalization confounds seemed to us a
potential concern. Importantly, our method’s performance is not at all sensitive to changing
the different normalization protocols (S3B Fig); however, a more finely calibrated assessment
distinguishing technical artifacts of this type from biologically real variation would be to use
the random gene-pairs as controls relative to our stoichiometric co-expression. The difference
in performance between the two (S4 Fig), while not extreme, is actually quite stark: testing the
performance distributions against each other yields a p-value of 2.78e-5 (Wilcoxon test, S4B
Fig). Since technical variation should drive co-variation among random pairs and biology the
preferential utility of stoichiometric pairs, we also report this statistic as a default within
AuPairWise. Just as in differential expression it is important to have large differences for a sub-
set of genes (biology) but not all (batch effect), so the same is true in our co-expression based
analysis.

We repeated our analysis of the 83 independent RNA-seq experiments looking for purely
technical co-expression as indicated by the performance of random pairs. In many of these
experiments, even random pairs have good performance, and while this was generally very sig-
nificantly less than the stoichiometric pairs (S2B Fig) only a very few experiments did not
exhibit this potential technical confound.

We next assessed the robustness of our method to variation in the number of runs and selec-
tion of pairs (S5 Fig). For this analysis, we first varied the number of perturbations we ran for
each noise factor analysis, and then calculated the variance of the AUROC. The noise factor
has a strong effect on the variance, while increasing the number of runs, of course, lowers the
standard error. We then varied the number of gene-pairs used in the analysis, and it appears
that a minimum of approximately 500 or so pairs is enough to detect an aggregate signal.

One important caveat attached to the high performances we have reported is that our per-
turbation model has only perturbed one sample at a time. In reality, it is quite possible for the
biological character of the data to be confounded with noise and, for instance, half the data to
be of lower quality than the other half. For example, a differential expression experiment in
which half of the samples were from a rare condition, hard to obtain, and for which worse qual-
ity control needed to be tolerated, would be one in which a lot of co-expression might be dis-
rupted. Just as our single sample perturbation resembles leave-one-out cross-validation, we can
conduct an identical experiment in 2-folds. We randomly sampled half the data from our
ENCODE-based experiment and subjected each gene in each sample to an independent pertur-
bation. Average AUROC’s for a given perturbation were 0.86 for 25% noise (significantly dif-
ferent than random pairs, Wilcoxon test p~6.65e-28, S2 Table). This comparably high
performance also suggests that our modest class imbalance in the leave-one-out analysis is not
seriously distorting assessment. Interestingly, one major difference in the 2-fold AUROC is
that it does not go to 1 as the perturbation goes to 100%, instead reaching a value modestly
below this (i.e., ~0.98, S6 Fig). Normally larger perturbations make it easier and easier to detect
the altered sample(s), but when half of the samples have no co-expression due to the perturba-
tion, it begins to impede the method. This is a fairly extreme state, however.

Finally, we considered whether our method could be naively applied to microarray data.
Our recent work suggests that pseudo-replicates in co-expression data are dominated by
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artifacts in microarray data [27]. In particular, very high co-expression in microarray data is
much more likely to reflect such artifacts (e.g., cross-hybridization) and occurs among low-
expressing genes. While we caution that this analysis is only preliminary, applying AuPairWise
to the equivalent microarray data set version of BrainSpan (across a common set of 495 sam-
ples, but performed on a microarray platform) also showed good performance (S7 Fig), yet the
random pairs had almost equal performance (see p-values, S3 Table), implying a potentially
greater role for normalization.

Guidelines and availability of AuPairWise. Our results indicate that using co-expression
is a practical approach to predict the consistency of replicates across biological samples in
expression experiments. To share this method, we have compiled our R scripts and make this
available on github under the name AuPairWise, so named for its use of selected housekeeping
interactions (https://github.com/sarbal/AuPairWise).

A summary schematic of the input and output is shown in Fig 9A. The scripts are depen-
dent on a few standard R packages and require expression data as inpu, with rows labelled with
the set of genes detected in Entrez gene IDs format and columns labelled with the sample
names. Given the expression dataset, a single run of the method outputs the average AUROC
for a range of noise factors (which can be specified), along with the number of repeats. Further
to this, an estimate quality control metric (“noise level”) is returned that is detectable over the
threshold of 0.5 -i.e., this is the estimated amount of noise in the samples. As we wish to qualify
the experiment based on biological properties, we compare the gene-pair results to those a sim-
ilar number of gene-pairs chosen at random would do and return the p-value (Wilcoxon rank
sum test, two sided) for each noise factor. When interpreting results from AuPairWise, we rec-
ommend reporting both the average AUROC: of the stoichiometric pairs, the random pairs,
and the corresponding p-value (Fig 9B). We suggest looking at a noise factor between 5%-25%
(depending on sample size), with smaller sized experiments warranting higher noise factors for
meaningful perturbations. For a given noise factor, a high performance on the stoichiometric
pairs and low performance on the random pairs and therefore a low p-value is a “good” experi-
ment. Low performance of stoichiometric pairs implies a poor run, and high performance on
the random pairs implies there is systematic artifact in the experiment. We also recommend a
minimal number of 10 samples for any of the analyses to be meaningful.

The current housekeeping interaction list is not perfect, but we argue that the list should
retain, on average and in aggregate, a strong fundamental biological signal. Of course, if the
experiment in question perturbs these pathways and protein complexes, it will be a useful set of
gene-pairs to investigate. To this end, gene-pairs selected can be customized to exclude those
subject to experimental perturbation, or those not measured. We have currently only made the
human (Homo sapiens) datasets and pairs available, yet, as the pairs list can be modified, other
species can be used, subject to further research to establish proper protocols and interpretation.

The current runtime for a single analysis (i.e., for 20 samples, 20,000 genes, 2500 gene-pairs,
across 10 noise factors and 100 repeats) is approximately ~5 hours on our cluster of 16 cores
with processors running at 2.4GHz and this scales linearly (S5 Table). However, we recom-
mend running 1000 repeats. Although not formally implemented in the method, runs can be
parallelized and the performance AUROCs combined across these runs.

Discussion

Recent analyses of RNA-seq have added a number of caveats to its use, as is to be expected with
any new technology as it begins to become mature [6,9]. Because of this growing appreciation of
limitations in RNA-seq, we think a reconsideration of some of the early enthusiasm is timely. In
particular, one of the most important technical claims made about RNA-seq-that it was highly
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replicable-was based on reproducing approximate transcript abundances. Instead, we have
argued that we mostly should care about condition-dependent changes in transcript abundance.
This is much harder to measure and much likelier to depend on experimental conditions. Con-
sequently, it’s valuable to have a method which can measure the expected replicability of a per-
formed experiment and it is this gap our analysis tool, AuPairWise, seeks to fill.

Quality control in RNA-seq is still a major concern, in particular when final biological out-
comes are not replicated. At the heart of any quality control scheme is a ‘check’ for some
expected class of result. For example, one might expect most genes not to be differentially
expressed [28] and correct data to ensure that this is true. Our method hinges on an expecta-
tion that a particular subset of genes will show correlated expression. This is among the most
well-validated observations in the analysis of expression data [25] and also one which has com-
paratively little impact on differential expression results. We have, nonetheless, taken unusual
pains to ensure our method will not lead to overfitting, including assessing a variety of co-
expression signatures, allowing customization of the pairs chosen for assessment, and not
implementing our method as a correction.

Approaches related to our own are touched on in recent literature, even though most quality
control in RNA-seq is focused on batch corrections of some sort. For example, in their analysis
of single-cell data, Buettner et al. [29] exploit co-expression among cell-cycle genes to perform a
batch correction based on cell-cycle as a latent variable. While this is most readily understood as
a variation on conventional batch correction, it resembles our own technique in exploiting func-
tion in the form of known co-expression to determine a covariate associated with noise. Indeed,
had that analysis generalized across many functional classes and then modelled the predictabil-
ity of noise as a means of quality control (rather than as a correction), it would resemble our
own method. Another related approach is the L1000 analysis platform which measures gene
expression over only a small subset of genes and then uses learned relationships based on co-
expression to infer the rest [30]. While this is exploiting an effect similar to that in our analysis,
we rely on such relationships to infer a single measure of quality control; we are never too reliant
on any one being accurate. To literally infer unknown expression from such relationships seems
to us likely to lead to overfitting. A less extreme approach similar to the L1000 system is used in
imputation of expression, where the expression of genes missing from a sample in the data are
estimated by using the expression of genes that are co-expressed [31]. There, the expression pro-
files of the co-expressed genes provide the expression of the missing sample. In our case, prior
knowledge as to which gene should be co-expressed is used not to correct the data, but to deter-
mine if that sample has correct values. Finally, because co-expression is used to infer function in
networks, its utility for doing so in any given data can be used as a form of quality control (e.g.,
[32]), but this lacks any quantitative mapping to differential expression.

The perturbation model we have used, while simple and fairly close to conventional ideas
such as bootstrapping (plus constraint and interpolation), is not common within RNA-seq
analysis. We suggest that even outside of our specific application, a strongly data driven sam-
pling distribution for gene expression is likely more desirable than more theoretical approaches
based on modeled expression values. The observation of subtly erroneous normalization has
been previously discussed as a problem for co-expression analyses [33]; this result is similar to
our own that random pairs show some performance. In particular, we do consider it critical to
report both random and real pairs for performance since it is the relative performance of ‘real’
pairs that indicates the experiment is conforming to expectation; just as in differential expres-
sion, pervasive effects across the genome are not evidence of high biological signal, but rather
high technical signal. It is worth noting that co-expression network analyses are mostly robust
to these normalization effects since they usually depend only on the relative rankings of corre-
lations between all gene pairs and not on the significance of the values directly.
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Our method is not without limitations. As it requires there to be a measurable amount of
variance within the experiment, it will be difficult to calculate co-expression in an experiment
that has no conditions for expression to vary across. The number of samples that make for
meaningful co-expression will also need to be followed [27], although this seems more feature
than bug to us, since it is, in fact, true that more data permits for more replicable results. We
also suggest that the co-expressed pairs themselves are subject to review and reanalysis. As
mentioned, we have tried our best to not overfit to current data, but it does rely on the available
information present in co-expression data and gene annotations. As more data does become
available, and our knowledge base on stoichiometric pairs and the biological implications
behind these expands, the housekeeping interaction pairs will need to be refined. Of course,
even regular housekeeping genes lists are by no means without argument despite decades of
study. We also have ignored the transcript specific level of replication; this admits to clear
expansion using transcript specific pairs. One final caveat is that because this method is not a
correction of any type, the results do not pinpoint particular genes that are misaligned, but
rather indicate that the whole experiment does not conform to expectation.

While previous work hints at the value of co-expression for quality control, we think it has
been hampered by a poor sense of what precisely quality control should be controlling. We
think our analysis and particularly our recapitulation of SEQC’s observational heuristics from
more basic principles help guide quality control by attaching a more precise meaning to ‘replica-
tion’. While RNA-seq’s signal-to-noise ratio may be less idealized than early analyses implied,
our ability to assess where noise does occur in RNA-seq appears to be much higher. By provid-
ing a common standard for that assessment, we hope AuPairWise will permit experimentalists
the opportunity to refine their experimental design and validate their success in doing so.

Materials and Methods
Datasets

To illustrate our analyses, we used data from publically accessible RNA-seq experiments where
we define an experiment as a set of samples. The majority of the work and analyses were per-
formed using the following datasets: ENCODE (GSE35584) [34], Marioni et al (GSE11045)
[21], Xu et al (GSE26109) [22] and BrainSpan [35]. The ENCODE dataset and the Marioni

et al. dataset were downloaded from SRA and converted to fastq files using “fastq-dump” from
the SRA Toolkit [36]. Following quality control using the fastX tools, we mapped the reads
using bowtie2 [37] and estimated the RPKM and FPKM expression levels using RSEQtools
[38] and Cuftlinks [39] respectively, and the GENCODE annotations file [17] (version 18). We
used the processed data provided in the Xu et al. supplement and the online Brainspan data.
For our assessment of publically available data, we looked at those accessible both via Gene
Expression Omnibus (GEO) and Sequence Read Archive (SRA). We used the URL from the
GEO browser [http://www.ncbi.nlm.nih.gov/geo/browse/?view=samples&display=500&type=
10&tax=9606&sort=type], filtering on human samples and those in SRA as of January 2015. Of
the resulting 39K samples, we then filtered on samples only in a single experiments (unique to
one GSE ID, close to 1.4K experiments), and then calculated the sample size for each of these.
For a final follow up, we then obtained 83 RNA-seq experiments from the Gemma database
[40] that were processed using RSEM [41]. These experiments varied in experimental design,
sample size, read depth, sample type and conditions.

Measuring replicability: Correlations and sample estimates

We define an experiment as an ordered set of expression values for genes across multiple sam-
ples, with each sample defined as belonging to some class of biology from which RNA can be
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extracted. A replicate experiment is defined as an experiment across samples with identical
class memberships, but varying on one of three other levels. This could be varying at a techno-
logical level (same samples, but run on a microarray), technical level (same samples, but a dif-
ferent run of the same machine), or a biological level (same conditions, tissue, cell, organism
etc). The ENCODE dataset were purely technical replicates. To measure the replicability of an
experiment in sample-sample space, we took the expression levels of an experiment, and calcu-
lated the Spearman (7;) or Pearson (r) correlation coefficient for each sample to its replicate
(see Eq 1). Thus, we get a single correlation value for a sample, and multiple for an experiment.
In our second measure of replicability, we are assessing the degree to which changes in expres-
sion for the individual genes are replicable. For this, we take each gene’s expression value across
samples in one experiment, and the replicate values (i.e., the technical replicates), and calculate
the Spearman or Pearson correlation coefficient of these two expression profiles for the same
gene. For this measure, we get a value for each gene, and a distribution of correlation values.
So, for a gene i, the gene-level replicability (corr;) is equal to the correlation (Spearman’s rsg; or
Pearson’s ;) between the expression values of the gene in experiment X (i.e., X;) and the repli-
cate experiment Y (i.e., Y;), across n samples.

corr, = corr(X,, Y,

i n(n2 —1)

_ Z;:l(xij _xi)ojij =) (1)
\/Z;l:] ('xij - xi)Z\/Z::I (yij 7?:‘)2
X, = [Xus X, Xgooo X,]

Y, = Wis Yo Yoo Vil

r

i

Eq 1 Gene-gene correlations as a gene-level replication metric

These gene-gene correlations each have an associated p-value that is calculated by either
estimating a z-score (for a normal distribution, Eq 2) or a t-statistic (for a T-distribution, Eq 3),
where r is the correlation value and #n the number of samples in the experiment

z:%ln(1+r> n—3 (2)

1—r 1.06
Eq 2 z-score estimate

n—2
1—12

N
|

(3)

Eq 3 T-statistic estimate

One interesting terminological issue which overlaps with these two senses of replicability is
the use of the term “RNA-seq experiment”. It is not uncommon within the literature to regard
a single data sample as an experiment under the viewpoint that the different expression levels
of different genes are then different measures of expression level. This would be close to the
sample view of replicability in which even two samples would permit an estimation of replica-
bility across those measures. In this work, we reserve the term “RNA-seq experiment” for data
generated across multiple samples, typically to test some conditional variation. In such data,
each gene will have multiple expression values and so gene-level replicability is meaningfully
assessable.
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We used the R functions pnorm and pt to estimate the p-values (for the z-score and
T-statistic respectively). After adjusting for multiple tests with p.adjust in R, we then calculated
the number of genes replicated as the number of genes with a significant correlation value
(9<0.05). To estimate the number of samples required to get 90% of the genes replicated, we
assumed that the range of correlation values would remain the same, but varied the number of
samples # (within the T-statistic estimate equation), and recalculated the adjusted p-values.
This gives us, for each n, the number of genes that will be significantly correlated, assuming the
distribution of correlation coefficients is the same.

To compare our measures of replicability to the MAQC filters, we calculate the fold change
(Eq 4) and the average expression of the ENCODE experiment. We took half the samples as
untreated and the other half as treated, as per the experimental design (see GSE35584), and cal-
culated the fold change as the absolute value of the ratio of the averaged expression levels
between those conditions.

FC = |log,

Eq 4 Fold change calculation

AuPairWise: Replication through co-expression

The overall idea behind the AuPairWise method is to leverage the biological signal of co-
expressing pairs as a measure of replicability of an experiment. Therefore, the method requires
a set of co-expressed pairs (section “Selecting co-expressed pairs”) that can be used as the bio-
logical indicator, and a noise model (section “Perturbation: the noise model”) to determine
the strength of these pairs. As a general overview, the nature of the test is a way to calibrate the
noise within the system, as it attempts to detect outliers where we have purposely generated
them. The more detectable noise is, the lower the original noise in the data (without the pertur-
bation). As there are outliers in the real data, those samples are precisely the ones where we can
add a substantial amount of noise without detection. Thus, when we perturb out system with
noise, we are making a statement about the data prior to the noise being included. The degree
to which perturbations can go undetected is the degree to which the experiment is noisy.

Selecting co-expressed pairs

We generated a list of co-expressed pairs of genes that are required, in a similar way to house-
keeping genes, to be expressed at stoichiometric ratios. First, we took the top 1% of genes that
are reciprocally co-expressed in an aggregate microarray co-expression network. We similarly
took the top 1% co-expressed genes from an aggregate RNA-seq co-expression network. We
then took the intersect of these two gene-pair sets. To limit our set to what we believe are non-
condition specific pairs, we took all the gene-pairs that were annotated as protein complexes in
the Gene Ontology (GO [42], GO:0043234). With this, we were left with 2,669 gene-pairs,
between a total of 1,117 genes. We also generated a similar list of co-expressed pairs conserved
in yeast and mouse. We took the top 1% co-expressed pairs from an aggregate yeast co-expres-
sion network that we had created from 30 experiments across 966 samples on the Affymetrix
Yeast Genome S98 Array (GPL90) platform. We also then took the top 1% co-expressed pairs
from an aggregate mouse co-expression network (30 experiments across 1,575 samples on the
Affymetrix Mouse Genome 430 2.0 Array, GPL1261). We then took the intersect of these two
lists, whereby we had homologs for both genes in the pair and were left with 352 gene-pairs.
Another gene-pair list we used was the protein-protein interaction set from BIOGRID (version
BIOGRID-ALL-3.2.106, June 2014). Once again, we filtered this list down to 7,731 gene-pairs
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(interactions) by specifying that the interaction was a physical interaction, from Affinity cap-
ture-mass spectrometry experimental systems, and only genes associated with the GO protein
complex term (GO:0043234).

In order to better characterize what GO terms were enriched in our human co-expressed
gene-pairs set, we ran a simple gene set enrichment analysis using the hypergeometric test
(phyper), correcting for multiple hypothesis testing using the Benjamini-Hochberg adjustment
(p.adjust) in R [43].

Perturbation: The noise model

We define an experiment as the expression levels of all genes across all samples for a range of
conditions. Samples are not constrained to biological replicates, but should contain at least two
conditions. Using the expression levels of each gene-pair, we calculated a score based on the
residuals of the linear regression model fitting the points. Each point is a representative of a
sample and its “expression replicate” (co-expression partner). Because we expect the expression
levels of the genes to be “replicated”, there should be high correlation (the gene correlations
across samples we defined earlier), and thus the residuals should be small, and “outliers” few
and random. We rank these residuals, thus giving each sample a score. If a sample is perturbed,
it should on average score the worst across all genes. We illustrate this in Fig 6, and in more
detail in supplementary S8 Fig.

In order to measure how robust the experiment was to noise, we then perturbed the system
by randomly selecting a sample and added a relative amount of noise to all the genes in that
chosen sample. We used a perturbation model that was a function of the dynamic range of a
gene and the sample size of the experiment, such that a noise factor of 10 meant for an experi-
ment with 100 samples the gene would vary within 10% of that gene’s expression values (as
measured by the current experiment). First, we rank the expression profile of that gene (i.e., the
gene’s dynamic range) across the samples. We then select a sample to perturb at random (S8A
Fig). As we are perturbing each gene’s expression level for that sample based on its dynamic
range, we need to ensure that the expression value is within the measured range of both the
experiment and the samples. To do this, we order the gene’s expression values and interpolate
the values between them to generate our sampling distribution (S8B Fig). We then calculate the
rank shift for the given noise factor (i.e., for a 100 samples at a noise factor of 10%, we select a
rank shift between 0-10), sampled from a uniform distribution (S8C Fig). At this new rank, we
estimate the new expression value for that gene based on its dynamic range (S8D Fig). We then
remap the expression value to be within the samples expression range (standardization). We
used this model to ensure that the expression values remained within the empirical distribution
of the gene and the expression distribution of the sample. Our expression experiment now has
a perturbed sample (S8E Fig) with expression values within its original measurements. To be
consistent, we defined random as a noise factor of 100%, and no perturbation as 0%. Noise is
added in this way to all genes in that one sample, independently. Once all the genes are per-
turbed in this way, we then calculate the effect of this perturbation on the co-expressing pairs.
We rank the expression profiles of each gene across the samples, and calculate the studentized
residuals of the linear regression between the two genes. The score for each sample is simply
the ranked residuals, whereby samples which deviate the most from the line of best fit rank the
worst. With the aggregate scores from the individual linear regression model for all the genes
pairs, we generated an ROC curve and calculated the area under the curve (AUROC). We also
note that the AUROC is similar to the U statistic of the Mann-Whitney test and can be calcu-
lated analytically (Eq 5). P is the rank of the held-out positive, TP the number of true positives,
TN the number of true negatives, and N the total number of samples. If ranked correctly, we
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get an AUROC of 1. If ranked randomly, the AUROC value ranges between 0 and 1 and on
average will be 0.5.

ZN __TP(TP+1)

D - 5

AUROC = 1 —
UROC TP x TN

Eq 5 AUROC calculation
We used the AUROC as a measure of the performance of the experiment.

Validation of pseudo-replication

As a proof of principle method for experiments where there were replicates available in the
experimental design, we used the replicates and looked at every gene-paired with itself. In this
case, we took the residuals of the gene replicates from the linear model, aggregating across all
the genes (paired with their own replicate), and generating a ROC and calculating the AUROC.
As described previously, we varied the amount of noise, repeating and permuting across the
samples.

For the two-fold validation, where we perturbed more than one sample, we performed the
same experiment, selecting at random half the samples and shuffling the expression values of
the genes according to the noise factor. In this case, we shuffled each sample independently, so
that the shuffled samples did not affect the values of the remaining samples to be shuffled. The
AUROC was calculated as above, and the experiment was repeated across the different noise
factors, and across different random set of samples.

R scripts on github

For further information on how to the use the AuPairWise method and obtain the metrics, see
the github repository (https://github.com/sarbal/AuPairWise). We have briefly summarized
the code below.

For agivennoise factor

Chose a sample

For eachgene in this sample

Add noise togene’ s expression

Remap sample tooriginal expression levels
For each gene-pair

Calculate lineof best fit

Calculate residuals for each sample pair

Rank residuals to score each sample
Aggregate ranks scores for each sample
Calculate AUROC using aggregate scores
Repeat
Return average AUROC (6)

Pseudocode for the AuPairWise method

Supporting Information

S1 Text. Additional text, data location, script description and references.
(DOCX)

S1 Fig. Density of mean gene-gene correlations between replicates before and after filter-
ing. (A) For the fold change values, we see that for the recommended FC cutofts (the blue dot-
ted lines), the mean correlations are low and increase the further we move (black line).
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Removing low expressing genes shows even higher mean correlations (grey line). (B) For the
average expression values, once again, we see that for the recommended cut-off, we have higher
mean correlations (black line), that are improved even more with the inclusion of the fold
change filter (grey line).

(TTF)

S2 Fig. AuPairWise noise metrics on RNA-seq experiments. Here we took 83 RNA-seq
experiments and ran the AuPairWise method for 100 repeats across a range of noise factors. (A)
The density plot (solid line) shows that most experiments fall within the 19% noise factor range
as assessed to cause an AUROC shift to 0.8. There is a dependence on sample size of course,
with larger experiments requiring smaller noise perturbations (data points in figure). (B) Signifi-
cance of difference in performance AUROC: for biologically related gene-pairs compared to
random pairs for all the experiments. The geometric mean of these p-values is 4.67e-06. For
comparison, the ENCODE reference dataset with 18 samples sits with a p-value of 6.52-e14.
(TIF)

$3 Fig. Average AUROC using alternative gene-pairs and different expression normaliza-
tion methods. (A) The co-expressed pairs (shown in red) outperform the protein-protein pairs
(brown), the conserved yeast-mouse co-expressed pairs (pink) and random pairs (blue). These
are the results of 1000 repeats. (B) Using different normalization methods on the expression
data has a small effect on the performance AUROC: of the stoichiometric pairs. Here we com-
pared the effects of RPKM (brown), TPM (blue), TMM (orange), VST (red), and simply rank-
ing the expression data (green). These are the results of 1000 repeats.

(TIF)

S4 Fig. Distribution of the gene-pair AUROC: for different noise factor parameters. The
distributions are for 1000 runs of the method on the same dataset, varying the sample being
perturbed. The colored distribution is the co-expressed pair performances, while the lighter
distribution is the performance of an equal number of random gene-pairs. The solid line is the
average AUROC for the co-expressed pairs, the dashed for the random pairs. The p-value is
the significance of the difference between these two distributions (Wilcoxon test, two-sided).
Panels are for different noise factors (A) No noise added (p~0.85), (B) 10% noise (p~2.78e-5),
(C) 25% (p~2.71e-112) and (D) 50% (p~2.76e-153). We see that although the average AUR-
OCs may be similar, the distributions are significantly different.

(TIF)

S5 Fig. Variance versus parameter choices in the AuPairWise method. Here we show the
standard error (SE) of the performance AUROC:S of the stoichiometric pairs as a function of
the parameter choices on the ENCODE dataset, holding the sample size constant. (A) First we
calculate the effect of the number of runs on the analysis, by varying the number of repeats
from 10 to 1000. The SE decreases as the number of runs increases, as expected, with the noise
factor having a small effect on the SE. (B) Varying gene-pair numbers (between 10 and 2500)
shows a consistent SE only when 500 or more gene-pairs are used. To note, all variance is
below 0.01 for almost all these parameter choices, indicating the results are quite robust. (C)
We show the performances (average AUROCS) as a function of to the average number of
genes within the sampled gene-pairs (and mapping between average number of genes and
gene-pairs in inset).

(TIF)

S6 Fig. Performance AUROC:s for AuPairWise on ENCODE data with the 2-fold cross vali-
dation. Using the ENCODE dataset once again and running the method 1000 times, we varied
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the number of samples perturbed in the experiment. The n-fold cross-validation (one per-
turbed sample, in red) outperform 2-fold cross-validation (half the samples perturbed, purple).
The 2-fold validation does not have an AUROC performance of 1 at 100% (~0.98), likely due
to the fact that a great deal of co-expression is lost, hence preventing the method from detecting
any structured co-variation.

(TTF)

S7 Fig. Performance AUROC:s for AuPairWise on microarray and RNA-seq versions of the
BrainSpan dataset. The co-expressed pairs (darker lines) outperform the random pairs (lighter
lines), for both the RN A-seq (green) and Microarray (blue) datasets. But the microarray dataset
has more similar performances between the co-expressed pairs and the random pairs, com-
pared to the RNA-seq version. The microarray dataset also performs worse/close to the RNA-
seq random pairs.

(TIF)

S8 Fig. Expansion of Fig 6C explaining the noise model. (A) Expression of gene X from
experiment. (B) The first step is to order the expression levels, and interpolate between the
samples to get a continuous distribution of expression. (C) Then with this distribution, we
define the boundaries for the noise included expression levels for that gene. For instance, with
10% noise, the new rank is limited to the yellow rectangle bounds, which corresponds to an
expression change, constrained between expression values of ~1 to ~2 (the orange rectangle).
(D) We then pick the new expression level and standardize it. (E) This is repeated until all the
genes in the selected sample have “noise” added to them.

(TTF)

§1 Table. GO enrichment of genes in the housekeeping interaction gene-pairs.
(XLSX)

S2 Table. Significance of difference in performance AUROC: for gene-pairs compared to
random pairs of the ENCODE dataset.
(XLSX)

S3 Table. Significance of difference in performance AUROCsS for gene-pairs compared to
random pairs for microarray and RNA-seq versions of the BrainSpan dataset.
(XLSX)

$4 Table. Performance and significance of difference in performance AUROCs for gene-
pairs compared to random pairs for 2-fold cross validation of the ENCODE dataset.
(XLSX)

S5 Table. Average running time of AuPairWise across different sample sizes and repeats
for a noise factor.
(XLSX)
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