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The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning,
and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer’s disease, as well
as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically
complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the
BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to
determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical
processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain
region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in
neurological disorders.
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Introduction
The basal forebrain (BF) contains multiple major ascending
arousal systems that promote wakefulness, awareness, and corti-

cal low-voltage fast activity (Moruzzi and Magoun, 1949; Semba,
2000; Zaborszky, 2002; Jones, 2003, 2004; Brown et al., 2012;
Zaborszky et al., 2015). The BF has also long been implicated in
cognitive functions, including attention, learning, and motiva-
tional salience (DeLong, 1971; Richardson and DeLong, 1990;
Wilson and Rolls, 1990a; Voytko et al., 1994; Voytko, 1996; Lin
and Nicolelis, 2008). The degeneration of the BF is an early event
in Alzheimer’s disease (Whitehouse et al., 1982; Grothe et al.,
2012) and forms of dementia (Cummings and Benson, 1984) and
is associated with normal cognitive aging (Gallagher and Co-
lombo, 1995). Deep brain stimulation targeting the BF is being
evaluated as a novel therapy for dementia-related disorders
(Freund et al., 2009; Hescham et al., 2013; Salma et al., 2014).

The BF is an extended structure situated at the base of the brain
and classically defined by the presence of clusters of large cholinergic
neurons (Meynert, 1872), which are found in the medial septum
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Significance Statement

Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the
cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using
transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to
dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal
forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity.
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(Ch1), the vertical (Ch2) and horizontal (Ch3) limbs of the diag-
onal band, as well as in the substantia innominata/nucleus basalis
(NB) (Ch4; Mesulam et al., 1983). These regions provide ascend-
ing projections to the hippocampus, thalamus (Parent et al.,
1988; Jourdain et al., 1989; Bickford et al., 1994; Gritti et al.,
1998), amygdala (Unal et al., 2015), and neocortex (Zaborszky et
al., 2015), as well as descending projections to the hypothalamus
(Gritti et al., 1994). Here we focus on recent optogenetic studies
conducted by the authors that targeted the Ch3/Ch4 regions and
their projections to the neocortex. We note that other recent
studies also addressed postsynaptic cell-type-specific mecha-
nisms of cholinergic activation in the cortex (Arroyo et al., 2012;
Bennett et al., 2012; Saunders et al., 2015) and important subcor-
tical projections (Unal et al., 2015) that our review does not
cover.

Although the BF is best known for, and often equated with,
acetylcholine-containing neurons that provide most of the
cholinergic innervation of the neocortex (Jones, 2004), it ac-
tually contains projection neurons with a diversity of neu-
rotransmitters. In addition to cholinergic neurons, the BF
houses two other, parallel projection systems to the cortex,
one releasing GABA and the other glutamate as their main
neurotransmitter (Mesulam and Van Hoesen, 1976; Brashear
et al., 1986; Freund and Gulyás, 1991; Freund and Meskenaite,
1992; Gritti et al., 1993; Hur and Zaborszky, 2005; Henny and
Jones, 2008). The anatomical heterogeneity and cell-type di-
versity of the BF have hampered research into how it func-
tions. The availability of new transgenic mouse lines to
specifically target cholinergic, GABAergic, and glutamatergic
BF projections is rapidly changing the field (Hippenmeyer et
al., 2005; Rossi et al., 2011; Vong et al., 2011; Zhao et al., 2011).
When used together with other technological advances, such
as optogenetics and pharmacogenetics, these new mouse lines
have allowed researchers to perform critical experiments that
could only be dreamt about until recently (Boyden et al., 2005;
Zhang et al., 2007; Nawaratne et al., 2008).

In this review, we aim to provide an overview of recent
advances grouped around three major topics. First, although
the role of the BF in cognitive functions has long been associ-
ated with its cholinergic modulation, until recently it has not
been possible to determine when and how cholinergic BF neu-
rons are specifically activated in behavior. Second, although
the study of the BF has traditionally focused on cholinergic
neurons, cortical projections from the BF contain equally if
not more prominent noncholinergic components, and their
functions are poorly understood. Third, the circuit mecha-
nisms by which cholinergic and noncholinergic BF neurons
dynamically modulate cortical activity to mediate cognitive
functions remain unclear. Together, these new studies ad-
vance our understanding of the BF and begin to reveal the rich
temporal dynamics and diverse functions served by distinct
components of this neuromodulatory hub. We begin with new
studies focused on the BF cholinergic projection and then
move on to discuss noncholinergic BF neurons.

BF cholinergic neurons are activated by reward and
punishment with remarkable speed
Most of our knowledge about central cholinergic function in
cognition has come from lesions and pharmacological studies
(Everitt and Robbins, 1997; McGaughy et al., 2000; Hasselmo
and Sarter, 2011). However, when are cholinergic neurons
recruited during behavior and what cognitive variables do
they signal? Progress in answering this long-standing question

has been stalled by the lack of tools for cell-type-specific re-
cordings. A handful of identified cholinergic neurons have
been recorded across sleep–wake states using a juxtacellular
approach with post hoc identification, a challenging technique
that is difficult to combine with behavior (Lee et al., 2005;
Hassani et al., 2009). Unfortunately, cholinergic neurons can-
not be identified definitively using extracellular recordings
based on anatomical landmarks, pharmacological approaches,
or distinct action potential waveforms. As a consequence, un-
til recently, there have been no recordings of identified BF
cholinergic neurons in behaving animals. This challenge was
taken up in a recent study that used optogenetics-assisted cell-
type identification to extracellularly record cholinergic neu-
rons (Hangya et al., 2015).

To determine which aspects of cognition cholinergic activity
might support, these authors trained mice on an auditory detection
task requiring sustained attention. Correct responses were rewarded
with a drop of water, whereas false-alarm responses triggered a
mild puff of air directed to the face as punishment. This task was
designed to test the long-standing hypothesis that the cholinergic
system is involved in attentional functions on a fast timescale (Everitt
and Robbins, 1997; Sarter et al., 2005, 2009; Herrero et al., 2008).
Sustained attention might fluctuate in time, and its momentary level
is expected to modulate behavioral performance, such as accuracy
and reaction time (Coull and Nobre, 1998; Barnes and Jones, 2000).
Thus, attentional modulation can be defined operationally as neural
activity before stimulus onset that predicts facets of behavior, such as
reaction time or accuracy. Surprisingly, not the cholinergic but the
activity of a population of unidentified neurons predicted reaction
time and performance accuracy, behavioral measures classically as-
sociated with attention. These results supported the view that the BF
serves attentional functions, albeit controlled by some noncholin-
ergic neurons.

To motivate behavioral performance, mice were rewarded
and punished based on their choices, which enabled the authors
to test whether cholinergic responses are related to reinforcers.
Indeed, nearly all cholinergic neurons responded with strong,
short-latency activation to primary reinforcers: water reward and
air-puff punishment. Punishment elicited uniform and reliable
activation at remarkably short latencies (18 � 2 ms) in cholin-
ergic neurons. Reward-elicited responses were larger when the
signal-to-noise ratio of the preceding auditory stimuli was lower.
These responses were consistent with a model according to which
graded reinforcement surprise recruits cholinergic neurons. The
remarkable speed and precision of cholinergic activation pro-
vides a key piece of evidence complementing in vitro studies
showing that the millisecond timing of acetylcholine can con-
trol the strength and even the sign of plasticity at hippocampal
synapses (Gu and Yakel, 2011; Gu et al., 2012). In addition,
cholinergic neurons appear to recruit specific subtypes of
cortical inhibitory interneurons that generate disinhibition
(Letzkus et al., 2011).

Interestingly, the response properties of cholinergic neurons
were similar across two different nuclei within the BF, the pre-
frontally projecting horizontal diagonal band (Ch3) and the au-
ditory cortex projecting NB (Ch4), despite the fact that these
nuclei are often implicated in different functions and have a dif-
ferent topography of cortical projections (Zaborszky et al., 2015).
These results reveal that the BF cholinergic system broadcasts a
precisely timed signal to large areas of the brain and thereby could
support learning and plasticity as a reinforcement signal (Hangya
et al., 2015), as suggested by previous nonspecific electrical stim-
ulation studies (Kilgard and Merzenich, 1998).
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A BF cholinergic signal conditions reward timing activity in
the primary visual cortex
Converging evidence supporting the idea that BF cholinergic
neurons convey a reinforcement signal comes from studies of
reward timing activity in the primary visual cortex (V1) of ro-
dents. Reward timing activity in V1 emerges as a consequence of
pairing visual stimuli with delayed reward, leading to stimulus-
evoked activity in V1 that predicts the timing of expected future
reward (Shuler and Bear, 2006; Zold and Hussain Shuler, 2015).
Thus, reward timing activity exemplifies a core function of the
brain: predicting the timing of future events of behavioral impor-
tance based on past experience. This ability to appreciate the
predictive qualities of environmental cues affords a means by
which the organism may subsequently evaluate the relative worth
of options, inform the timing of future actions, and govern future
learning in response to changes in the experienced environment.
Indeed, visually cued, interval timing activity in V1 has been
shown to report the target interval to reward, informing the de-
cision of when to time the action on a trial-by-trial basis (Nam-
boodiri et al., 2015).

A formal reinforcement-based model was proposed to address
how reward timing activity may form within V1 (Gavornik et al.,
2009; Huertas et al., 2015). A key aspect of the formal computa-
tional model is the provision of a reinforcement signal conveying
behavioral outcome. Indeed, Weinberger and colleagues have
long advanced the hypothesis that BF cholinergic innervation
conveys a signal conducive to engendering physiological memo-
ries in cortex. Their programmatic investigation has demon-
strated that a tone paired with direct acetylcholine application to
the auditory cortex or NB electrical stimulation results in recep-
tive field modification toward the paired frequency, mimicking
that induced by behavioral conditioning, an effect blocked by
cortical application of atropine (Metherate and Weinberger,
1989; Bakin and Weinberger, 1996; Miasnikov et al., 2001). Fur-
thermore, conditioning by NB pairing leads to behavioral asso-
ciative memories (McLin et al., 2002) by acting as a teaching,
rather than as a motivational, signal (Miasnikov et al., 2008).
Given these and related observations (Bear and Singer, 1986; Gu
and Singer, 1989; Froemke et al., 2007), BF cholinergic input was
postulated as a potential signal carrying a reinforcement signal
affecting plasticity in V1. Therefore, to test the necessity of the
cholinergic system for learning reward timing activity, Chubykin
et al. (2013) selectively lesioned cholinergic BF input to V1 via
injections of 192-IgG-saporin into V1 and assessed whether new
cue-reward delays could be learned and expressed neurally within
V1. This study showed that BF cholinergic innervation to V1 is
indeed required for reward timing activity to be learned in V1.
Importantly, cholinergic innervation was not necessary for al-
ready learned reward timing to be expressed.

To test the sufficiency of BF cholinergic input for reward tim-
ing activity in the visual cortex, another study examined directly
whether BF innervation of V1 in general, and cholinergic inner-
vation of V1 in particular, is sufficient to condition cued-interval
timing activity mimicking reward timing activity as observed af-
ter behavioral conditioning (Liu et al., 2015). By optogenetically
driving BF input within V1 at fixed temporal delays after predic-
tive visual cues, Liu et al. demonstrated that cue-evoked “reward”
timing activity is indeed elicited by selective activation of BF in-
put. Their results also demonstrated that optogenetically en-
trained timing activity in V1 can be bidirectionally tuned to
represent new conditioning intervals and is subject to experience-
dependent refinement. Interestingly, the distributions of neural
reports to given delays exhibit a scale invariance with respect to

the delay. Such multiplicative scaling may be a neural correlate of
the scalar timing property—a version of Weber’s law in the time
domain—wherein the distributions of behaviorally timed re-
sponses are superimposable after multiplicative scaling (Gibbon,
1977). Finally, by conditioning visually evoked responses with
selective activation of cholinergic fibers within V1, Liu et al. ad-
vanced the case that cholinergic innervation within V1 is indeed
sufficient for cued interval-timing activity, in addition to it being
necessary (Liu et al., 2015). Together with the study by Hangya et
al. (2015) showing that BF cholinergic neurons respond acutely
to behavioral outcome (reviewed above), these studies advance
the case that BF cholinergic innervation acts as a reinforcement
signal shaping cortical circuits to generate behaviorally relevant
activity.

BF cholinergic signaling controls cortical states
during whisking
In addition to its role in plasticity, the cholinergic BF projection
to the cortex is also involved in modulating cortical network state
(Jones, 2004). Cholinergic input to the cortex has long been con-
sidered to act as a global activating system (Buzsaki et al., 1988;
Metherate et al., 1992; Jones, 2005; Brown et al., 2012; Pinto et al.,
2013), but until recently, there were no direct measurements of
cholinergic signaling and cortical state changes on rapid time-
scales with behavioral relevance in awake mice.

Cortical states in the primary somatosensory barrel cortex
(S1) in awake animals shift between quiet wakefulness and active
whisking. During quiet wakefulness in head-restrained mice,
slow, large-amplitude fluctuations in membrane potential of
layer 2/3 excitatory neurons in S1 are common. These fluctua-
tions are highly synchronized in nearby neurons and can be
observed readily in the local field potential and the electroen-
cephalogram (Poulet and Petersen, 2008). However, when mice
are actively exploring their immediate environment by rhythmi-
cally moving their whiskers backwards and forwards, the slow
membrane potential fluctuations are suppressed. This active cor-
tical state is characterized by depolarized membrane potential,
decreased membrane potential variance, and reduced correlation
of membrane potential fluctuations in nearby neurons (Poulet
and Petersen, 2008).

Sensory processing depends strongly on cortical state, with
smaller and more localized responses to whisker deflection dur-
ing the active desynchronized cortical state (Ferezou et al., 2007).
The active cortical state appears to be generated by internal brain
mechanisms, because it is essentially unaffected by cutting the
sensory nerves. Key determinants of the active whisking cortical
state include increases in thalamic (Poulet et al., 2012) and cho-
linergic (Eggermann et al., 2014) input to the barrel cortex. Firing
rates in the somatosensory thalamus increase strongly during
whisking compared with quiet wakefulness, and this increased
glutamatergic input drives depolarized and desynchronized ac-
tivity in S1 (Poulet et al., 2012). Inactivation of the thalamus
increases slow, large-amplitude fluctuations in membrane poten-
tial during quiet wakefulness, but during whisking after thalamic
inactivation, S1 is hyperpolarized with low membrane potential
variance (Poulet et al., 2012).

A recent study found that the hyperpolarized state of the neo-
cortex during active whisking after thalamic inactivation appears
to be mediated by release of acetylcholine by neurons located in
the BF and projecting to S1 (Eggermann et al., 2014). Calcium
signals in cholinergic axons in S1 are prominent during whisking,
suggesting that acetylcholine is being released (Eggermann et al.,
2014). Injection of pharmacological antagonists of cholinergic
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receptors into S1 blocked the whisking-related hyperpolarization
of the cortex after thalamic inactivation (Eggermann et al., 2014),
with the strongest effects mediated by muscarinic antagonists.
Finally, optogenetic stimulation of cholinergic neurons in the BF
could mimic the effects of whisking on membrane potential dy-
namics in S1, and these effects could also be blocked by local
injection of cholinergic antagonists (Eggermann et al., 2014).

Therefore, these results demonstrate prominent cholinergic
signals during whisking in S1 and suggest that the active state of
mouse S1 during whisking is driven by at least two different sig-
nals: increased thalamic firing and increased cholinergic signal-
ing. The released acetylcholine suppresses slow spontaneous
activity accompanied by hyperpolarization during whisking,
which likely counteracts the increased thalamic input during
whisking (Poulet et al., 2012). Cholinergic input to S1 might
also contribute to the reduced amplitude and spread of
whisker-deflection-evoked sensory responses during whisking
compared with quiet wakefulness (Crochet and Petersen,
2006; Ferezou et al., 2007).

Control of cortical arousal by parvalbumin-containing
GABAergic BF neurons
In addition to cholinergic neurons, there are multiple other types
of cortically projecting neurons in the BF, many of which, like the
cholinergic neurons described in the previous sections, exhibit
increases in activity associated with cortical activation (Hassani et
al., 2009). Among these, GABAergic neurons are particularly nu-
merous and important in behavioral state control (Brown and
McKenna, 2015; Kim et al., 2015). In fact, in mice, there are
approximately seven times (3.9 –12 times depending on the BF
subregion) as many GABAergic neurons as cholinergic neurons
(McKenna et al., 2013; Yang et al., 2014). A significant minority
of these BF GABAergic neurons are long-range projection neu-
rons with targets in the neocortex, hippocampus, thalamus, and
lateral hypothalamus (Freund and Meskenaite, 1992; Gritti et al.,
1994, 1997, 2006; Henny and Jones, 2008; McKenna et al., 2013).
A subset of the neocortically projecting BF GABAergic neurons
contains the calcium-binding protein parvalbumin (PV) (Gritti
et al., 2003). In mice, PV is contained in approximately one-
quarter of large (�20 �m), putative long-range projecting,
GABAergic neurons (McKenna et al., 2013). Other neocortically
projecting BF GABA neurons express the potassium channel
Kv2.2 (Hermanstyne et al., 2010) or the neurokinin-3 receptor
(Furuta et al., 2004).

In vitro whole-cell recordings in GAD67–GFP knock-in
mice or PV–tdTomato mice allowed the first characterization
of the intrinsic membrane properties of identified GABAergic
and PV neurons (McKenna et al., 2013). These recordings
revealed many similarities but also important differences be-
tween BF GABAergic/PV projection neurons and cortical fast-
spiking PV interneurons. Like cortical PV interneurons, BF
GABAergic/PV projection neurons are very fast firing, with
brief action potentials and electrical coupling (McKenna et al.,
2013). However, unlike their cortical counterparts, they are
spontaneously active in the absence of injected current and
exhibit prominent hyperpolarization-activated cation cur-
rents that resist prolonged hyperpolarization and may play a
role in promoting the rhythmic cluster/burst activity of iden-
tified BF GABAergic and PV neurons observed in vivo (Duque
et al., 2000; Hassani et al., 2009).

What effect do cortically projecting BF GABAergic neurons
have on cortical function? Clues to the answer of this question
came from juxtacellular recordings in vivo that showed that a

significant minority of identified GABAergic neurons exhibit
fast firing during wakefulness and rapid eye movement sleep
(Hassani et al., 2009), as well as from anterograde tracing
studies that showed that BF GABAergic neurons preferentially
target cortical interneurons, including fast-firing PV neurons
involved in cortical gamma oscillations (Freund and Meske-
naite, 1992). Thus, it was postulated that BF GABAergic neu-
rons may exert a state-dependent control over cortical gamma
oscillations.

A recent study (Kim et al., 2015) tested this hypothesis using
an optogenetic approach targeting the subset of BF GABAergic
neurons containing PV. Indeed, selective optical stimulation of
BF PV neurons preferentially enhanced cortical EEG power in the
gamma range, whereas optical inhibition reduced the power of
cortical 40 Hz oscillations induced by a 40 Hz auditory stimulus
train (Kim et al., 2015). Thus, although many GABAergic neu-
rons in the BF are sleep active/sleep promoting (Hassani et al.,
2009), a significant subset project to the cortex and promote the
fast gamma-band activity typical of conscious states, likely
through entrainment of the firing of cortical interneurons. Cho-
linergic neurons strongly excite BF GABAergic and PV neurons
through local release of acetylcholine (Yang et al., 2014). Thus,
under normal conditions, the BF cholinergic and GABAergic sys-
tems likely work synergistically to generate cortical activation and
promote wakefulness.

Studies of BF noncholinergic neurons in rodents have
opened up a new vista in our understanding of BF control of
cortical activation. Given that GABAergic and PV neurons are
similarly present in primates (Walker et al., 1989; Côté et al.,
1991), a challenge for the future will be to determine whether
these are also cortical-projecting neurons with similar func-
tions and apply this knowledge to the treatment of human
disorders affecting the BF, such as coma and Alzheimer’s
disease.

Another group of noncholinergic BF neurons encodes
motivational salience and modulates the speed of decision
making
In addition to cholinergic neurons and PV-containing GABAergic
neurons described above, another group of presumably noncholin-
ergic BF neurons has been studied extensively in recent years (Lin et
al., 2006; Lin and Nicolelis, 2008; Avila and Lin, 2014a,b; Nguyen
and Lin, 2014). This population of BF neurons shares homogeneous
physiological properties, including low tonic baseline firing rates
(�10 Hz) and intermittent phasic bursting activity that is highly
correlated among neurons in this group (Lin et al., 2006; Avila and
Lin, 2014b). Their large, broad and complex action potential wave-
forms (Avila and Lin, 2014b) and short latencies in modulating cor-
tical activity (Nguyen and Lin, 2014) are consistent with these
neurons being long-range projection neurons. These neurons rep-
resent a distinct population in the BF that encodes reward and mo-
tivational salience information using phasic bursting responses (Lin
and Nicolelis, 2008; Avila and Lin, 2014b; Nguyen and Lin, 2014)
and have been referred to as “salience-encoding” or “bursting” BF
neurons. The bursting BF neurons are unlikely to be the cholinergic
neurons (Lee et al., 2005; Hangya et al., 2015) or PV-containing
GABAergic neurons (Kim et al., 2015) because, in addition to differ-
ences in firing properties, the bursting BF neurons do not mod-
ulate their average firing rates across sleep–wake states (Lin et
al., 2006; Lin and Nicolelis, 2008). These observations suggest
that salience-encoding BF neurons represent yet another
group of noncholinergic and non-PV BF neurons whose neu-
rochemical identity remains to be determined.
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The response profile of this group of BF neurons has, in fact,
been described widely in the BF literature. Among the first studies
of the substantia innominata region in behaving monkeys, De-
Long (1971) described how BF neurons have low tonic firing
rates and respond to reward and reward-predicting cues. Such
response profiles have since been characterized widely in behav-
ing monkeys (Richardson and DeLong, 1990, 1991; Wilson and
Rolls, 1990a,b) and rodents (Tindell et al., 2005, 2009; Smith et
al., 2011; Thomson et al., 2014; Tingley et al., 2014). Despite the
prevalence of this neuronal population in BF recording studies,
this activity pattern has been mostly misinterpreted in the litera-
ture as representative of BF cholinergic neurons.

The encoding of motivational salience by bursting responses
of noncholinergic neurons appears to play a key role in some
decision-making processes. The BF bursting activity is not re-
quired for sensory detection because clearly perceptible sensory
cues do not elicit any BF response before associative learning
(Lin and Nicolelis, 2008). Rather, as demonstrated in an auditory
near-threshold detection task, the BF bursting activity is tigh-
tly correlated with and potentially enables the animal to properly
respond to a detected cue based on its motivational salience (Lin
and Nicolelis, 2008). These observations led to the hypothesis
that BF bursting activity serves to enhance the cortical represen-
tations of detected stimuli for the purpose of reinforcement-
guided behavior (Lin and Nicolelis, 2008). In support of this
hypothesis, stronger BF bursting responses to motivationally sa-
lient cues are tightly coupled with, and causally linked to, faster
and more precise decision speed (Avila and Lin, 2014a). Further-
more, the recruitment of the BF motivational salience signal
enhances processing in the frontal cortex by generating an event-
related potential response (Nguyen and Lin, 2014). Therefore,
the BF motivational salience signal likely serves as a gain-
modulation mechanism to modulate the speed of the decision-
making process, which facilitates behavioral responding to
sensory cues based on their motivational, but not perceptual,
salience.

These findings highlight the need to determine the neuro-
chemical identity of salience-encoding BF neurons to test
whether they correspond to BF glutamatergic projections to
the cortex (Hur and Zaborszky, 2005) or, alternatively, BF
GABAergic projections that preferentially innervate cortical
interneurons and may enhance cortical processing through
disinhibition (Freund and Gulyás, 1991; Freund and Meske-
naite, 1992; Henny and Jones, 2008).

Conclusions
Classic studies of the BF neuromodulatory system using selective
cholinergic immunotoxic lesions, pharmacology, and electrical
stimulation, among other techniques, have been of great impor-
tance in relating BF, at the mechanistic level, to cortical activation
and plasticity and, at the behavioral level, to arousal, learning,
and attention (Metherate et al., 1992; Everitt and Robbins, 1997;
McLin et al., 2002; Sarter et al., 2005; Disney et al., 2007; Herrero
et al., 2008; Goard and Dan, 2009; Baxter and Bucci, 2013). New
techniques for genetically targeting distinct neuronal types, ob-
serving their activity, and manipulating them using optogenetic
tools enables entirely new types of experiments that have revital-
ized the field. We can now record the activity of specific types of
projection neurons during behavior, and then, informed by these
observations, we can attempt to “reinject” the patterns of activity
observed. These new tools are allowing the field to test directly the
causal role of distinct pathways using gain- and loss-of-function
experiments.

After decades of focus on the putative general arousal role of
cholinergic BF neurons, recent studies exploiting cell-type-
specific targeting and optogenetics reviewed here are beginning
to provide novel insights on the behavioral function of cholin-
ergic neurons and their circuit-level mechanism, as well as rev-
ealing the functional significance of diverse noncholinergic
neuronal populations in the BF. These results show that cholin-
ergic BF neurons broadcast a fast reinforcement signal to the
cerebral cortex (Hangya et al., 2015) that is capable of inducing
plastic changes in V1 to produce a reward timing signal (Chuby-
kin et al., 2013; Liu et al., 2015), as well as powerfully modulating
the membrane dynamics in cortical circuits to generate active
brain states (Eggermann et al., 2014). Conversely, noncholinergic
BF neurons appear to play equally powerful roles in enhancing
cortical activity, especially in the frontal cortex, through generat-
ing gamma oscillations (Kim et al., 2015) and an event-related
potential response (Nguyen and Lin, 2014). The results reviewed
here suggest that both cholinergic and noncholinergic BF neu-
rons enhance cortical activity, but the timing of their modulation
during behavior may differ: cholinergic BF neurons primarily
respond to reinforcers (Hangya et al., 2015) whereas subsets of
noncholinergic BF neurons respond phasically to motivationally
salient cues that predict reinforcement (Lin and Nicolelis, 2008;
Avila and Lin, 2014a) and correlate with operational measures of
attention (Hangya et al., 2015). Therefore, cholinergic and non-
cholinergic BF neurons might play complementary and synergis-
tic functions in arousal and cognition. Together, these studies are
rapidly changing the face of the BF neuromodulatory system
away from a monolithic and slow cholinergic modulatory action
and begin to unveil the full rapid temporal dynamics of hetero-
geneous elements in the BF circuit.

These results mark just the beginning of a new era in the study
of the BF, and much remains to be explored in this anatomically
and neurochemically heterogeneous region. For instance, cholin-
ergic and noncholinergic neurons are segregated topographi-
cally, each neuron projecting to a relatively small cortical region
(Wu et al., 2014; Zaborszky et al., 2015); thus, it will be important
to determine whether there are conditions under which certain
subpopulations are selectively recruited, in addition to the appar-
ently global recruitment of BF cholinergic neurons by reinforcers
(Hangya et al., 2015). It is also important to determine whether
the functions of BF neurons are mediated by direct projections to
the neocortex or via indirect projections to other subcortical tar-
gets, such as the thalamus (Parent et al., 1988; Jourdain et al.,
1989; Bickford et al., 1994; Gritti et al., 1998), amygdala (Unal et
al., 2015) and hypothalamus and brainstem (Freund and Meske-
naite, 1992; Gritti et al., 1994, 1997, 2006; Henny and Jones, 2008;
McKenna et al., 2013). Future studies will need to define the
behavioral correlates of distinct neuronal populations in the BF,
as well as address how different types of information arrives at the
BF, how the information is processed locally in the BF circuit, and
how such information influences downstream activity in the ce-
rebral cortex. These endeavors will help us understand how in-
formation about attention, learning, motivational salience, and
arousal converge and interact in this underexplored nexus of the
brain. Ultimately, this information will be crucial in designing
specific treatments for disorders that affect BF function, such as
coma (Brown et al., 2010), sleep disorders (Brown et al., 2012),
dementia (Cummings and Benson, 1984), Alzheimer’s disease
(Whitehouse et al., 1982; Grothe et al., 2012), and normal cogni-
tive aging (Gallagher and Colombo, 1995).
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Bickford ME, Günlük AE, Van Horn SC, Sherman SM (1994) GABAergic pro-
jection from the basal forebrain to the visual sector of the thalamic reticular
nucleus in the cat. J Comp Neurol 348:481–510. CrossRef Medline

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-
timescale, genetically targeted optical control of neural activity. Nat Neu-
rosci 8:1263–1268. CrossRef Medline

Brashear HR, Zaborszky L, Heimer L (1986) Distribution of GABAergic and
cholinergic neurons in the rat diagonal band. Neuroscience 17:439 – 451.
CrossRef Medline

Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma.
N Engl J Med 363:2638 –2650. CrossRef Medline

Brown RE, McKenna JT (2015) Turning a negative into a positive: ascend-
ing GABAergic control of cortical activation and arousal. Front Neurol
6:135. CrossRef Medline

Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012)
Control of sleep and wakefulness. Physiol Rev 92:1087–1187. CrossRef
Medline

Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988)
Nucleus basalis and thalamic control of neocortical activity in the freely
moving rat. J Neurosci 8:4007– 4026. Medline

Chubykin AA, Roach EB, Bear MF, Shuler MG (2013) A cholinergic mech-
anism for reward timing within primary visual cortex. Neuron 77:723–
735. CrossRef Medline
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