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Abstract: Fulfilling the promise of
the genetic revolution requires the
analysis of large datasets contain-
ing information from thousands to
millions of participants. However,
sharing human genomic data re-
quires protecting subjects from
potential harm. Current models rely
on de-identification techniques in
which privacy versus data utility
becomes a zero-sum game. In-
stead, we propose the use of
trust-enabling techniques to create
a solution in which researchers and
participants both win. To do so we
introduce three principles that fa-
cilitate trust in genetic research and
outline one possible framework
built upon those principles. Our
hope is that such trust-centric
frameworks provide a sustainable
solution that reconciles genetic
privacy with data sharing and
facilitates genetic research.

Introduction: The Rise and Fall
of De-identification

‘‘Widespread distrust…imposes a
kind of tax on all forms of economic
activity, a tax that high-trust societies
do not have to pay.’’

–Francis Fukuyama [1]

Genomic research promises substantial

societal benefits, including improving health

care as well as our understanding of human

biology, behavior, and history. To deliver on

this promise, the research and medical

communities require the active participation

of a large number of human volunteers as

well as the broad dissemination of genetic

datasets. However, there are serious con-

cerns about potential abuses of genomic

information, such as racial discrimination

and denial of services because of genetic

predispositions, or the disclosure of intimate

familial relationships such as nonpaternity

events. Contemporary data-management

discussions largely frame the value of data

versus the risks to participants as a zero-sum

game, in which one player’s gain is another’s

loss [2,3]. Instead, this manuscript proposes

a trust-based framework that will allow both

participants and researchers to benefit from

data sharing.

Current models for protecting partici-

pant data in genetic studies focus on

concealing the participants’ identities. This

focus is codified in the legal and ethical

frameworks that govern research activities

in most countries. Most data protection

regimes were designed to allow the free flow

of de-identified data while restricting the

flow of personal information. For instance,

both the Health Insurance Portability and

Accountability Act (HIPAA) [4] and the

European Union privacy directive [5]

require either explicit subject consent or

proof of minimized risk of re-identification

before data dissemination. In Canada, the

test for whether there is a risk of identifi-

cation involves ascertaining whether there

is a ‘‘serious possibility that an individual

could be identified through the use of that

information, alone or in combination with

other available information’’ [6]. To that

end, the research community employs a

fragmented system to enforce privacy that

includes institutional review boards (IRBs),

ad hoc data access committees (DACs), and

a range of privacy and security practices

such as the HIPAA Safe Harbor [7].

The current approach of concealing

identities while relying on standard data

security controls suffers from several

critical shortcomings (Box 1). First, stan-

dard data security controls are necessary

but not sufficient for genetic data. For

instance, access control and encryption

can ensure the security of information at

rest in the same fashion as for other

sensitive (e.g., financial) information, pro-

tecting against outsiders or unauthorized

users gaining access to data. However,

there is also a need to prevent misuse of

data by a ‘‘legitimate’’ data recipient.

Second, recent advances in re-identifica-

tion attacks, specifically against genetic

information, reduce the utility of de-

identification techniques [8,9]. Third, de-

identification does not provide individuals

with control over data—a core element of

information privacy [10].

With the growing limitations of de-

identification, the current paradigm is not

sustainable. At best, participants go through

a lengthy, cumbersome, and poorly under-

stood consent process that tries to predict

worst-case future harm. At worst, they
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receive empty promises of anonymity. Data

custodians must keep maneuvering between

the opposite demands for data utility and

privacy, relegating genetic datasets into silos

with arbitrary access rules. Funding agencies

waste resources funding studies whose data-

sets cannot be reused across and between

large patient communities because of privacy

concerns. Finally, well-intentioned research-

ers struggle to obtain genetic data from hard

to access resources. These limitations

impede serendipitous and innovative re-

search and degrade a dataset’s research

value, with published results often over-

turned because of small sample sizes [11].

Focusing on Trust Not Privacy

We propose to shift from the zero-sum

game of data privacy versus data utility to

a framework that builds and maintains

trust between participants and researchers.

We suggest the following key principles for

trust-enabling frameworks:

1. Transparency creates trust: Trust

requires transparency between parties.

In genomic research, transparency

means informing participants about

not only the intended but also the

actual use of data. This is a commonly

accepted principle of information pri-

vacy that is found in most data

protection statutes (e.g., Canada’s Per-

sonal Information Protection and

Electronic Documents Act [PIPEDA]

[12]) and fair information practices

(e.g., the Organisation for Economic

Co-operation and Development

[OECD] Privacy Principles [13]).

2. Increased control enhances trust:
Given the uncertainties in genetic

studies, the burden of making ‘‘fully

informed’’ decisions about future data

use and harms is virtually impossible.

However, the situation improves when

the participant is given control over

future data use. Clear communication

of risks is crucial to ensure fully

informed participants, yet current con-

sent processes require participants to

make a one-time decision about future

data sharing preferences with unknown

risks. Even worse, some consent forms

include vague ‘‘legalese’’ that might be

tempting from a legal perspective but

instead fuels patients’ fears. Some

participants naturally shy away from

sharing when the terms are too broad,

while other individuals might make

decisions that are not well informed. In

addition, one-time ‘‘blanket’’ consent

does not accommodate the reality that

privacy preferences might change over

time.

3. Reciprocity maintains trust: Re-

searchers should maximize the value of

data collected from participants, sub-

ject to individual preferences. By ad-

vancing scientific knowledge, the re-

search community reciprocates and

‘‘pays back’’ the participant’s volun-

teerism. A sense of community among

participants can help bridge the gap

between societal and individual re-

wards. Mechanisms for participants to

‘‘reward’’ researchers who act appro-

priately (and ‘‘punish’’ researchers who

violate their trust) provide incentives

for ongoing win-win behavior.

If successful, a trust-centric framework

creates a system that rewards good

behavior, deters malicious behavior, and

punishes noncompliance. This stands in

stark contrast to the current system that

punishes researchers, participants, and

progress.

Bilateral Consent Framework

Building on top of the three key

principles above, we suggest a trust-

enabling framework, called the Bilateral

Consent Framework (BCF) (Table 1). This

approach is inspired by the recent move-

ment for participant-centered research

[14] and the growing success of online

peer-to-peer marketplaces such as Airbnb

or Uber that rely on trust-enabling

techniques [15]. To be clear, our proposal

is not meant to be final but rather to

provide a framework and a set of building

blocks to drive discussions among the

Box 1. The Gaps in Current Data Privacy Techniques

It may be that current technological methods for privacy protection, which
primarily consist of removing an individual’s personally identifying information
from records containing individualized genetic information, are simply outdated;
it is possible that new techniques will once more make it difficult to infer personal
information. Here, we briefly review computational schemes that theoretically
make re-identification demonstrably (and perhaps quantifiably) difficult. For a
comprehensive technical overview, please refer to [27].

In general, there are two classes of advanced privacy-preserving techniques
relevant to genetic data: cryptographic techniques and statistical techniques. The
hallmark of all of these techniques is that they provide mathematical proofs
delineating what the data recipient can and cannot infer based on the data access
given to them.

Cryptographic techniques can compute a known, shared function on encrypted
datasets from multiple parties; the computation reveals nothing about the
parties’ input data other than the function’s results. For example, a patient or her
physician holding genetic data can use such a technique to have the genetic data
interpreted by a third-party service for disease susceptibility without revealing the
actual genotypes. However, cryptographic techniques have some practical
limitations. For instance, they require predefined analysis protocols. Research
protocols are rarely fixed in advance. Most research is exploratory in nature and is
characterized by ad hoc analyses in which researchers test and refine their
analytic procedures repeatedly during the course of the study. Moreover, the final
output of cryptographic techniques has to be decrypted to be useful. Thus, while
these techniques enable secure computation of the raw data, the final product is
still vulnerable to certain attacks and its broad dissemination can create privacy
concerns.

Statistical techniques work by adding noise to the disseminated data. The
premise of these methods is that in some scenarios the amount of noise needed
to conceal the identity of individuals in the dataset is quite small and still permits
accurate detection of general phenomena in the data. Unfortunately, in
genomics, the current levels of noise required to reduce privacy risks appear to
be unacceptable because of the richness of the information and the uniqueness
of one’s genome. Empirical tests showed that these techniques can eradicate the
weak association signals that are the reality of most complex traits.

Our conclusion is that these emerging computational techniques for ensuring
genetic privacy show potential but would require substantial theoretical and
practical development to be fully operational methods for data sharing to
accelerate scientific studies.
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community. The major building blocks of

the BCF are introduced in the following

subsections.

Trusted mediator
The role of the trusted mediator is to

operate the BCF. This entity can be any

organization that (1) is trusted by the

participants and (2) has the means to

operate the BCF. It could be a patient

advocacy group (e.g., National Breast

Cancer Coalition), a funding agency (e.g.,

National Center for Biotechnology Infor-

mation [NCBI]), a genome center (e.g.,

New York Genome Center or the Broad

Institute), a scientific society (e.g., Ameri-

can Society of Human Genetics), or a

private company (e.g., Illumina or Beijing

Genomics Institute [BGI]). It should

mediate the communication between the

researchers and the participants, act upon

the participants’ decisions, and be the

single point of contact. In addition, this

entity should educate participants about

the nature of the data and describe the

benefits and risks.

Uniform code of conduct
Having researchers consent to uniform

guidelines makes it easier for participants to

grant consent to new researchers. Re-

searchers who are part of the BCF consent

to a code of conduct that affirms that

individual data will be properly handled,

including that it will be held securely and

that re-identification will not be attempted.

Thus, BCF replaces the ‘‘gatekeeper’’

approach, wherein IRBs decide who should

count as a qualified researcher on a case-

by-case basis, with a participant-centric

model, in which participants understand

the rules that researchers will follow.

Evidence for violation of the code of

conduct can result in public notice, can-

celed access, and possible legal action.

Methods for redress might include data

protection law, criminal law, or additional

contractual terms, such as indemnification

and compensation, similar to the model

suggested by Prainsack and Buyx [16].

Auditing
The BCF encourages a ‘‘trust-but-veri-

fy’’ approach. All data access should be

monitored, both to remind researchers

that their access privileges depend on trust

and to enable potential detection of

violations and enforcement of obligations.

One means of monitoring is for all analysis

activity to be executed on the trusted

mediator’s computing resources and

logged. This is different from current

access control models in which (upon

permission) the researcher analyzes the

data on his or her own computing

resources without any oversight on the

actual analysis. Importantly, we do not

expect the auditing system to be perfect or

to capture all data misuse. The primary

aim of such a system is to deter malicious

behavior. However, we envision that in

the future such systems can help to

automatically identify clear anomalies

(e.g., the analysis of short tandem repeats

on the Y-chromosome [Y-STRs] that is a

key component of surname inference [9])

or data analysis that is substantially

different from the consent. In addition,

logging and auditing promote transparen-

cy. There is growing interest in using cloud

computing for genetic analysis and moving

the computation to the data; adding an

auditing system can leverage this trend to

increase trust.

Reputation system
Reputation systems have revolutionized

online sharing marketplaces, enabling strang-

ers to trust each other with their safety (e.g., a

reckless driver in an Uber car), privacy (e.g., a

hidden camera in an Airbnb room), property

(e.g., ruining a car in RelayRides), or task

integrity (e.g., a lazy worker in Amazon

Mechanical Turk). These systems usually

consist of an initial background check by

the service mediator that grants permission

to use the service, followed by ongoing

rating of the participants. In some services,

such as Uber, when the reputation drops

below a certain threshold, the participant is

banned from using the service.

Similarly, we propose a reputation

system to facilitate researcher good con-

duct and maintain participant responsive-

ness. Such a reputation system would

reward researchers who maintain solid

records of adherence to the code of

conduct by elevating their visibility and

reputation. The researcher reputation

system can incorporate several measures,

such as the following: (a) ratings from

previous study participants, (b) the number

and impact of previously accomplished

studies, (c) recommendations from peer

researchers, (d) the reputation of the

researcher host organization, (e) auditing

system reports about the sensitivity of the

analysis, and/or (f) the researcher’s history

of returning results and raw data to

participants or publishing previous manu-

Table 1. Major differences between current data sharing frameworks and a BCF.

Attribute Current System BCF

Consent for secondary use One-time decision Dynamic

Primary data controller PI Participant

Who decides on secondary data usage? DAC or local IRB Participant

Data stewardship Not defined Trusted mediator

Code of conduct Locally determined Globally determined

Oversight Local IRB The community (participants, trusted mediator, and researchers)

Oversight mechanism Not clear Audit system

Who can punish data misconduct? Local IRB The community (participants, trusted mediator, and researchers)

Main source of reputation University or research institute The community (previous participants, trusted mediator, and
researchers): participant ratings, previous studies, peer researcher
recommendations, reputation of host organization, auditing
reports, researcher’s history of results, etc.

Cohort integrity Stable Indefinite/variable

Place of computation PI-owned equipment or PI-chosen
cloud provider

Resource-owned equipment or resource-chosen cloud provider.

doi:10.1371/journal.pbio.1001983.t001
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scripts in open-access journals. According-

ly, participants can elect to share data only

with researchers of sufficient reputation,

and the trusted entity can revoke access to

researchers with a low reputation.

The reputation system can also be

extended to include the participants. For

instance, it could summarize their contri-

bution to studies and overall participation.

Similar systems are common in online

communities that rely on volunteers, such

as Stack Overflow. Empirical research has

shown that these systems can create strong

incentives for online participants, resulting

in increased participation [17]. In the

context of the BCF, we believe that such

a system can not only increase participa-

tion but also foster the development of

long-term relationships with participants.

Dynamic participant consent
At its core, the BCF enables participants

to have dynamic control over access to

data about them. In current consent

architectures, the participant delegates

complete control over the data to the

principal investigators (PIs). Upon com-

pletion of the study, the PI typically

delegates secondary usage decisions to a

DAC or an IRB. In the BCF, data control

remains primarily tied to the source

individual. Researchers solicit their stud-

ies, describing the benefits of the study and

specifying limitations on how they use the

data. The participant can grant or deny

consent to different studies. Thus, instead

of one-time decisions about data sharing, a

BCF fosters long-term engagement by

participants, allowing researchers to solicit

participant data while simultaneously em-

powering participants to change their data

contribution as they see fit.

Previous works (e.g., [18–20]) have

discussed aspects of dynamic consent,

including concerns over the implications

of participant withdrawal. Although a full

resolution is out of scope for this overview,

we believe that many of these difficulties

can be overcome with appropriate design.

For example, one can attempt to mitigate

the impacts of withdrawal by carefully

circumscribing at which point a partici-

pant may withdraw consent. In order to

reduce the burden on participants, the

system could provide personalized opt-

out/opt-in preferences that would auto-

matically accept a study request based on

the subject of the study and reputation of

the researcher. The participant would

receive a periodic digest (e.g., weekly

email) of studies that meet her personal-

ized criteria, and if she did not opt out

within a certain time frame, her data

would be included. The trusted mediator

could ask participants to actively review

and renew their preferences every few

months and disable accounts that did not

do so.

We are not alone in our advocacy of

dynamic consent. Active research on this

topic is underway (e.g., [21,22]), and

commercial offerings like PatientsLikeMe

and 23andMe are currently using dynamic

consent models [23]. The BCF’s dynamic

consent mechanism emphasizes reciproci-

ty (also discussed in [14]) and agency,

giving participants greater information on

researchers and their studies. It envisions

data sharing and consent as a shared

process (e.g., [24]) involving iteration and

feedback.

The Path Forward

The description above describes core

architectural elements of a trust-centric

framework. While these building blocks

reinforce each other, they are not meant to

be an all-or-nothing monolithic system.

Implementations of the BCF framework in

specific contexts require decision makers

to make different choices about which

elements to include as well as the fine-

grain details of how to include them. For

example, the reputation and dynamic

consent systems will need to be tuned to

maintain participant responsiveness for

study durations and to avoid data with-

drawal from the later stages of a study.

The consent mechanism and language will

still need to accommodate and comply

with current regulatory schemes, and the

reputation system will need to be tuned to

avoid reputation bias (e.g., against early-

stage investigators).

Conclusion

Realizing a bilateral consent frame-

work will require new technologies and

hard choices. However, there is a need for

improved global standards for legal and

technical frameworks to share genomic

data. Initiatives such as the Global

Alliance for Genomics and Health [25]

and the Genetic Alliance [26] have

started the dialogue; it is our hope that

the proposed framework can act as a

starting point as stakeholders move from

discussion to practice. A bilateral consent

framework can transform fears of un-

known privacy abuse into excitement for

participating in the genetic information

revolution.
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