Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1

Vitali, J., Ding, J. Z., Jiang, J. Z., Zhang, Y., Krainer, A. R., Xu, R. M. (April 2002) Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Research, 30 (7). pp. 1531-1538. ISSN 0305-1048

[img]
Preview
PDF (Paper)
Krainer and Xu Nucleic Acids Research 2002.pdf - Published Version

Download (448Kb) | Preview
URL: http://www.ncbi.nlm.nih.gov/pubmed/11917013
DOI: 10.1093/nar/30.7.1531

Abstract

The RNA-recognition motif (RRM) is a common and evolutionarily conserved RNA-binding module. Crystallographic and solution structural studies have shown that RRMs adopt a compact alpha/beta structure, in which four antiparallel beta-strands form the major RNA-binding surface. Conserved aromatic residues in the RRM are located on the surface of the beta-sheet and are important for RNA binding. To further our understanding of the structural basis of RRM-nucleic acid interaction, we carried out a high resolution analysis of UP1, the N-terminal, two-RRM domain of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), whose structure was previously solved at 1.75-1.9 A resolution. The two RRMs of hnRNP A1 are closely related but have distinct functions in regulating alternative pre-mRNA splice site selection. Our present 1.1 A resolution crystal structure reveals that two conserved solvent-exposed phenylalanines in the first RRM have alternative side chain conformations. These conformations are spatially correlated, as the individual amino acids cannot adopt each of the observed conformations independently. These phenylalanines are critical for nucleic acid binding and the observed alternative side chain conformations may serve as a mechanism for regulating nucleic acid binding by RRM-containing proteins.

Item Type: Paper
Subjects: bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > RNA binding protein
CSHL Authors:
Communities: CSHL labs > Krainer lab
CSHL labs > Xu lab
Depositing User: Matt Covey
Date: April 2002
Date Deposited: 28 Oct 2013 15:30
Last Modified: 28 Oct 2013 15:30
PMCID: PMC101846
Related URLs:
URI: http://repository.cshl.edu/id/eprint/28805

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving