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Abstract

Motivated by data-rich experiments in transcriptional regulation and sensory neuro-

science, we consider the following general problem in statistical inference. When ex-

posed to a high-dimensional signal S, a system of interest computes a representation R

of that signal which is then observed through a noisy measurement M . From a large

number of signals and measurements, we wish to infer the “filter” that maps S to R.
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However, the standard method for solving such problems, likelihood-based inference,

requires perfect a priori knowledge of the “noise function” mapping R to M . In prac-

tice such noise functions are usually known only approximately, if at all, and using an

incorrect noise function will typically bias the inferred filter. Here we show that, in the

large data limit, this need for a pre-characterized noise function can be circumvented

by searching for filters that instead maximize the mutual information I[M ;R] between

observed measurements and predicted representations. Moreover, if the correct filter

lies within the space of filters being explored, maximizing mutual information becomes

equivalent to simultaneously maximizing every dependence measure that satisfies the

Data Processing Inequality. It is important to note that maximizing mutual information

will typically leave a small number of directions in parameter space unconstrained. We

term these directions “diffeomorphic modes” and present an equation that allows these

modes to be derived systematically. The presence of diffeomorphic modes reflects a

fundamental and nontrivial substructure within parameter space, one that is obscured

by standard likelihood-based inference.

1 Introduction

This paper discusses a familiar problem in statistical inference, but focuses on an under-

studied limit that is becoming increasingly relevant in the era of large data sets. Con-

sider an experiment having the following form:

S
signal

filter

θ(S)
- R

representation

noise function

π(M |R)
- M

measurement
. (1)
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When presented with a signal S, a system of interest applies a deterministic filter θ

thereby producing an internal representation R of that signal. For each representation

R, a noisy measurement M is then generated. The conditional probability distribution

π(M |R) from which M is drawn is called the “noise function” of the system. From

data consisting of N signal-measurement pairs, {Sn,Mn}Nn=1, we wish to reconstruct

the filter θ. This paper focuses on how to infer θ properly in the N → ∞ limit when

the noise function π is unknown a priori.

All statistical regression problems have this “SRM” form (Bishop, 2006), but we

will focus on two biological applications for which this problem is particularly relevant.

In neuroscience, SRM experiments are commonly used to characterize the response of

neurons to stimuli (Schwartz et al., 2006). For instance, S may be an image to which

a retina is exposed, while M is a binary variable (‘spike’ or ‘no spike’) indicating the

response of a single retinal ganglion cell. It is often assumed that the spiking probability

depends on a linear projection R of S. The specific probability of a spike given R is

determined by the noise function π.

More recently, analogous experiments have been used to characterize the biophys-

ical mechanisms of transcriptional regulation. In the context of work by Kinney et al.

(2010), S is the DNA sequence of a transcriptional regulatory region, R is the rate of

mRNA transcription produced by this sequence, and M is a (noisy) measurement of the

resulting level of gene expression. The filter θ is a function of DNA sequence that re-

flects the underlying molecular mechanisms of transcript initiation. The noise function

π accounts for both biological noise1 and instrument noise.

1Such as stochastic gene expression (Elowitz et al., 2002).
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The standard approach for solving inference problems like these is to adopt a spe-

cific noise function π, then search a space Θ of possible filters for the one filter θ that

maximizes the likelihood p({Mn}|{Sn}, θ, π) = eNL(θ,π), where,

L(θ, π) =
1

N

N∑
n=1

log π(Mn|θ(Sn)), (2)

is the per-datum log likelihood. For instance, the method of least squares regression

corresponds to maximum likelihood inference assuming a homogenous Gaussian noise

function π (Bishop, 2006).

Although the correct filter θ does indeed maximize L(θ, π) when the correct noise

function π is used, full a priori knowledge of this noise function is rare in practice.

Often π is chosen primarily for computational convenience, as is standard with least-

squares regression. This can be problematic because using an incorrect π will typically

produce bias in the inferred filter θ, bias that does not disappear in the N → ∞ limit.

The reason for this is illustrated in Fig. 1.

Sometimes this problem can be partially alleviated by performing a separate “cal-

ibration experiment” in which the noise function π(M |R) is measured directly. For

instance, one might be able to make repeated measurements M for a select number of

known representations R. However, there will always be residual measurement error

in π that will propagate to θ in a manner that is not properly accounted for by simply

plugging π into likelihood calculations via Eq. 2.

An alternative inference procedure (Sharpee et al., 2004; Paninski, 2003; Kinney

et al., 2007) that circumvents the need for an assumed noise function is to maximize the
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mutual information (Cover & Thomas, 1991),

I(θ) = I[R;M ] =

∫
dR dM p(R,M) log

p(R,M)

p(R)p(M)
, (3)

between predictions R and measurements M .2 Here, p(R,M) is the empirical joint

distribution between predictions and measurements, and thus depends implicitly on θ.

This method has been proposed, studied, and applied in the specific contexts of recep-

tive field inference (Sharpee et al., 2004; Paninski, 2003; Sharpee et al., 2006; Pillow &

Simoncelli, 2006) and transcriptional regulation (Kinney et al., 2007; Elemento et al.,

2007; Kinney, 2008; Kinney et al., 2010; Melnikov et al., 2012). However, this alterna-

tive approach can be applied to a much wider range of statistical regression problems,

and a general discussion of how maximizing mutual information relates to maximizing

likelihood for arbitrary SRM systems has yet to be presented.

We begin by pointing out that, in the N → ∞ limit, maximizing mutual informa-

tion over θ alone is equivalent to maximizing likelihood over both θ and π. We then

prove that when the correct filter θ lies within the class of filters being considered,

maximizing mutual information is also equivalent to simultaneously maximizing ev-

ery dependence measure that satisfies the Data Processing Inequality (DPI). However,

in the absence of a known noise function π, SRM experiments are fundamentally in-

capable of constraining certain directions in the parameter space of θ; we call these

directions “diffeomorphic modes.” An equation for diffeomorphic modes is described

and then applied to filters having various functional forms. In particular, our analysis

of a linear-nonlinear filter used by Kinney et al. (2010) to model transcriptional reg-

ulation demonstrates how model nonlinearities can eliminate diffeomorphic modes in

2The notation I(θ) and I[R;M ] will be used interchangeably.
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useful and non-obvious ways. This has important consequences for biophysical studies

of transcriptional regulation that use recently developed DNA-sequencing-based assays

(Kinney et al., 2010; Melnikov et al., 2012).

Throughout this manuscript, R is used to implicitly denote the representation pre-

dicted by the filter θ for signal S, i.e. R ≡ θ(S). D(θ) ≡ D[R;M ] is used to denote any

DPI-satisfying dependence measure. Representations R are assumed to be multidimen-

sional with components Rµ, and ∂µ ≡ ∂/∂Rµ. θ is used to denote both a filter and the

parameters governing that filter. Θ represents both an abstract space of filters, as well

as the space of parameters for filters assumed to have a specific functional form. In the

latter case, θi denotes coordinates in parameter space, and ∂i ≡ ∂/∂θi.

2 Mutual information and likelihood

We begin by discussing the connection between likelihood and mutual information in

the N → ∞ limit. In this limit, the per-datum log likelihood (Eq. 2) can be rewritten

as,

L(θ, π) =

∫
dR dM p(R,M) log π(M |R) (4)

= I(θ)−D(θ, π)−H[M ]. (5)

The first term, I(θ), is the mutual information between R and M (Eq. 3) and is inde-

pendent of the noise function π. The second term,

D(θ, π) =

∫
dR dM p(R,M) log

p(M |R)

π(M |R)
, (6)

is the Kullback-Leibler (KL) divergence between the empirical distribution p(M |R),

which results from the choice of θ, and the assumed noise function π(M |R). The last
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term, H[M ] = −
∫
dM p(M) log p(M), is the entropy of the measurements M . H[M ]

is independent of both θ and π and can thus be ignored in the optimization problem.

The key point is that finding maximally informative filters θ is equivalent to solv-

ing the maximum likelihood problem over both filters θ and noise functions π. This is

because if θ maximizes I(θ), simply choosing a noise function that matches the em-

pirical noise function, i.e. setting π(M |R) = p(M |R), will minimize D(θ, π) and thus

maximize L(θ, π).

If one can formalize prior assumptions about the noise function π using a Bayesian

prior p(π), the relevant objective function becomes the per-datum marginal likelihood,

Lm(θ) ≡ 1

N
log

∫
dπ p(π)p({Mn}|{Sn}, θ, π). (7)

This is analogous to Eq. 4 computed after all possible noise functions have been in-

tegrated out. As has been shown in previous work (Kinney et al., 2007; Rajan et al.,

2013), maximizing marginal likelihood and maximizing mutual information are essen-

tially equivalent in the N →∞ limit. This can be seen by decomposing Lm(θ) as,

Lm(θ) = I(θ)−∆(θ)−H[M ], (8)

where,

∆(θ) ≡ − 1

N
log

[∫
dπ p(π)e−ND(θ,π)

]
. (9)

Under weak assumptions about the prior p(π),3 ∆→ 0 as N →∞ (see Appendix A).

3E.g. p(π) does not vanish at the true noise function π∗.
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3 DPI-optimal filters

Mutual information is just one measure among many that satisfy DPI (see Appendix

B). In this section, we discuss the importance of DPI for the SRM inference problem

and introduce the notion of “DPI-optimal” filters.

Paninski (2003) has argued as follows for using DPI-satisfying dependence mea-

sures as objective functions for inferring filters. If θ∗ is the correct filter in an SRM

experiment, then for every filter θ,

R �
θ

S
θ∗

- R∗
π∗

- M, (10)

is a Markov chain. This implies D(θ) ≤ D(θ∗) for every DPI-satisfying measure D. If

θ∗ resides within the space Θ of filters being explored, it must therefore fall within the

subset of ΘD ⊆ Θ on which D is maximized. As a simple extension of this argument,

we point out that, because θ∗ maximizes all DPI-satisfying measures, θ∗ must actually

lie within the intersection of all such sets, i.e.,

θ∗ ∈ ΘDPI ≡
⋂

D satisfying DPI

ΘD (11)

Filters in ΘDPI can properly be said to be “DPI-optimal.”

This raises an important question: would optimizing a variety of different measures

D, not just mutual information, narrow the search for θ∗? Here we show the answer

is ‘no’; when θ∗ ∈ Θ, maximizing mutual information is equivalent to simultaneously

maximizing every DPI-satisfying measure, i.e.,

ΘI = ΘDPI. (12)

To prove this, we first define on the space of all possible filters a weak and strong

partial ordering, as well as an equivalence relation. These mathematical structures are
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a natural consequence of DPI. For any two filters θ1 and θ2,4 we write,

weak ordering : θ1 ≤ θ2 ⇐⇒ D(θ1) ≤ D(θ2) for all D, (13)

strong ordering : θ1 < θ2 ⇐⇒ θ1 ≤ θ2 but not θ2 ≤ θ1, (14)

equivalence : θ1 ' θ2 ⇐⇒ θ1 ≤ θ2 and θ2 ≤ θ1. (15)

Note that θ1 ≤ θ2 if R1 ↔ R2 ↔ M is a Markov chain. The set ΘDPI of DPI-optimal

filters is the supremum of Θ under this partial ordering. The equivalence ΘI = ΘDPI,

which occurs when θ∗ ∈ Θ, follows directly from the fact, proven in Appendix C, that

θ < θ∗ implies I(θ) < I(θ∗). We note that this is not true for all DPI-satisfying mea-

sures. For instance, the trivial measure D = 0 satisfies DPI but reveals no information

about whether a given θ resides in ΘDPI. These results are illustrated in Fig. 2.

4 Diffeomorphic modes

Whether or not two filters θ1 and θ2 satisfy the above equivalence relation (Eq. 15) can

depend on the true filter θ∗ and on the specific noise function π∗ of the SRM experi-

ment. However, certain pairs of filters will satisfy θ1 ' θ2 under all SRM experiments.

We will refer to such pairs of filters as being “information equivalent.” In Appendix

D we prove that two filters are information equivalent if and only if their predicted

representations are related by an invertible transformation.

As an objective function, mutual information is inherently incapable of distinguish-

ing between information equivalent filters. In practice this means that selecting maxi-

mally informative filters from a parametrized set of filters can leave some directions in

4The subscripts 1 and 2 label two different filters, not two parameters of a single filter.
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parameter space unconstrained. Here we term these directions “diffeomorphic modes.”

The diffeomorphic modes of linear filters have an important and well-recognized

consequence in neuroscience: the technique of maximally informative dimensions can

identify only the relevant subspace of signal space, not a specific basis within that sub-

space (Sharpee et al., 2004; Paninski, 2003; Pillow & Simoncelli, 2006). However, an

interesting twist occurs in applications to transcriptional regulation. Here, linear filters

are often used to model the sequence-dependent binding energies of proteins to DNA

(Stormo, 2013). Any mechanistic hypothesis about how DNA-bound proteins interact

with one another predicts that the transcription rate will depend on these binding ener-

gies in a specific nonlinear manner (Bintu et al., 2005; Stormo, 2013). Such up-front

knowledge about the nonlinearities of linear-nonlinear filters can eliminate diffeomor-

phic modes of the underlying linear filters in useful and non-obvious ways (Kinney,

2008; Kinney et al., 2010).

4.1 An equation for diffeomorphic modes

Consider a filter θ, representing a point in Θ, whose parameters θi are infinitesimally

transported along a vector field having components gi(θ). This yields a new filter θ′

with components θ′i = θi+εgi(θ). If the representationR predicted by θ for a specified

signal S has componentsRµ in representation space, these will be transformed toR′µ =

Rµ + ε
∑

i g
i(θ)∂iR

µ.

If the vector field gi(θ) represents a diffeomorphic mode of Θ, this transforma-

tion must be invertible, meaning the values
∑

i g
i(θ)∂iR

µ cannot depend on S except

through the value of R. This is a nontrivial condition because ∂iR can depend on the
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underlying signal S in an arbitrary manner. However, if
∑

i g
i(θ)∂iR

µ does indeed

depend only on the value of R then,

∑
i

gi(θ)∂iR
µ = hµ(R, θ). (16)

for some vector function hµ(R, θ). This is the equation that any diffeomorphic mode

gi(θ) must satisfy.

4.2 General linear filters

We now use Eq. 16 to derive the diffeomorphic modes of general linear filters. By

definition, a linear filter θ yields a representation R that is a linear combination of

signal “features” F µ
i , i.e.,

Rµ =
∑
i

θiF µ
i (S). (17)

As is standard with regression problems (Bishop, 2006), the term “linear” describes

how R depends on the parameters θi; the features F µ
i need not be linear functions of S.

To find the diffeomorphic modes of these filters, we apply the operator
∑

i g
i(θ)∂i to

both sides of Eq. 17. Using Eq. 16 we then find
∑

i g
i(θ)F µ

i (S) = hµ({
∑

j θ
jF ν

j (S)}, θ).

The left-hand side is linear in signal features, so unless something unusual happens,5

hµ(R, θ) must also be a linear function of R, i.e. have the form,

hµ(R, θ) = aµ(θ) +
∑
ν

bµν (θ)Rν . (18)

5E.g. if the various features Fµi (S) exhibit complicated interdependencies, either because of their

functional form or because signals S are restricted to a particular subspace. We ignore such possibilities

here.
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The number of diffeomorphic modes is bounded above by the number of indepen-

dent parameters on which hµ depends (at each θ).6 For a general linear filter we see

that there can be no more than dim(R)[dim(R) + 1] diffeomoprhic modes, which is

the number of parameters aµ and bµν in Eq. 18. This bound is independent of the num-

ber of signal features, i.e. the dimensionality of S. In particular, if R is a scalar, then

h = a + bR. In this case we observe two diffeomorphic modes, corresponding to

additive and multiplicative transformations of R.

4.3 A linear-nonlinear filter

Kinney et al. (2010) performed experiments probing the biophysical mechanism of tran-

scriptional regulation at the Escherichia coli lac promoter (Fig. 3A). These experiments

are of the SRM form where S is the DNA sequence of a mutated lac promoter, M is

a measurement of the resulting gene expression, and the mRNA transcription rate T is

the internal representation the system. Linear filters were used to model the binding

energies Q and P of the two proteins CRP and RNAP. The specific parametric form

used for these filters was,

Q =
∑
bl

θblQSbl + θ0
Q, P =

∑
bl

θblPSbl + θ0
P , (19)

where b indexes the four possible bases (A,C,G,T), l indexes nucleotide positions within

the 75 bp promoter DNA region, Sbl = 1 if base b occurs at position l and Sbl = 0

6Technically the number of diffeomorphic modes is the number of independent vector fields gi that

correspond to such transformations. However, here we consider only proper diffeomorphic modes, not

gauge transformations; as in physics, we define gauge transformations to be vector fields gi along which

transformation of θ leaves all predicted representations invariant.
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otherwise.7

Measurements M were taken for ∼ 5 × 104 mutant lac promoters S. These data

were then used to fit a model for the sequence-dependent binding energy of CRP. This

was done by maximizing I[Q;M ]. Because of the diffeomorphic modes of Q, the

parameters θblQ were inferred up to an unknown scale and the additive constant θ0
Q was

left undetermined. This is shown in Fig. 3B. Analogous results were obtained for RNAP

(Fig. 3C).

Next, a full thermodynamic model of transcriptional regulation was proposed and

fit to the data. Based on the hypothesized biophysical mechanism, the transcription rate

T was assumed to depend on S via,

T =
1

1 +R−1
where R = e−P

1 + e−Q−γ

1 + e−Q
. (20)

This quantity R is called the “regulation factor” of the promoter (Bintu et al., 2005).

Because R is an invertible function of T , it serves equally well as the representation

of the SRM system. In the following analysis we work with R instead of T due to its

simpler functional form.

When the parameters of the linear filters P and Q were simultaneously fit to data

by maximizing I[T ;M ] (or equivalently, maximizing I[R;M ]), three of the four dif-

feomorphic modes described above were eliminated (Fig. 3D). Specifically, the overall

scale of the parameters θblQ and θblP were fixed, allowing binding energy predictions for

CRP and RNAP in physically meaningful units of kBT . The parameter θ0
Q, correspond-

ing to the intracellular concentration of CRP, was also fixed by the data. The only

7To fix the gauge freedoms of these filters, Kinney et al. (2010) adopted the convention that

minb θ
bl
Q = minb θ

bl
P = 0 for all positions l.
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diffeomorphic mode left unbroken was θ0
R, corresponding to the intracellular concen-

tration of RNAP.

We now show how the nonlinearity in R was able to break three of the four dif-

feomorphic modes of P and Q. First observe that any diffeomorphic mode of a linear-

nonlinear filter must also be a diffeomorphic mode of each individual linear filter if, as

here, the linear filters are independent functions of S. This means any diffeomorphic

mode gi of the full thermodynamic model for R must satisfy,

∑
i

gi∂iR = h = (aP + bPP )∂PR + (aQ + bQQ)∂QR + aγ∂γR, (21)

for coefficients aP , bP , aQ, bQ, aγ which do not depend on S. Evaluating the right-hand

side derivatives and substituting for P in terms of Q and R we find,

h = −R
[
aP − bP log

{
R(1 + e−Q)

1 + e−Q−γ

}
− (aQ + bQQ)e−Q(1− e−γ)

(1 + e−Q−γ)(1 + e−Q)
+

aγe
−Q−γ

1 + e−Q−γ

]
.(22)

For gi to be a diffeomorphic mode, the right-hand side must be independent of S for

fixed R. The terms dependent on Q must therefore vanish, rendering bP = aQ = bQ =

aγ = 0.8 Any diffeomorphic modes gi must therefore satisfy
∑

i g
i∂iR = −aPR. Thus

only one mode remains, corresponding to an additive shift in the binding energy P .

5 Discussion

Likelihood-based inference masks the fundamentally different ways in which data con-

strain the parameters that lie along diffeomorphic modes versus those that lie along

nondiffeomorphic modes. Standard likelihood inference constrains all model parame-

ters, including both diffeomorphic and nondiffeomorphic modes, with error bars that

8This assumes γ 6= 0, i.e. that CRP actually interacts with RNAP. Which is true.
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scale as N−1/2.9 These constraints will be consistent with the correct underlying fil-

ter θ∗ when the correct noise function is used (Fig. 4A). However, use of an incorrect

noise function will typically cause θ∗ to fall outside the error bars inferred along both

diffeomorphic and nondiffeomorphic modes (Fig. 4B).

This problem is rectified if we use a prior p(π) that reflects our uncertainty about

what the true noise function is. From Eq. 8 it can be seen that using the resulting

marginal likelihood to compute a posterior distribution on θ will constrain diffeomor-

phic and nondiffeomorphic modes in fundamentally different ways (Fig. 4C). Nondif-

feomorphic modes will be constrained by I(θ), which remains finite in the large N

limit. This produces error bars on nondiffeomorphic modes comparable to those pro-

duced by likelihood when the correct noise function π∗ is used. However, constraints

along diffeomorphic modes will come only from ∆. Because ∆ vanishes as N−1,10

diffeomorphic constraints become independent of N once N is sufficiently large.

Fortunately, one does not need to posit a specific prior probability over all possible

noise functions in order to confidently infer filters from SRM data. Using mutual infor-

mation as an objective function instead of likelihood, i.e. sampling filters according to

p(θ|data) ∼ eNI(θ), will constrain nondiffeomorphic modes the same way that marginal

likelihood does while putting no constraints along diffeomorphic modes (Fig. 4D).

One might worry that a large fraction of filter parameters will be diffeomorphic, and

that the analysis of SRM experiments will require an assumed noise function in order

to obtain useful results even if doing so yields unreliable error bars. Such situations are

9In this discussion we ignore gauge parameters, which do not alter model predictions and are therefore

non-identifiable.

10More precisely, given any direction i in filter space, ∂2i ∆|θ∗ ∼ N−1 for N large enough.
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conceivable, but in practice this is often not the case. We have shown that for linear

filters, the number of diffeomorphic modes will typically not exceed dim(R)[dim(R)+

1] regardless of how large dim(S) is. Some of these diffeomorphic modes may also be

eliminated if these linear filters are combined using a nonlinearity of known functional

form. Indeed, of the 204 independent parameters comprising the biophysical model of

transcriptional regulation inferred by Kinney et al. (2010), only one was diffeomorphic.

A bigger concern, perhaps, is the practical difficulty of using mutual information as

an objective function. Specifically, it remains unclear how to compute I(θ) rapidly and

reliably enough to confidently sample from p(θ|data) ∼ eNI(θ). Still, various meth-

ods for estimating mutual information are available (Khan et al., 2007; Panzeri et al.,

2007), and the information optimization problem has been successfully implemented

using a variety of techniques (Sharpee et al., 2004; Sharpee et al., 2006; Kinney et al.,

2007, 2010; Melnikov et al., 2012). We believe the exciting applications of mutual-

information-based inference provide compelling motivation for making progress on

these practical issues.

6 Appendix A: marginal likelihood

In certain cases ∆(θ) can be computed explicitly and thereby be shown to vanish

(Kinney et al., 2007). More generally, when π is taken to be finite-dimensional, a

saddle-point computation (valid for large N ) gives ∆(θ) ≈ 1
2N

Tr[log ∂∂D̃] + const.

Here, ∂∂D̃ is the π-space Hessian of D̃(θ, π) ≡ D(θ, π)− 1
N

log p(π) computed using

π(M |R) = p(M |R). If log p(π) and its derivatives are bounded, then the θ-dependent
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part of ∆(θ) decays as N−1. If π is infinite dimensional, this saddle-point computation

becomes a semiclassical computation in field theory akin to the density estimation prob-

lem studied by Bialek et al. (1996). If this field theory is properly formulated through

an appropriate choice of p(π), then ∆(θ) may exhibit different decay behavior, but will

still vanish as N →∞. See also Rajan et al. (2013).

7 Appendix B: DPI-satisfying measures

DPI is satisfied by all measures of the F -information form (Csiszár & Shields, 2004;

Kinney & Atwal, 2013),

IF [M ;R] ≡
∫
dR dM p(R)p(M)F

(
p(R,M)

p(R)p(M)

)
, (23)

where F (x) is a convex function for x ≥ 0. Mutual information corresponds to F (x) =

x log x whereas F (x) = (xα − 1)/(α − 1) yields a more general “Rényi information”

measure (Rényi, 1961) that reduces to mutual information when α = 1. DPI-satisfying

measures other than mutual information have been used for filter inference in a number

of works, including Paninski (2003) and Kouh & Sharpee (2009). A discussion of the

differences between DPI-satisfying measures and some non-DPI-satisfying measures

can be found in (Kinney & Atwal, 2013).

8 Appendix C: DPI-optimality

Assume θ < θ∗ by Eq. 14. Because R ↔ R∗ ↔ M is a Markov chain, the KL diver-

gence between p(R∗|R,M) and p(R∗|R) can be decomposed asD(p(R∗|R,M)||p(R∗|R)) =
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I[R∗;M ]− I[R;M ]. If this quantity is zero, then R∗ ↔ R↔M is also Markov chain,

implying θ∗ ≤ θ, a contradiction. This KL divergence must therefore be positive, i.e.

I(θ) < I(θ∗). So if θ∗ ∈ ΘDPI, then for every θ 6∈ ΘDPI, θ 6∈ ΘI as well. This proves

ΘI = ΘDPI.

9 Appendix D: information equivalence

First we observe that if θ1 and θ2 make isomorphic predictions then they are information

equivalent. This is readily shown from the fact thatD[R;M ] is invariant under arbitrary

invertible transformations of R (Kinney & Atwal, 2013). Next we show the converse:

if θ1 and θ2 are information equivalent, the predictions R1 and R2 must be isomorphic.

Here is the proof. If θ1 ' θ2, then D[R1;M ] = D[R2;M ] for all D, and in particular

I[R1;M ] = I[R2;M ]. In Appendix C we showed that I[R;M ] = I[R∗;M ] implies

R∗ ↔ R ↔ M is a Markov chain. Imagining an SRM experiment in which θ∗ = θ1

and π(M |R) = δ(M − R), we find that R1 ↔ R2 ↔ R1 is a Markov chain. This

implies the mapping R2 → R1 is one-to-one. Similarly, R1 → R2 is one-to-one. R1

and R2 are therefore bijective.
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Figure 1: Maximizing likelihood with an incorrect noise function will generally

bias the inferred filter. The per-datum log likelihood L(θ, π) will typically depend on

both the filter θ and the noise function π in a correlated manner (left panel). Values of a

schematic L(θ, π) are illustrated in gray, with darker shades indicating larger likelihood.

If the correct noise function π∗ is assumed (solid line), maximizing L(θ, π∗) will yield

the correct filter θ∗ (filled dot). However, if an incorrect noise function π′ is assumed

(dashed line), maximizing L(θ, π′) will typically lead to an incorrect filter θ′ (open dot).
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Figure 2.

Figure 2: Venn diagram illustrating filter sets maximizing different DPI-satisfying

measures. In general, different DPI-satisfying dependence measures, e.g. mutual in-

formation I and some other measure D, will be maximized by different sets of filters,

respectively represented here by ΘI and ΘD. ΘDPI is the intersection of the optimal

sets of all such DPI-satisfying measures. Mutual information has the important prop-

erty that ΘI = ΘDPI whenever θ∗ ∈ Θ; this is not true of all DPI-satisfying measures.
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Figure 3: A linear-nonlinear filter modeling the biophysics of transcriptional regu-

lation at the Escherichia coli lac promoter. (A) The biophysical model inferred by Kin-

ney et al. (2010) from Sort-Seq data. Each signal S is a 75 bp DNA sequence differing

from the wildtype lac promoter by ∼ 9 randomly scattered substitution mutations. Q

and P denote the sequence-dependent binding energies of the proteins CRP and RNAP

to their respective sites on this sequence S; both Q and P were modeled as linear filters

of S. γ is a sequence-independent interaction energy between CRP and RNAP. The re-

sulting transcription rate T , of which the Sort-Seq assay produces noisy measurements

M , is assumed to depend on Q, P , and γ in a specific nonlinear manner dictated by the

hypothesized biophysical mechanism (Eq. 20; all energies are in units of kBT ). (B) The

linear filter Q is defined by parameters θblQ and θ0
Q via Eq. 19. Inferring these parameters

by maximizing the mutual information I[Q;M ] determines θblQ up to an unknown scale

and leaves θ0
Q undetermined. (C) Analogous results are obtained for the parameters θblP

and θ0
P when I[P ;M ] is maximized. (D) Because of the inherent nonlinearity in Eq. 20

(right-hand side), maximizing I[T ;M ] breaks diffeomorphic modes, fixing the values

of θblQ, θblP , and θ0
Q in units of kBT . The parameter θ0

P remains undetermined.
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Figure 4: Schematic illustration of constraints placed on diffeomorphic and non-

diffeomorphic modes by different objective functions. The dot in each panel represents

the correct filter θ∗; shades of gray represent the posterior distribution p(θ|data). (A,B)

Likelihood (Eq. 2) places tight constraints (scaling as N−1/2 as N → ∞) along both

diffeomorphic and nondiffeomorphic modes. (A) θ∗ will typically lie within error bars

if the correct noise function π∗ is used. (B) However, if an incorrect noise function π′ is

used, θ∗ will generally violate inferred constraints along both diffeomorphic and nondif-

feomorphic modes. (C) Marginal likelihood (Eq. 7) computed using a sufficiently weak

prior p(π) will place tight constraints on nondiffeomorphic modes and weak constraints

(scaling asN0 asN →∞) along diffeomorphic modes. (D) Mutual information (Eq. 3)
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places tight constraints on nondiffeomorphic modes but provides no constraints what-

soever on diffeomorphic modes.
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