Journal Club: iPSCs

Jesse Levine
9/4/2013
Gholson Lyon
Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds

Pingping Hou,1* Yanqin Li,1* Xu Zhang,1,2* Chun Liu,1,2* Jingyang Guan,1* Honggang Li,1* Ting Zhao,1† Junqing Ye,1,2† Weifeng Yang,3† Kang Liu,1† Jian Ge,1,2† Jun Xu,1† Qiang Zhang,1,2† Yang Zhao,1‡ Hongkui Deng1,2‡1

College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. 2School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. 3Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100012, China.

*These authors contributed equally to this work. †These authors contributed equally to this work. ‡Corresponding author. E-mail: hongkui_deng@pku.edu.cn (H.D.); yangzhao@pku.edu.cn (Y.Z.).
Goals

• Develop a combination of small molecule compounds capable of reprogramming mouse somatic cells into pluripotent stem cells in the absence of exogenous “master genes”
<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproic acid sodium salt</td>
<td>VPA, V</td>
<td>Histone deacetylase inhibitor</td>
<td></td>
</tr>
<tr>
<td>CHIR99021</td>
<td>CHIR, C</td>
<td>GSK3-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>616452</td>
<td>6</td>
<td>TGF-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>Tranylcypromine</td>
<td>Tranyl, T</td>
<td>H3K4 demethylation inhibitor</td>
<td></td>
</tr>
</tbody>
</table>

Table S1 (B)
• **Part 1: Find Oct4 substitute**
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 1: Find Oct4 Substitute

Mice:

• OG - Oct4/EGFP transgenic C57BL/6J mice carrying EGFP (enhanced green fluorescence protein) under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; can come close to mimicking the endogenous embryonic expression pattern of Oct-4 in transgenic mice
Part 1: Find Oct4 Substitute

Methods:

- Lentiviral infection: Sox2, Klf4 and c-Myc (SKM)

- Small molecule screen
 - 20k OG MEFs/well; 12 well plate
 - Infect with lentivirus encoding SKM
 - Replace with LIF-free ESC culture medium
 - Add individual chemicals from small-molecule libraries to each well
 - Change medium and chemicals every 4 days
 - 14-20 days or until GFP+ colonies
 - Primary hits confirmed and optimized

Part 1: Find Oct4 Substitute
Small molecule libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Source</th>
<th>Number of small-molecule compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBP-2080NPs library</td>
<td>BioBioPha</td>
<td>2,080</td>
</tr>
<tr>
<td>The Spectrum Collection</td>
<td>MicroSource Discovery Systems</td>
<td>2,000</td>
</tr>
<tr>
<td>Sigma LOPAC®(^{,1280})</td>
<td>Sigma</td>
<td>1,280</td>
</tr>
<tr>
<td>Prestwick Chemical Library(^{®})</td>
<td>Prestwick Chemical</td>
<td>1,200</td>
</tr>
<tr>
<td>Tocriscreen(^{TM}) Total</td>
<td>Tocris</td>
<td>1,120</td>
</tr>
<tr>
<td>US Drug Collection</td>
<td>MicroSource Discovery Systems</td>
<td>1,040</td>
</tr>
<tr>
<td>ICCB Known Bioactives Library</td>
<td>Enzo</td>
<td>480</td>
</tr>
<tr>
<td>Protein Kinase Inhibitor Library I, II, III</td>
<td>Millipore</td>
<td>324</td>
</tr>
<tr>
<td>StemSelect Small Molecule Regulators</td>
<td>Calbiochem</td>
<td>303</td>
</tr>
<tr>
<td>Nuclear Receptor Ligand Library</td>
<td>Enzo</td>
<td>76</td>
</tr>
<tr>
<td>Selected Small Molecules*</td>
<td>Our lab</td>
<td>88</td>
</tr>
</tbody>
</table>

*This library was generated in-house, including 88 selected small molecules related to pluripotency, reprogramming or epigenetic modification.

Table S1 (A)
Part 1: Find Oct4 Substitute
SKM/SK: Primary hits

Fig. 1
Part 1: Find Oct4 Substitute
SKM/SK: Primary hits

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forskolin</td>
<td>FSK, F</td>
<td>Activates adenylate cyclase</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-5-hydroxytryptamine</td>
<td>2-Me-5HT</td>
<td>5-HT3 agonist</td>
<td></td>
</tr>
<tr>
<td>D4476</td>
<td></td>
<td>CK1 inhibitor</td>
<td></td>
</tr>
</tbody>
</table>
Part 1: Find Oct4 Substitute

Characterization of iPSC colonies induced from SKM or SK-infected MEFs with FSK treatment

Fig. S1
Part 1: Find Oct4 Substitute

Characterization of iPSC colonies induced from SKM or SK-infected MEFs with 2-Me-5HT or D4476 treatment

Fig. S2
• Part 1: Find Oct4 substitute
• **Part 2: Test small molecule cocktail**
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 2: Test small molecule cocktail

VC6TF

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproic acid sodium salt</td>
<td>VPA, V</td>
<td>Histone deacetylase inhibitor</td>
<td></td>
</tr>
<tr>
<td>CHIR99021</td>
<td>CHIR, C</td>
<td>GSK3-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>616452</td>
<td>6</td>
<td>TGF-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>Tranylcypromine</td>
<td>Tranyl, T</td>
<td>H3K4 demethylation inhibitor</td>
<td></td>
</tr>
<tr>
<td>Forskolin</td>
<td>FSK, F</td>
<td>Activates adenylate cyclase</td>
<td></td>
</tr>
</tbody>
</table>

Table S1 (B)
Part 2: Test small molecule cocktail

VC6TF

Mice: OG-MEFs

Methods:

• Plate cells: 50k/well; 6 well plate
• Replace medium with chemical reprogramming medium containing small molecule cocktail
• Change medium every 4 days
Part 2: Test small molecule cocktail

VC6TF: Characterization of GFP+ clusters; day 24

Fig. S3
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• **Part 3: Screen for late reprogramming molecule**
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 3: Screen for late reprogramming molecule

Mice:
• Infected OG MEFs
• MEFs with DOX-inducible Oct4 from Tet-On POU5F1 strain B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm2(tetO-Pou5f1)Jae/J

Methods:
• Infect OG MEFs with Fu-tet-hOct4 and FUdeltaGW-reTA lentiviruses
• Culture medium containing VC6T and DOX (DOX first 4-8 days)
• Individual chemicals from small-molecule library in each well
• Change medium and chemicals every 4 days
• Continue 16-24 days or until GFP+ colonies appear
• Confirm and optimize primary hits
Part 3: Screen for late reprogramming molecule VC6T + DOX: Primary hits

Table S1 (B)

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-deazaneplanocin</td>
<td>DZNep, Z</td>
<td>S-Adenosylhomocysteine Hydrolase inhibitor and histone methyltransferase EZH2 inhibitor</td>
<td></td>
</tr>
</tbody>
</table>
Part 3: Screen for late reprogramming molecule

VC6TFZ

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproic acid sodium salt</td>
<td>VPA, V</td>
<td>Histone deacetylase inhibitor</td>
<td></td>
</tr>
<tr>
<td>CHIR99021</td>
<td>CHIR, C</td>
<td>GSK3-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>616452</td>
<td>6</td>
<td>TGF-β inhibitor</td>
<td></td>
</tr>
<tr>
<td>Tranylcypromine</td>
<td>Tranyl, T</td>
<td>H3K4 demethylation inhibitor</td>
<td></td>
</tr>
<tr>
<td>Forskolin</td>
<td>FSK, F</td>
<td>Activates adenylate cyclase</td>
<td></td>
</tr>
<tr>
<td>3-deazaneplanocin</td>
<td>DZNep, Z</td>
<td>S-Adenosylhomocysteine Hydrolase inhibitor and histone methyltransferase EZH2 inhibitor</td>
<td></td>
</tr>
</tbody>
</table>

Table S1 (B)
Part 3: Screen for late reprogramming molecule

VC6TFZ: GFP positive cells induced

Fig. 1

Fig. S5
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• **Part 4: Resolve incomplete reprogramming**
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 4: Resolve incomplete reprogramming

VC6TFZ: timeline of CiPSC generation

Fig. 1
Part 4: Resolve incomplete reprogramming

VC6TFZ: RNA-seq analysis of GFP positive colonies (without 2i medium/incomplete) and CiPSCs

Heat map:
- Value in the color key indicates \log_2 changes
- Generated using R

Fig. S6
Part 4: Resolve incomplete reprogramming

2i medium:
- Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3)
- MEK inhibition is the main reprogramming cue in 2i and also exerts selection against pre-iPS cells
 - Phospho-Erk (p-Erk) signal extinguished
 - Upregulation of Nanog expression
- GSK inhibition generates intracellular β-catenin, which interacts with Tcf3 and abolishes its repressor effect on multiple genes in the pluripotent network
- GSK inhibition also supports embryonic stem cell propagation through stimulatory effects on metabolic and biosynthetic processes
- 2i treatment does not select for expansion of an already resident pluripotent subpopulation, but actively induces conversion to pluripotency in pre-iPS cell

Hamazaki et al, 2006
Wray et al, 2011
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• **Part 5: Optimize cocktail**
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 5: Optimize cocktail
VC6TFZ: concentrations and treatment durations of individual chemicals
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• **Part 6: Screen for reprogramming booster**
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 6: Screen for reprogramming booster

VC6TFZ + TTNPB: effect of TTNPB and characterization of generated CiPSCs
Part 6: Screen for reprogramming booster

VC6TFZ + TTNPB: effect of TTNPB and characterization of generated CiPSCs

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Function</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTNPB</td>
<td>N</td>
<td>Selective and highly potent retinoic acid analog with affinity for retinoic acid receptors (RAR) α, β, and γ, which are nuclear transcription factors. Produces ligand-activated transcription of genes that possess retinoic acid responsive elements.</td>
<td>![Structure Image]</td>
</tr>
</tbody>
</table>

Table S1 (B)
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 7: Additional cells of origin

Methods:
- Plate cells: 50k/well; 6 well plate
- Replace medium with chemical reprogramming medium containing small molecule cocktail
- Change medium every 4 days
- DZNep added day 16 or day 20
- Small molecule cocktail (including DZNep) removed day 20; replace with 2i medium

Fig. 1
Part 7: Additional cells of origin

VC6TFZ: morphology of CiPSC colonies generated from MNFs, MAFs, ADSCs and WT MEFs; genomic PCR analyzing pOct4-GFP cassettes in the CiPSCs derived from WT MEFs
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• Part 10: Investigate role of small molecules
Part 8: Characterize CiPSC lines
VC6TFZ: CiPSCs free of transgene contamination
Part 8: Characterize CiPSC lines

VC6TFZ: MEF-derived
Part 8: Characterize CiPSC lines

VC6TFZ

MNF

ADSC

MAF

WT MEF

Fig. S11
Part 8: Characterize CiPSC lines

VC6TFZ

Fig. S12
Part 8: Characterize CiPSC lines
VC6TFZ: Histone H3 modifications at Oct4, Sox2 and Nanog promoter regions

Fig. S13
Part 8: Characterize CiPSC lines
VC6TFZ: genetic integrity of CiPSCs
Part 8: Characterize CiPSC lines

VC6TFZ: pluripotency of CiPSCs

Fig. 3
Part 8: Characterize CiPSC lines

VC6TFZ: pluripotency of CiPSCs

Fig. S15
Part 8: Characterize CiPSC lines
VC6TFZ: in vivo developmental potential of CiPSCs
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• **Part 9: Determine essential small molecules**
• Part 10: Investigate role of small molecules
Part 9: Determine essential small molecules

Fig. 4
Part 9: Determine essential small molecules

Characterization of CiPSCs induced by C6FZ
• Part 1: Find Oct4 substitute
• Part 2: Test small molecule cocktail
• Part 3: Screen for late reprogramming molecule
• Part 4: Resolve incomplete reprogramming
• Part 5: Optimize cocktail
• Part 6: Screen for reprogramming booster
• Part 7: Additional cells of origin
• Part 8: Characterize CiPSC lines
• Part 9: Determine essential small molecules
• **Part 10: Investigate role of small molecules**
Part 10: Investigate role of small molecules

Biological activity of FSK during chemical reprogramming

Fig. S17
Part 10: Investigate role of small molecules

Function of DZNep in chemical reprogramming

Fig. 4
Part 10: Investigate role of small molecules

Function of DZNep in chemical reprogramming

[Graph showing relative ratio of SAH/SAM and number of CIPS colonies per 300,000 replated cells]
Part 10: Investigate role of small molecules

Function of DZNep in chemical reprogramming

<table>
<thead>
<tr>
<th></th>
<th>3D</th>
<th>16D</th>
<th>20D</th>
<th>32D</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC6TF</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>0.05</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>EZH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-ACTIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative level</td>
<td>0.35</td>
<td>0.47</td>
<td>0.22</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. S19
Part 10: Investigate role of small molecules

VC6TFZ: Gene expression during chemical reprogramming

Fig. S21
Part 10: Investigate role of small molecules

VC6TFZ: Gene expression during chemical reprogramming
Part 10: Investigate role of small molecules
VC6TFZ: Gene expression during chemical reprogramming

Fig. S22 & S23
Part 10: Investigate role of small molecules
VC6TFZ: effect of specific chemicals on gene expression
Part 10: Investigate role of small molecules

Overexpression of Sall4 and Sox2: Oct-4 promoter-driven luciferase reporter

Fig. S25
Part 10: Investigate role of small molecules

VTZ: overexpression of Sall4 and Sox2

Fig. 4

Fig. S26
Part 10: Investigate role of small molecules

VC6TFZ: Effects of knockdown on gene expression

Fig. S27
Part 10: Investigate role of small molecules

VC6TFZ: Effects of knockdown on expression of Oct4 and iPSC formation
Part 10: Investigate role of small molecules
Summary

Fig. S30
What’s next

• Human somatic cells
• Improve efficiency
• Differentiation of CiPSCs
• Direct reprogramming
Additional information
Part 1: Find Oct4 Substitute

Characterization of iPSC colonies induced from SKM or SK-infected MEFs with FSK treatment

Methods:
• Immunofluorescence
 - Primary antibodies: SSEA-1, OCT4, NANOG, UTF1
 - Secondary antibodies: Rhodamine-conjugated
• Chimera:
 - Blastocyst injection:
 • Injection needle
 • 10-15 CiPSCs into embryo cavity of F2 or CD-1 female mice at 3.5 days post coitum
 • Transferred into 2.5 day pseudopregnant females
 - Eight cell embryo injection:
 • XYClone laser system
 • Collected from female mice at 2.5 days; 7-10 CiPSCs injected into each embryo
 • Transferred into .5 day pseudopregnant females
 - Chimeric mice identified by coat color
 - Assessed for germline transmission by mating with ICR mice

• RT-PCR
 - Isolate RNA
 - Convert to cDNA
 - Carry out PCR
 - Analysis of data using delta-delta Ct method
• Scatter plot – DNA microarray
 - Total mRNA was labeled with Cy5, hybridized to a mouse Oligo Microarray
 - Red line = boundary for two-fold change
 - R = Pearson’s coefficient

Fig. S1
Cell culture

• Cells used in reprogramming were passage 1-5
• Cells cultured in DMEM/High glucose containing 10% fetal bovine serum

• ESCs, iPSCs and CiPSCs maintained on feeder layers of mitomycin C-treated (halts division) MEFs in ESC culture medium (KnockOut DMEM containing 10% knockout serum replacement, 10% FBS, 2mM GlutaMAX-I, 1% nonessential amino acids, 0.1 mM 2-mercaptoethanol, 1% penicillin-streptomycin and 1,000 U/ml leukemia inhibitory factor)

• For CiPSC induction, LIF-free ESC culture medium supplemented with 20-100ng/ml bFGF
Part 2: Test small molecule cocktail
VC6TF: Characterization of GFP+ clusters; day 24

Methods:
• Bisulfite genomic sequencing
 - Genomic DNA modified by bisulfite treatment and purified
 - Amplified fragments cloned into pEASY-blunt vector
 - Ten randomly picked clones from each sample were sequenced
• RNA-seq:
 - RNA sequencing libraries constructed
 - Fragmented and randomly primed 200bp paired-end libraries were sequenced using Illumina HiSeq 2000

Fig. S3
Part 3: Screen for late reprogramming molecule

VC6TFZ: GFP positive cells induced

Methods:
Flow cytometry analysis:
• Cultured cells trypsinized into single cells and resuspended in PBS containing 3% FBS
• Using endogenous Oct4-GFP, FACS analyses preformed with FACSCalibur instrument
Part 6: Screen for reprogramming booster

2-Me-5HT

IBMX

PGE2

SRT1720

TTNPB

UNC0638

RG108

SF1670

DY131

Table S1 (B)
Part 8: Characterize CiPSC lines
VC6TFZ: Histone H3 modifications at Oct4, Sox2 and Nanog promoter regions

Methods:
Chromatin immunoprecipitation (ChIP):
• EZ-Magna ChIP A/G kit
• Anti-H3K27me3, Anti-H3K9me2, Anti-H3K4me3, Anti-H3K9ac antibodies used
• Following immunoprecipitation, DNA analyzed by real-time PCR

Fig. S13
Part 8: Characterize CiPSC lines

VC6TFZ: genetic integrity of CiPSCs

Comparative genomic hybridization analysis:
• Genomic DNA extracted and hybridized to mouse whole-genome tiling arrays

Fig. S14
Part 8: Characterize CiPSC lines
VC6TFZ: pluripotency of CiPSCs

Methods:
Teratoma formation:
• 10^5 iPSC cells were injected into the kidney capsule of one severe combined immunodeficient beige mouse
• Teratomas were recovered 4 weeks after grafting
• Control mice were injected with 1 million MEFs and failed to form teratoma
• Embedded in paraffin and processed with hematoxylin and eosin staining
Part 10: Investigate role of small molecules
Overexpression of Sall4 and Sox2: Oct-4 promoter-driven luciferase reporter

Methods:
• MEFs plated 40,000 cells/well; 24 well plate
• Transiently transfected with Oct4 promoter reporters using Lipofetamine LTX and Plus Reagent
• pRL-TK plasmids cotransfected in each well as internal references
• Total DNA concentrations for all transfections were equalized by adding empty pLL3.7-ΔU6 vector
• At 48 hours, cells washed and lysed
• Luciferase activity measured with Dual-luciferase Reporter Assay system and normalized to Renilla luciferase activity
• Empty expression vector plasmids used as negative control

Fig. S25
Part 10: Investigate role of small molecules

VC6TFZ: Effects of knockdown on gene expression

shRNA silencing

Fig. S27