Whole genome sequencing, clinical interpretation, and deep brain stimulation in a severely mentally ill person INSTITUTE FOR GENOMIC MEDICINE **BIOMEDICAL** RESEARCH Your genome, your medicine. Gholson J. Lyon^{1,2,3*}, Jason A. O'Rawe^{1,2}, Han Fang^{1,2}, Reid Robison³, Edward S. Kiruluta⁴, Gerald Higgins⁵, Martin G. Reese⁴ ¹Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, NY, USA; ²Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA; ³Utah Foundation for Biomedical Research, E 3300 S, Salt Lake City, Salt Lake City, UT, USA; 4Omicia Inc., 2200 Powell St., Emeryville, CA, USA; 5AssureRx Health, Inc., 6030 S. Mason-Montgomery Road, Mason, Ohio, USA. ### **Background** There is a rich literature in clinical psychology, psychiatry and neurology of single patient studies. Until now, however, such studies have focused on the parallel areas of clinical neuropsychiatry, personal genomics and brain-machine interfaces. #### Methods Detailed phenotyping and clinical evaluations were conducted over a four-year period for a single United States Veteran male with severe mental illness. His genome was sequenced in the Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)certified laboratory. This person was implanted with the Medtronic Reclaim® Deep Brain Stimulation DBS) Therapy device for Obsessive Compulsive Disorder (OCD). Programming of the device and psychiatric assessments occurred in an outpatient setting for over two years. ### Results We report here the detailed phenotypic characterization, clinical-grade whole genome sequencing (WGS), and two year outcome of a man with severe obsessive compulsive disorder treated with deep brain stimulation (DBS) targeting the nucleus accumbens / anterior limb of the internal capsule (ALIC). Since implantation, this man has reported steady improvement, highlighted by a steady decline in his Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ~38 to a score of ~25. A rechargeable Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD in this person. Whole genome sequencing revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding a member of the nerve growth factor family, and which has been found to predispose carriers to various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase (MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles having been shown to confer an elevated susceptibility to psychoses. We have found thousands of other variants in his genome, including pharmacogenetic variants, and have archived and offered the clinical sequencing data to him, so that he and others can re-analyze his genome for years to come. As this individual is a U.S. Veteran, we are working with the VA to incorporate his genomic data into the electronic medical record, VistA, which is of relevance to the One Million Veteran Program. | Data Volume and Quality | | | | | | | | | | |-------------------------|-------------------|---------------|-----------------|--|--|--|--|--|--| | | Yield (Gigabases) | % Bases ≥ Q30 | % Bases Aligned | | | | | | | | Passing Filter | 113.10 | 87.10% | 87.80% | | | | | | | | | % Callable | % ≥ 5x depth | % ≥ 10x depth | % ≥ 20x depth | Mean depth(x) | | |--|---------------|--------------|---|---------------|---------------|--| | Non-N Reference | 93.28% | 97.57% | 96.22% | 88.54% | 33.35 | | | Non-N Reference 18- 14- 19- 10- 8- 4- 4- 2- 10- 8- 10- 8- 10- 8- 10- 10- 10- 10- 10- 10- 10- 10- 10- 10 | 93.28% | 97.57% | 96.22% - 4.5 - 4.0 - 3.5 - 3.0 - Non-N Reference - 2.0 - 1.5 - 1.0 | 88.54% | 33.35 | | | \$ 2
0 10 | 20 | 30 40 | 0.5 | | 50 60 70 80 | | | | Quality Score | | | Sequencing De | epth | | | SNP Assessment | | | | | | | | | | | |----------------|---------|------------|------------|-------------|--|--|--|--|--|--| | Total | Het/Hom | % in dbSNP | % in Genes | % in Coding | | | | | | | | 3,308,246 | 1.61 | 98.13% | 45.47% | 0.63% | | | | | | | ## **Variant Statistics** CVIVA | 3,308,246 | |-----------| | 1,504,121 | | 20,879 | | 24,946 | | 2,917 | | 72 | | 16 | | 9,884 | | 10,907 | | 36 | | | | Gene Symbol () | | | | | ै Reset F | incers Prior | nage Filters | ₩ Relat | ion Miner | O Export | Report Report Versions | |--|--|---------------------------------|------------------------------------|----------|-------------|---------------------|----------------|-----------------|------------------------|---------------|--------------------------| | Omicia Category () | Overview
Genome: PG0
Current Versio
Pipeline Versio | n: | me.block.anno.vcf.g | z | | | | | | | | | Aging
Cardiovascular
Drugs and Pharmacology | Gene | Position
dbSNP | Change | Zygosity | Effect | Quality
Coverage | Frequency | Omicia
Score | Polyphen
Mut-Taster | SIFT | Evidence | | Endocrinological and
Metabolic
Gastrointestinal
Blood and Lymphatic | NQO1 | chr16
69745145
rs1800566 | G→A,A
c.559C>T
p.Pro187Ser | hom | non-synon | 458
33:0:33 | G:72%
A:28% | 0.836 | damaging
benign | 0.11
5.86 | OMM HGMD PGKB | | Immune and Joints
Infectious Disease
Kidney and Urinary Tract | DPYD | chr1
98348885
rs1801265 | G→A,A
c.85C>T
p.Arg29Cys | hom | non-synon | 317
20:0:20 | G:23%
A:77% | 0.708 | : | 0.18
2.55 | HGMD PGKB | | Neonatal
Neurological
Nutrition
Cancer | ABCA1 | chr9
107562804
rs2230808 | T→C,C
c.4760A>G
p.Lys1587Arg | hom | non-synon | 536
38:0:38 | T:41%
C:59% | 0.7 | benign
benign | 1
4.87 | НСМО | | Other
Psychiatric
Respiratory | NAT2 | chr8
18258103
rs1799930 | G→A,G
c.590G>A
p.Arg197Gln | het | non-synon | 220
37:16:21 | G:76%
A:24% | 0.653 | damaging
benign | 0.08
3.11 | OMM HGMD PGKB | | Sight
Hearing, Smell and Taste | ABCA1 | chr9
107589255
rs2066718 | C→C,T
c.2311G>A
p.Val771Met | het | non-synon | 195
40:19:21 | C:94%
T:6% | 0.562 | benign
damaging | 1.4 | номо | | Drug Set () | CYP4F2 | chr19
15990431
rs2108622 | C→C,T
c.1297G>A
p.Val433Met | het | non-synon | 183
30:12:18 | C:78%
T:22% | 0.473 | damaging
benign | 0.01
2.31 | HGMD PGKB GWAS | | Pathway Set (I) | NAT2 | chr8
18257854
rs1801280 | T→C,T
c.341T>C
p.lle114Thr | het | non-synon | 191
39:20:19 | T:70%
C:30% | 0.467 | benign
benign | 0.08
0.74 | OMM HGMD PGKB | | My Set (I) Exclude Set (I) | DPYD | chr1
97981395
rs1801159 | T→C,T
c.1627A>G
p.Ile543Val | het | non-synon | 153
24:11:13 | T:80%
C:20% | 0.295 | benign
benign | 1
0.86 | HGMD PGKB | | Chromosome (I) | OGG1 | chr3
9798773
rs1052133 | C→C,G
c.294C>G
p.Ile98Met | het | non-synon | 146
30:16:14 | C:70%
G:30% | 0.258 | : | 0.01
-0.25 | намо | | Require 0 | OGG1 | chr3
9798773
rs1052133 | C→C,G
c.994C>G
p.Pro332Ala | het | non-synon | 146
30:16:14 | C:70%
G:30% | 0.258 | - | 0.01
-0.25 | намо | | Genotype Heterozygous Homozygous | OGG1 | chr3
9798773
rs1052133 | C→C,G
c.977C>G
p.Ser326Cys | het | non-synon | 146
30:16:14 | C:70%
G:30% | 0.258 | - | 0.01
-0.25 | HGMD | | Protein Impact ✓ All ✓ Stop Gained/Lost | CYP2C9 | chr10
96741053
rs1057910 | A→C,C
c.1076A>C
p.lle359Leu | hom | non-synon | 496
36:0:36 | A:96%
C:4% | 0.189 | benign
damaging | 0.11 | OMM HGMD PGKB | | Indel/Frameshift Splice Site Non-synonymous | ABCA1 | chr9
107620867
rs2230806 | C→C,T
c.656G>A
p.Arg219Lys | het | non-synon | 131
30:18:12 | C:58%
T:42% | 0.187 | benign
benign | 0.32
0.16 | OMM HGMD PGKB | | Supporting Evidence Any OMIM | CYP2B6 | chr19
41515263
rs28399497 | A→A,G
c.785A>G
p.Lys262Arg | het | non-synon | 54
17:8:9 | - | 0.178 | benign
benign | 1
0.84 | номо | | Gene Models CCDS RefSeq | NBN | chr8
90990479
rs1805794 | C→C,G
c.553G>C
p.Glu185Gln | het | non-synon | 193
30:12:18 | C:67%
G:33% | 0.172 | benign
benign | 1
0.5 | HGMD | | Polyphen Prediction Probably Damaging Possibly Damaging | CYP4F12 | chr19
15789140
rs609290 | A→G,G
c.267+1A>G | hom | splice site | 578
44:0:44 | A:6%
G:94% | 0.172 | - | -0.6 | HGMD | | Exclude () | CYP3A7 | chr7
99306685
rs2257401 | C→G,G
c.1226G>C
p.Arg409Thr | hom | non-synon | 331
22:0:22 | C:27%
G:73% | 0.163 | benign
benign | 0.16
0.35 | PGKB | | Sort By Position Gene Symbol | CYP4F12 | chr19
15789140
rs609290 | A→G,G
c.269A>G
p.lle90Val | hom | non-synon | 578
44:0:44 | A:6%
G:94% | 0.126 | -
benign | 0.7
-0.6 | номо | | Omicia Score Effect | CETP 100 \$ | chr16 | G→A,G | het | non-synon | 203 | G:45% | 0.088 | benign | 1 | HGMD PGKB | Figure 1. Variant prioritization was performed on all variants discovered by the Illumina CLIA WGS pipeline using the Omicia Opal platform. Variants were imported into the Omicia Opal cloud based clinical annotation and variant prioritization platform, and subsequently prioritized by requiring each variant to have prior evidence in OMIM and by additionally requiring each variant to be scored as having an Omicia Score of greater than 0.7. @ 2013, Omicia, Inc. All rights reserved | Gene name | Genomic coordinates | Amino acid change | Zygosity | Mutation
type | Population
Frequency | Clinical significance | |-----------|---------------------|-------------------|--------------|------------------|-------------------------|---| | MTHFR | chr1:
11854476 | Glu>Ala | heterozygous | non-synon | T:77% G:23% | Susceptibility to psychoses, schizophrenia occlusive vascular disease, neural tube defects, colon cancer, acute leukemia, and methylenetetra-hydrofolate reductase deficiency | | BDNF | chr11:
27679916 | Val>Met | heterozygous | non-synon | C:77% T:23% | Susceptibility to OCD, psychosis, and diminished response to exposure therapy | | CHAT | chr10:
50824117 | Asp>Asn | heterozygous | non-synon | G:85% A:15% | Susceptibility to schizophrenia and other psychopathological disorders. | Table 1. A summary of three clinically relevant alleles found in the sequencing results of M.A. Mutations in MTHFR, BDNF, and ChAT were found to be of potential clinical relevance for this person, as they are all implicated in contributing to the susceptibility and development of many neuropsychiatric disorders that resemble those present within M.A. A brief summary of the characteristics of each mutation is shown, including the gene name, genomic coordinates, amino acid change, zygosity, mutation type, estimated population frequency and putative clinical significance. Out of 91 other people in Utah genotyped on Illumina 2.5M arrays, only 2 of them carried all three of these variants, which is consistent with the noted minor allele frequencies on these 3 separate autosomes. Figure 2. Yale Brown Obsessive Compulsive Scale (YBOCS) scores were measured for M.A over a three year and seven months period of time. A time series plot (A) shows a steady decline in YBOCS scores over the period of time spanning his DBS surgery (s) and treatment. Incremental adjustments to neurostimulator voltage are plotted over a period of time following DBS surgery (A). Mean YBOCS scores are plotted for sets of measurements taken before and after his Deep Brain Stimulation (DBS) surgery (B). A one-tailed unpaired t test with Welch's correction results in a p value of 0.0056, demonstrating a significant difference between YBOCS scores measured before and after the time of surgery. ## **Conclusions** To our knowledge, this is the first study in the clinical clinical-grade management and return of genetic results for a person with severe mental illness and 2) detailed neuropsychiatric phenotyping and individualized treatment with deep brain stimulation for his OCD. His WGS results and positive outcome with DBS for OCD is one example of individualized medicine in neuropsychiatry, including genomics-guided preventive efforts and brain-implantable devices. This is also an example of the split model for clinical genomics involving separate clinicalgrade processes for sample collection, sequencing, analysis, and clinical interpretation. This serves as a model for the One Million Veteran Program, as this is the first genome sequenced and data returned for a U.S. Veteran, to our knowledge.