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Abstract 

Breast cancer is a biologically and clinically heterogeneous disease that makes 

clinical management challenging. Cancer genomics can identify underlying candidate 

genetic lesions, but functional studies are required to dissect which changes impact disease 

progression, treatment efficacy, and development of resistance. The generation of 

experimental models that can faithfully reproduce the spectrum of human disease is 

therefore essential. RNA interference (RNAi) is a powerful tool that allows for systematic 

loss of function genetics in mammalian systems. This thesis presents two complementary 

approaches for the development of new mouse models of breast cancer based upon RNAi 

technology. The first experimental chapter describes efforts to build a ‘mosaic’ orthotopic 

transplantation model for the purpose of conducting an in vivo RNAi screen for novel tumor 

suppressor genes relevant to the human disease. A pilot screen led to the identification of 

neurofibromin 1 (NF1) as having a putative tumor suppressor activity in breast cancer. The 

following chapter involves the development of a transgenic RNAi mouse model of human 

epidermal growth factor receptor 2 (HER2) positive breast cancer. This new multi-allelic 

inducible RNAi platform was subsequently used to investigate the efficiency of the tumor 

suppressor gene PTEN (phosphatase and tensin homolog) knockdown in driving disease 

acceleration and to assess its role in tumor maintenance. Taken together, this work extends 

the application of RNAi technology, and identifies new (NF1) and expands upon known 

(PTEN) molecular and genetic interactions underlying the progression and maintenance of 

HER2 positive breast cancer. 
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I. Introduction 

 

BREAST CANCER 

Breast cancer is the most frequently diagnosed cancer in women in the United States, 

with an estimated 226,870 new cases in 2012 (American Cancer Society 2012). Despite the 

fact that recent scientific and clinical advances have led to a constant decline in breast cancer 

mortalities, it remains the second leading cause of cancer deaths with an estimated yearly 

mortality rate of 40,000 patients. The decline can be attributed in part to early detection, 

diagnosis, and surgery, coupled with improvements in postsurgical adjuvant treatments 

including hormonal, cytotoxic and molecular based therapies.  

Breast cancer is a clinically heterogeneous disease, the complexity of which relates to 

the diversity of molecular abnormalities driving the tumorigenic process. This collection of 

diseases displays distinct histopathological features, genetic and genomic characteristics, 

and diverse prognostic outcomes and responses to therapy (Vargo-Gogola and Rosen 2007). 

Currently, there is an ideological shift in the treatment of many cancer types, from an 

approach where the histology and tissue of origin were the guiding principles in the choice 

of therapy towards a strategy involving the identification of oncogenic driver mutations and 

selective treatments in the clinic using specific targeting agents. This paradigm change has 

been enabled by the emergence of next-generation DNA sequencing technologies that have 

allowed for the identification of recurrent genetic aberrations and the concurrent 

development of highly selective inhibitors against the products of genes that are activated 

by these alterations (Bernards 2012). Major advances in the areas of breast cancer disease 

classification and targeted therapy will be briefly discussed below. 
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BREAST CANCER PATHOLOGY AND MOLECULAR PROFILES 

Until very recently, pathological examination was the gold standard for diagnosis in 

breast cancer and its role also encompassed the elucidation of etiology, pathogenesis, 

clinicopathological correlation, and prognostication (Leong and Zhuang 2011). Historically, 

the selection of adjuvant systemic therapy for early breast cancer patients relied on risk 

assessment as delineated by the TNM classification (Dinh et al. 2007). Developed in the 

1940s, the TNM staging system for solid cancers classifies malignant tumors based on the 

size of the primary tumor (T), the involvement of regional lymph nodes (N) and distant 

metastasis (M) (Brierley 2006). Furthermore, the Scarff-Bloom-Richardson grading system 

for breast cancer was developed based on microscopic observations based on tubule 

formation, mitotic activity, and cellular pleomorphism (Bloom and Richardson 1957). 

Subsequent refinement and incorporation into the Nottingham Prognostic Index resulted in 

a robust scoring system that predicted long-term survival for patients (Haybittle et al. 1982). 

Additionally, risk-assessment incorporated both patient-related (such as age and 

menopausal status) and tumor-related prognostic factors (such as tumor size and grade) 

(Gelber et al. 2003).  

Technological advances in molecular biology, and the accompanying realization that 

breast cancer is a heterogeneous group of diseases, has shifted the focus of pathobiology 

towards the improvement of diagnostic tools with increased attention being paid to the 

identification of morphological features and immunohistochemical markers of prognostic 

relevance (Leong and Zhuang 2011). Incorporating the expression status of hormone 

receptors and human epidermal growth factor receptor (HER2) as prognostic factors 

marked the first emphasis towards predictive markers that reflect both the molecular make-

up of the tumors and represent the actual targets for therapies such as tamoxifen and 
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aromatase inhibitors against the estrogen receptor (ER) and the humanized monoclonal 

antibody trastuzumab (Herceptin, Genentech) that targets HER2 (Fendly et al. 1990; Dinh et 

al. 2007). Despite efforts invested towards the identification of other immunohistochemical 

biomarkers to further refine breast cancer diagnosis and treatment, few have proven to be of 

value in multivariate analyses and only ER, progesterone receptor (PR), and HER2 

expression have remained essential components of pathological examination (Leong and 

Zhuang 2011). 

To better understand the phenotypic diversity breast cancers present in their natural 

history and responsiveness to therapy, researchers sought to characterize tumors through a 

detailed interrogation of inter-tumor variation in gene expression patterns (Perou et al. 2000; 

Sorlie et al. 2001). These emerging molecular portraits defined a new clinical and biological 

standard relating back to the different features of normal mammary epithelial biology: 

ER+/luminal-like, basal-like, HER2+ and normal breast, with important implications that 

ER negative breast carcinomas may encompass two biologically distinct subtypes (basal-like 

and HER2+) (Perou et al. 2000). Further refinement by Sorlie and colleagues led to the 

luminal subtype A, luminal subtype B/C, basal-like, HER2+ and normal breast-like 

categories (Sorlie et al. 2001). Moreover, evidence of a relationship between the expression-

based subclasses of breast tumors and patient outcome was established (Sorlie et al. 2001). 

During the past decade, the interpretation of breast tumor biology based on molecular 

profiles has steadily become part of the standard medical vocabulary. In invasive ductal 

carcinomas (IDC), which constitute approximately 80% of all breast cancers, at least four 

molecular subtypes are commonly designated by the following general defining traits: 

luminal (ER+, PR+, and HER2–), HER2 overexpressing (ER–, PR–, and HER2+), basal-like 

(ER–, PR–, HER2, and CK5/6+, EGFR+), and normal breast-like (ER–, PR–, and HER2–). 
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Furthermore, it has been demonstrated that IDC and invasive lobular carcinoma (ILC), the 

second major histological type of breast cancer, present additional differences in global 

transcription programs (Zhao et al. 2004).  

The molecular subtypes of IDC segregate by overall survival, with HER2+ and basal 

subtypes demonstrating the worst prognosis while luminal-A shows the most favorable 

outcome (Perou et al. 2000). However, it has been shown that the prognostic outcomes of 

each type of IDC do not differ when a pathologically complete response to therapy is 

achieved (Carey et al. 2007). These distinct prognostic outcomes may reflect the differential 

responses to chemotherapy and targeted therapies by the bulk of the tumor and sub-

populations of tumor-initiating cells (Al-Hajj et al. 2004). More recently, researchers have 

taken molecular and genomic profiling of breast cancer a step further and looked to define 

intra-tumoral heterogeneity at a single-cell resolution (Navin et al. 2010; Navin et al. 2011). 

Continued progress towards a complete understanding of the many critical aspects of 

tumorigenesis, such as the cell of origin and tumor initiation and evolution from the 

perspectives of intra- and inter-tumoral heterogeneity, will likely provide answers to some 

of these seemingly contradictory phenomenon observed in the clinic. 

 

TARGETED THERAPIES IN BREAST CANCER 

Over the last past few decades, breast cancer mortality dramatically decreased in 

great part due to use of adjuvant systemic therapy (Berry et al. 2005; Berry et al. 2006), 

including chemotherapy for most patients, endocrine therapy for those with ER+ disease, 

and more recently trastuzumab for tumors that overexpress HER2. However, many years 

before the development of trastuzumab, endocrine therapy was the cornerstone in the 

therapeutic repertoire for treatment of metastatic, hormone receptor-positive breast cancer 
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(Montemurro et al. 2012). In fact, androgen deprivation therapy for prostate cancer and 

estrogen deprivation therapy for breast cancer represent two of the earliest targeted 

therapies in solid tumor oncology. While both diseases present an initial stage wherein 

hormone therapy is successful in controlling the disease, either through inhibition of 

endogenous hormone production or through inhibition of hormone receptor signaling, after 

a period of time both cancer types exhibit insensitivity to the effects of the first-line 

treatment option (Oxnard 2012). 

It has been over a century since the first clinical observation that oophorectomy of a 

human patient with advanced breast cancer was effective in treating the disease (Beatson 

1896). Tamoxifen, a selective modulator of ER that competitively inhibits the binding of 

estradiol and consequently disrupts mechanisms regulating cellular replication and 

proliferation, has been in use in the clinic since the 1970s (Jordan and Dowse 1976). 

Application of endocrine therapy in a non-selective manner across patient cohorts results in 

response rates of 30% (Buzdar and Hortobagyi 1998). In advanced tumors positive for both 

receptors response rates increase to 50-70%.  

While tamoxifen was the staple component of breast cancer treatment for many 

years, research to find new strategies for treating tamoxifen-resistant hormone-dependent 

breast cancer led to the development of a new class of agents, aromatase inhibitors, that act 

to reduce estradiol production through adrenal androgen conversion by the aromatase 

enzyme (Harvey 1996). Aromatase inhibitors are also being actively evaluated as prevention 

agents for women with a history of ductal carcinoma in situ (DCIS), as well as for the 

treatment of women considered at high risk for developing primary invasive breast cancer 

(Litton et al. 2012). These early observations in targeted therapy involving mixed responses 

and development of resistance underscored the critical need for a better comprehension of 
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the molecular biology at the source of this clinical diversity and an arsenal of targeted 

therapies to match. 

Since its FDA approval in 1998, trastuzumab has become a key component in the 

treatment of early and metastatic HER2-positive breast cancer (Hudziak et al. 1989; Baselga 

et al. 1996; Slamon et al. 2001), and demonstration of its anti-tumor activity provided the 

proof of principle for therapy targeted to receptor tyrosine kinases (RTKs). A member of the 

epidermal growth factor receptor (EGFR) family, the HER2 protein is a transmembrane 

tyrosine kinase receptor involved in regulation of cell growth, migration, survival and 

differentiation (Yarden and Sliwkowski 2001). Amplification of the gene encoding HER2 

(King et al. 1985), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2) first 

discovered in 1984 (Schechter et al. 1984), is the most common mechanism leading to 

overexpression of the receptor (Pauletti et al. 1996) and results in the constitutive signaling 

of downstream pathways (Yarden and Sliwkowski 2001). HER2 has been found 

overexpressed in 20-30% of human breast cancers and prior to the advent of HER2-targeted 

therapies, patients with HER2-positive disease had higher risk of recurrence after initial 

therapy and poor prognosis (Slamon et al. 1987; Slamon et al. 1989). 

The EGFR family, which also includes EGFR (HER1), HER3 and HER4, is involved 

in cell-cell and cell-stroma communication through signal transduction whereby external 

growth factors, or ligands, affect the downstream transcription of various genes via the 

phosphorylation or dephosphorylation of a series of transmembrane proteins and 

intracellular intermediates, many of which possess enzymatic activity (Ross et al. 2009). 

Activation of the kinase occurs with ligand biding and subsequent hetero- or 

homodimerization of these receptors. HER2 is capable of acting in a ligand-independent 

manner when mutated or overexpressed (Yarden 2001). Its overexpression in the context of 
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breast cancer, which can range from 2- to greater than 20-fold, has been associated with 

cancer promoting phenotypes including increased cell proliferation, cell motility, tumor 

invasiveness, progressive regional and distant metastases, accelerated angiogenesis and 

reduced apoptosis (Moasser 2007). HER2 signaling has been demonstrated to promote cell 

proliferation through the RAS-MAPK pathway and inhibit cell death through the 

phosphatidylinositol 3’-kinase (PIK3)/AKT/mammalian target of rapamycin (mTOR) 

pathway (Yarden and Sliwkowski 2001). 

In 2012, trastuzumab remained the only approved HER2-targeted therapy in the 

adjuvant setting (Jelovac and Wolff 2012). Data from the first generation of clinical trials 

combining it with various chemotherapy regimens showed significant improvements in 

disease-free and overall survival, and consequently a trastuzumab-containing regimen for 

up to one year is now considered standard for all eligible patients with HER2-positive 

tumors. Trastuzumab has significant clinical benefit in the adjuvant and metastatic setting 

but both de novo and acquired clinical resistance have been observed (Baselga 2001). Second 

generation HER2-targeted drugs are in development and in clinical trials, such as antibodies 

against its external domain (pertuzumab), small-molecule tyrosine kinase inhibitors 

(lapatinib and neratinib), anti-HER2 antibodies conjugated to toxic molecules (trastuzumab-

DM1 or T-DM1), and chaperone antagonists (geldanamycin) (Perez and Spano 2012; Tsang 

and Finn 2012). 

 

MOUSE MODELS OF BREAST CANCER 

Human breast cancer cell lines are used extensively as preclinical models both in 

vitro and in vivo as xenografts. Although cell line models have not proven useful for the 

identification of biomarkers of chemotherapy response, and controversy remains to whether 
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the diversity within the available breast cancer cell lines accurately mirrors the inter-tumoral 

heterogeneity observed in the clinic, there is evidence to suggest that when employed under 

the right framework they can serve as a powerful tool for predicting the clinical 

performance of cancer drugs (Voskoglou-Nomikos et al. 2003; Lacroix and Leclercq 2004; 

Bernards 2012).  

In a recent study, Neve and colleagues reported, after cross-examining the molecular 

profiles and genomic alterations of 51 breast cancer cell lines and 145 primary human breast 

tumors, that when relevant subsets of cell lines are used as a system rather than alone they 

can provide robust platforms for the investigation of the signaling pathways associated with 

therapeutic response (Neve et al. 2006). Furthermore, an argument can be made that 

connections between signaling pathways that have proven critical for the development of 

acquired resistance to targeted therapies are hard-wired in a cell autonomous manner and 

consequently less dependent on microenvironmental factors. Nonetheless, it remains of vital 

importance to complement cell line models with other approaches for predicting drug 

response and studying tumor biology, such as three-dimensional cell culture systems, 

patient-derived mouse xenograft and transgenic models of breast cancer (Bernards 2012). 

 

Xenograft models 

While xenograft models involving human breast cancer cell lines suffer from some of 

the same basic criticisms raised against their use in in vitro studies, seminal publications in 

the field have demonstrated their utility and direct relevance to the human disease. A series 

of studies from Massagué and colleagues have shown that intravenous experimental 

metastasis assays can be used to define metastasis gene signatures that correlate 

significantly with clinical data and provide valuable insights into the molecular biology 
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underlying the metastatic process (Minn et al. 2005; Kim et al. 2009; Zhang et al. 2009). Other 

investigators have also been successful in using xenographs to identify gene signatures that 

correlate with prognostic outcomes (Kluger et al. 2005; Montel et al. 2005). 

The growth of breast cancer cell lines in an in vivo environment allows for 

experiments to incorporate the complex tumor-stromal cell interactions that facilitate 

disease formation and progression (Vargo-Gogola and Rosen 2007). However, the obligate 

use of immunocompromised mice and the resulting absence of an intact immune system 

may have profound effects on the tumor biology (Balkwill et al. 2005). There is increasing 

evidence to suggest the fundamental role of the immune system in various stages of 

tumorigenic transformation (Goswami et al. 2005; Schwertfeger et al. 2006; Shree et al. 2011). 

The transplantation of human tumor cells into a foreign microenvironment and the absence 

of co-evolvement of epithelial and stromal compartments of the tumor may point to some of 

the reasons why testing therapeutics in xenograft models has fallen short of accurately 

predicting treatment efficacy in human patients (Vargo-Gogola and Rosen 2007). Efforts to 

humanize the mouse mammary fat pad, through the reconstitution of tumor-promoting 

immune and fibroblast compartments (Orimo et al. 2005; Proia and Kuperwasser 2006), and 

the use of a panel of subtype xenografts instead of a single cell line, may eventually allow 

for increased predictive power. The application of xenograft transplantation methodology to 

perpetuate and expand breast cancer clinical isolates is a unique alternative to the use of 

human cell lines. While the preserved authenticity of the human genomic landscape and the 

retention of stromal components of patient tumor biology makes this an ideal model in 

design, it is inefficient in practice and access to clinical samples is limited (Vargo-Gogola 

and Rosen 2007). Overall, a better understanding of the role of the immune system, 

microenvironment and the unique traits of human breast cancer molecular subtypes is 



 10 

required before informed changes can be made to improve their strength as preclinical 

models and ultimately overcome the obstacle of inefficient translation of major advances in 

basic cancer research into the clinic. 

 

Transgenic approaches 

 A new era of mammary tumor research was initiated in 1984 by Stewart, Pattengale, 

and Leder’s paper using the mouse mammary tumor virus long terminal repeat (MMTV-

LTR) to promote the expression of the proto-oncogene Myc in the mouse mammary gland 

(Stewart et al. 1984). Since then, genetically engineered mouse models (GEMMs) have 

contributed extensively to our understanding of genes that are involved in the promotion 

and progression of breast cancer.  

The first generation of breast cancer GEMMs were generated by targeting oncogenes 

such a Myc, polyoma virus middle T (PyMT), rat ErbB2/Neu, and Hras to the mammary 

gland using the MMTV-LTR and whey acidic protein (Wap) promoters (Sinn et al. 1987; 

Muller et al. 1988; Guy et al. 1992a; Guy et al. 1992b). These relatively simple transgenic 

models provided tools for examining how these oncogenes contribute to breast 

tumorigenesis, but a greater wealth of information regarding signaling interactions was 

obtained by interbreeding various transgenic strains together (Vargo-Gogola and Rosen 

2007). Further advances in mouse modeling technology, such as the use of tetracycline-

regulatable transgenes, allowed for increased precision and control in the developmental 

timing of the induced changes in gene function (Gunther et al. 2002). Moreover, heightened 

tissue and cell type selectivity was afforded through the adoption of Cre/loxp recombinase-

mediated somatic gene deletion and activation that is driven by promoters with varied 

expression patterns, such as MMTV, WAP or keratin-14 (K14) (Wagner et al. 1997; Jonkers et 
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al. 2001; Wagner et al. 2001; Lin et al. 2004). These advances, that afforded spatial and 

temporal control over loss and gain of gene function, created GEMMs that could begin to 

replicate the development of human breast cancer in vivo.  

In contrast to xenograft transplantation systems, GEMMs are immunocompetent and 

retain the endogenous tissue architecture and microenvironmental cues. Sophisticated 

techniques, such as the application of intravital microscopy in transgenic breast cancer 

models has provided a new window through which to study the processes of angiogenesis, 

inflammation and the many steps of metastatic disease dissemination (MacDonald and 

Chambers 2006; Wyckoff et al. 2007; Egeblad et al. 2008). 

To determine the extent to which GEMMs faithfully reproduce the molecular 

features of the human disease, Perou and colleagues extended their study of the molecular 

profiles of human tumors to the commonly used murine models of mammary carcinoma. A 

comprehensive interspecies analysis, involving the gene-expression profiles for 232 human 

breast cancers and 122 mouse mammary tumor samples obtained from 13 GEMMs, was able 

to identify conserved gene expression features between murine and human tumors. 

Although no single mouse model recapitulated all the features of a given human breast 

cancer subtype, genotype correlated strongly with phenotype in the murine tumors and the 

shared expression features provided a framework from which to build a better 

understanding of how researchers might translate findings in GEMMs to the clinic 

(Herschkowitz et al. 2007). Recent studies have also shown that transplantation of 

transgenic tumors is an effective way of generating large cohorts of mice bearing well-

characterized tumors with defined molecular and genetic backgrounds, thus providing a 

new avenue for the use of GEMMs as a preclinical model (Varticovski et al. 2007). 
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Owing to the diversity of human breast cancer and species differences, individual 

GEMMs should not be expected to faithfully recapitulate all aspects of the human disease 

but it is evident from the literature that over the past three decades, GEMMs have become 

invaluable tools for the investigation of human breast cancer genetics and pathogenesis, and 

that novel methods towards the optimization of their utility as preclinical models are still 

emerging.  

 

PI3K/AKT PATHWAY AND PTEN 

The phosphoinositide triphosphate kinase (PI3K)/AKT/mammalian target of 

rapamycin (mTOR) pathway is a central intracellular regulatory pathway, which is one of 

the most frequently activated signaling pathways in cancer. Phosphoinositide 3-kinases 

(PI3Ks) act by phosphorylating phosphatidylinositol lipid substrates, which in turn activate 

multiple effector proteins, and govern many cellular processes such as cell cycle 

progression, growth, differentiation, metabolism, survival and migration (Cantley 2002). 

Oncogenic mutations in the PI3K signaling pathway are frequently found in human cancers, 

including breast (Baselga 2011). These mutations generally involve either activating 

mutations in the genes encoding the kinases PIK3CA or AKT1, or the loss or reduced 

expression of the phosphatases PTEN, SHIP or INPP4B (Stemke-Hale et al. 2008). PIK3CA is 

found mutated in approximately 25-40% of all breast tumors (Cancer Genome Atlas 

Network 2012) and it has been suggested that PIK3CA mutations are an early even in breast 

cancer, more likely to play a role in breast cancer initiation than in invasive progression 

(Miron et al. 2010).  

While HER2 and ER! have been the most commonly used targets for the treatment 

of breast cancer patients, activated PI3K pathway is emerging as a major target for selective 
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therapeutics agents (Stemke-Hale et al. 2008). A diverse set of pharmacological inhibitors 

has been developed to inactivate this pathway in cancer cells (Courtney et al. 2010). 

However, trials thus far have demonstrated that monotherapy with a single targeted 

inhibitor is not capable of effectively eradicating the disease (Baselga 2011). For finding 

effective combination therapies that can counteract the inevitable resistance mechanisms 

being seen against these inhibitors, physiological preclinical mouse models that can 

accurately predict response to treatment are essential (Klarenbeek et al. 2013). 

The tumor suppressor gene PTEN is a negative regulator of the PI3K/Akt signaling 

pathway and is also found disrupted in many cancers (Cantley and Neel 1999). In fact, it is 

one of the most commonly lost or mutated tumor suppressor genes in human cancers (Song 

et al. 2012). Additionally, germ line mutations are found in several familial cancer 

predisposition syndromes (Liaw et al. 1997; Yin and Shen 2008). PTEN was initially 

identified as a gene frequently lost in brain, breast and prostate cancers (Li et al. 1997; Steck 

et al. 1997). Shortly thereafter, it was biochemically demonstrated that PTEN is a 

phosphatase responsible for the dephosphorylation of the messenger molecule 

phosphatidylinositol-3,4,5-triphosphate (Maehama and Dixon 1998) and that it was a 

negative regulator of the cell survival kinase Akt (Stambolic et al. 1998). In addition to its 

canonical role as a tumor suppressor gene in the PI3K pathway, in the context of breast 

cancer PTEN has been implicated in the resistance of HER2-targeted treatment (Nagata et al. 

2004; Berns et al. 2007) and has been shown to have a possible microenvironmental role in 

tumor-stroma co-evolution (Wallace et al. 2011). PTEN has been demonstrated to be acutely 

dose dependent in determining cancer susceptibility, defining it as a happloinsufficient 

tumor suppressor gene (Alimonti et al. 2010; Berger and Pandolfi 2011).  
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RNA INTERFERENCE AND SHRNAS 

In 1993, a new class of RNA molecules, later named microRNAs, was identified (Lee 

et al. 1993; Wightman et al. 1993). Through the discovery of RNA interference – a sequence-

specific gene silencing mechanism mediated by double-stranded RNA – a new era of loss-

of-function experimentation emerged (Fire et al. 1998), where it was possible, in principle, to 

reversibly suppress the expression of any gene in the genome. Although this mechanism of 

post-transcriptional gene silencing was first discovered in the nematode Caenorhabditis 

elegans, subsequent genetic and biochemical studies have revealed insights into the pathway 

and uncovered analogous mechanisms in eukaryotic organisms (Hannon 2002).  

MicroRNAs form the largest class of small non-coding RNAs and are involved in the 

spatio-temporal control of endogenous gene activity. This mechanism of negative regulation 

of target gene expression at the post-transcriptional level can be hijacked by double-

stranded RNA of exogenous sources to silence genes of interest in a sequence-specific 

manner. While transient regulation can be triggered in cultured mammalian cells through 

the introduction of synthetic siRNA duplexes (Elbashir et al. 2001), the use of viral vectors as 

a delivery vehicle for the stable expression of stem-loop structures resembling pre-miRNAs 

creates a renewable source of silencing reagents that can be transduced into almost any 

immortalized or primary cell type at controlled copy numbers (Brummelkamp et al. 2002; 

Paddison et al. 2002). 

By embedding an artificial hairpin-like structure into the physiological backbone of 

an endogenous miRNA (human miR-30), short hairpin RNAs (shRNAs) have been 

engineered to be recognized as a natural substrate. The hybrid pri-mRNAs expression 

cassette, which retains all the cis-acting sequences required for pri-miRNA processing, are 

processed through the canonical RNAi pathway and consequently allow for target 
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inhibition through the production of synthetic mature small RNAs (Silva et al. 2005). 

Further spatio-temporal control has been incorporated through the use of the RNA 

polymerase II-dependent promoter (Dickins et al. 2005; Stegmeier et al. 2005). Moreover, 

combining shRNA knockdown with tetracycline-regulated expression systems (Gossen and 

Bujard 1992; Gossen et al. 1995), as well as the use of fluorescent reporters, has conferred 

additional versatility to the use of this tool for conditional gene expression in both in vitro 

and in vivo studies (Premsrirut et al. 2011; Zuber et al. 2011a). 

 

 
!  
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II. An oncogenomics-based in vivo RNAi screen for novel tumor 

suppressors genes relevant to breast cancer  

 

INTRODUCTION  

All cancers are a consequence of alterations in the DNA of a once healthy cell 

(Greenman et al. 2007; Stratton et al. 2009). Forward genetic screens can be used to identify 

the key tumorigenic drivers within loci that show copy number variation in human patients 

(Zender et al. 2008). This approach is founded on the hypothesis that chromosomal regions 

lost in human cancers are enriched for TSGs. Genomic instability, that is a characteristic of 

tumorigenesis, leads to the deletion and amplification of chromosomal regions. Such copy 

number alterations constitute one of several types of genetic aberrations that manifest in a 

cancer genome including specific DNA sequence mutations, structural rearrangements 

(translocations) and alterations in epigenetic profiles (Chin and Gray 2008). It can be 

postulated that deletion of regions enriched for TSGs will confer a proliferative and/or 

survival advantage to a cell and thus will be selectively maintained during tumor evolution 

(Bignell et al. 2010). In this manner, identifying recurrent alterations of the cancer genome 

can lead us towards a focused search for novel cancer genes (Velculescu 2008). 

Significant advances in sequencing technology over the past decade have allowed 

for an exponential increase in the resolution at which cancer cells can be analyzed (Futreal et 

al. 2001; Wood et al. 2007; Mardis 2008; McLendon R et al. 2008). The first fully sequenced 

cancer genome of a cytogenetically normal acute myeloid leukemia was published in 2008 

(Ley et al. 2008). The genomes and transcriptomes of the primary and metastasized lesions 
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of an estraogen-receptor-!-positive metastatic lobular breast cancer have also been 

sequenced at depth (Shah et al. 2009). 

A major challenge lies in translating such a vast catalogue of genomic information 

into clinical use (Chin and Gray 2008). Due to spontaneous mutagenesis, inherent 

chromosomal and genomic instability of cancerous cells, and association through genetic 

linkage, all genomic alterations displayed in cancers are not necessarily relevant to the 

progression of the disease itself (Zender et al. 2008). Previous studies by the Lowe 

laboratory have demonstrated that in vivo RNAi screening approaches allow for the efficient 

filtering of oncogenomic data and the identification of novel TSGs (Zender et al. 2008; Bric et 

al. 2009; Scuoppo et al. 2012). A similar methodology has also been applied towards the 

identification of oncogenes among frequently amplified regions of the genome (Sawey et al. 

2011).  

In order to perform an in vivo RNAi screen for TSGs relevant to breast cancer, we 

sought to develop an orthotopic transplantation model. Although constructing a high-

throughput platform proved challenging, a small gene-by-gene screen was conducted and 

Nf1, a gene that encodes neurofibromin 1 (NF1), was identified and validated in our mouse 

model as a putative TSG in HER2-driven breast cancer. Transgenic strains with shRNAs 

targeting Nf1 were subsequently generated for further studies. 

 

RESULTS 

Generating a list of candidate tumor suppressor genes and an shRNA library 

Regions of copy number variation can be identified using high-resolution array-

based comparative genomic hybridization (CGH). In collaboration with Jim Hicks and 

Michael Wigler at Cold Spring Harbor Laboratory (CSHL), a candidate TSG list was 
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generated from the analysis of genomic deletion and amplification frequencies of 247 

primary breast cancers and 43 breast cancer cell lines using representational oligonucleotide 

microarray analysis (ROMA) (Lucito et al. 2003; Hicks et al. 2006; Zender et al. 2008). 

In an effort to selectively identify recurrently deleted genes from the array data, 

criteria were established requiring deletions to represent focally deleted chromosomal 

regions of less than 5Mb and a minimum frequency of at least 5% within the overall dataset. 

Focal deletions were in most cases less than 1Mb in length. With the aid of supporting 

evidence from the literature, the original list was further refined to a focused set of 144 

genes [Table 2.1]. Mouse orthologs were identified using the open source database BioMart 

(www.biomart.org) (Haider et al. 2009), reducing the list to 112 candidates. Thirty-seven 

additional genes were curated from a Genentech study of high-resolution CGH analysis of 

51 breast tumors to supplement this list (Haverty et al. 2008), resulting in a total of 149 

candidate genes. Unfortunately, the ROMA breast cancer dataset was too small to segregate 

the patient samples by their molecular annotation without losing statistical significance, 

preventing us from compiling a list of candidate TSGs specific to the HER2 overexpression 

clinical subtype. However, later in this chapter, attempts to screen these candidate genes in 

a model of HER2-positive breast cancer will be discussed at length. In future iterations of 

RNAi screens seeking to identify cancer genes and drug targets relevant to human breast 

cancer, it will be critical to integrate the molecular profiles of clinical samples into the 

fundamental design of the project. 

The neural network siRNA algorithm BIOPREDsi developed by Novartis 

(http://www.biopredsi.org/) was used to design five unique shRNA sequences targeting 

the mouse ortholog of each candidate gene (745 shRNAs total) (Huesken et al. 2005) [Table 

2.2]. We have previously shown that stable suppression of gene expression can be achieved 
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Table 2.1  ROMA recurrent deletion tumor suppressor candidates  
 

Chromosomal regions Gene names 

chr5:16,723,108-17,775,055 MYO10 
 BASP1 
chr8:11,108,957-14,105,148 MTMR9 
 AMAC1L2 
 BLK 
 GATA4 
 NEIL2 
 FDFT1 
 CTSB 
 DUB3 
 DLC1 
 SGCZ 
chr8:34,256,633-36,524,467 UNC5D 
chr8:39,328,853-41,933,548 ADAM18 
 ADAM2 
 INDO 
 INDOL1 
 C8orf4 
 ZMAT4 
 SFRP1 
 GOLGA7 
 GINS4 
 AGPAT6 
 NKS6-3 
 ANK1 
 has-mir-486 
 MYST3 
chr9:37,004,824-38,655,208 PAX5 
 ZCCHC7 
 GRHPR 
 ZBTB5 
 PAF53 
 C9orf105 
 EXOSC3 
 WDR32 
 MCART1 
 ALDH1B1 
 IGFBPL1 
 ANKRD18A 
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chr9:78,799,360-83,235,988 TLE4 
 RASEF 
chr10:69,209,947-70,876,569 DNJC12 
 SIRT1 
 HERC4 
 FLJ14437 
 ATOH7 
 MAWBP 
 HNRPH3 
 RUFY2 
 SLC25A16 
 CXXC6 
 CCAR1 
 STOX1 
 DDX50 
 DDX21 
 PRG1 
 VPS26 
 SUPV3L1 
 HKDC1 
 HK1 
 TACR2 
chr11:46,327,487-48,083,630 DGKZ 
 MDK 
 CHRM4 
 AMBRA1 
 ARHGAP1 
 ZNF408 
 F2 
 CKAP5 
 LRP4 
 ARFGAP2 
 PACSIN3 
 DDB2 
 ACP2 
 NR1H3 
 MADD 
 MYBPC3 
 SPI1 
 SLC39A13 
 PSMC3 
 RAPSN 
 CUGBP1 
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 PTPMT1 
 KBTBD4 
 MTCH2 
 AGBL2 
 FNBP4 
 NUP160 
 PTPRJ 
chr11:56,305,352-57,532,499 OR5AK2 
 AGTRL1 
 TMLS1BP1 
 SSRP1 
 P2RX 
 SLC43A3 
 RTN4RL2 
 UBE2L6 
 SERPING1 
 YPEL 
 CLP1 
 HEAB 
 ZDHHC5 
 has-mir-130a 
 MED19 
 CTNND1 
chr11:71,383,633-71,895,665 RNF121 
 IL18BP 
 NUMA1 
 LRRC51 
 FOLR3 
 FOLR1 
 FOLR2 
 INPPL1 
 PHOX2A 
 SKD3 
chr11:73,675,366-74,237,477 P4HA3 
 PGM2L1 
 KCNE3 
 POLD3 
 CHRDL2 
chr11:83,312,841-84,692,488 DLG2 
chr13:19,212,114-20,340,806 PSPC1 
 ZNF237 
 ZNF198 
 GJA3 
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 GJB2 
 GJB6 
 TTC10 
 IL17D 
 LOC221143 
 XPO4 
chr17:26,402,098-28,056,700 NF1 
 OMG 
 EVI2A 
 EVI2B 
 RAB11FIP4 
 hsa-mir-193A 
 hsa-mir-365-2 
 C17orf40 
 RHOT1 
 RHBDL4 
 ZNF207 
 PSMD11 
 CDK5R1 
 MYO1D 
Genentech (Haverty et al.) candidates NOX3 
 TIAM2 
 CLDN20 
 ANGPT2 
 MFHAS1 
 PPP1R3B 
 hsa-mir-124a-1 
 RP1L1 
 SOX7 
 PINX1 
 XKR6 
 LONRF1 
 DLC1 
 GATA4 
 NEIL2 
 FGF20 
 EGR3 
 TNFRSF10A 
 EFHA2 
 PTK2B 
 hsa-mir-383 
 MAML2 
 MMP1 
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 CASP4 
 CASP5 
 COP1 
 CHEK1 
 hsa-let-7a-2 
 SMAD9 
 POSTN 
 CCNA1 
 RB1 
 hsa-mir-16-1 
 hsa-mir-15a 
 PCDH9 
 SQSE29775 
 EDNRB 
 SCEL 
 CHES1 
 STX8 
 RCV1 
 GAS7 
 MYH1 
 MAP2K4 
 MYOCD 
 ZNF18 
 LOC91353 
 LRP5L 
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Table 2.2  Candidate tumor suppressor gene shRNA library – 149 genes/745 shRNAs 

Acp2.1364 Ank1.153 Cdk5r1.1759 Ctsb.1897 Egr3.118 
Acp2.1824 Ank1.2400 Cdk5r1.1993 Ctsb.2102 Egr3.182 
Acp2.191 Ank1.2613 Cdk5r1.3373 Ctsb.215 Egr3.235 
Acp2.933 Ank1.4409 Cdk5r1.4051 Ctsb.3129 Egr3.38 
Acp2.95 Ank1.923 Cdk5r1.545 Ctsb.3229 Egr3.538 
Adam18.1508 ArfGAP2.1212 Chek1.1720 Cugbp1.1414 Evi2a.1073 
Adam18.1630 ArfGAP2.1892 Chek1.2012 Cugbp1.1755 Evi2a.723 
Adam18.334 ArfGAP2.2677 Chek1.2128 Cugbp1.1790 Evi2a.845 
Adam18.456 ArfGAP2.2688 Chek1.2348 Cugbp1.206 Evi2a.896 
Adam18.492 ArfGAP2.323 Chek1.729 Cugbp1.329 Evi2a.960 
Adam2.160 Arhgap1.2092 Chrdl2.1172 Ddb2.1336 Evi2b.1040 
Adam2.2398 Arhgap1.2352 Chrdl2.1313 Ddb2.364 Evi2b.2989 
Adam2.323 Arhgap1.3018 Chrdl2.1388 Ddb2.736 Evi2b.375 
Adam2.394 Arhgap1.381 Chrdl2.824 Ddb2.946 Evi2b.821 
Adam2.490 Arhgap1.896 Chrdl2.836 Ddb2.971 Evi2b.84 
Agbl2.1512 Atoh7.235 Chrm4.1208 Ddx21.1441 Exosc3.329 
Agbl2.2907 Atoh7.272 Chrm4.1484 Ddx21.1487 Exosc3.374 
Agbl2.3337 Atoh7.278 Chrm4.2267 Ddx21.395 Exosc3.620 
Agbl2.3368 Atoh7.373 Chrm4.2706 Ddx21.4037 Exosc3.715 
Agbl2.650 Atoh7.387 Chrm4.431 Ddx21.4419 Exosc3.980 
Agpat6.1823 Basp1.136 Ckap5.2579 Ddx50.1347 F2.1531 
Agpat6.2187 Basp1.495 Ckap5.3361 Ddx50.1476 F2.1630 
Agpat6.2465 Basp1.655 Ckap5.3671 Ddx50.1637 F2.1685 
Agpat6.476 Basp1.661 Ckap5.3923 Ddx50.2437 F2.1820 
Agpat6.711 Basp1.662 Ckap5.6478 Ddx50.2468 F2.1850 
Agtrl1.1869 Blk.1785 Cldn20.381 Dgkz.1156 Fdft1.1009 
Agtrl1.1960 Blk.2172 Cldn20.418 Dgkz.1166 Fdft1.1861 
Agtrl1.1968 Blk.385 Cldn20.443 Dgkz.2104 Fdft1.782 
Agtrl1.2532 Blk.625 Cldn20.634 Dgkz.3338 Fdft1.932 
Agtrl1.3374 Blk.94 Cldn20.641 Dgkz.3491 Fdft1.997 
Aldh1b1.1927 Casp4.1126 Clp1.1006 Dlc1.1594 Fgf20.418 
Aldh1b1.2190 Casp4.1254 Clp1.1386 Dlc1.2161 Fgf20.448 
Aldh1b1.2247 Casp4.1277 Clp1.162 Dlc1.3806 Fgf20.512 
Aldh1b1.524 Casp4.402 Clp1.702 Dlc1.4074 Fgf20.595 
Aldh1b1.88 Casp4.733 Clp1.711 Dlc1.5485 Fgf20.602 
AMBRA1.3565 Ccar1.261 Clpb.1556 Dlg2.2184 Fnbp4.1674 
AMBRA1.3831 Ccar1.2906 Clpb.3761 Dlg2.249 Fnbp4.2253 
AMBRA1.533 Ccar1.645 Clpb.3946 Dlg2.4827 Fnbp4.3353 
AMBRA1.534 Ccar1.691 Clpb.4074 Dlg2.6459 Fnbp4.4464 
AMBRA1.599 Ccar1.713 Clpb.444 Dlg2.961 Fnbp4.4649 
Angpt2.1082 Ccna1.1058 Ctnnd1.110 Ednrb.1478 Folr1.1242 
Angpt2.1279 Ccna1.1214 Ctnnd1.2122 Ednrb.1720 Folr1.202 
Angpt2.1641 Ccna1.163 Ctnnd1.2260 Ednrb.1954 Folr1.65 
Angpt2.1662 Ccna1.376 Ctnnd1.3138 Ednrb.3631 Folr1.650 
Angpt2.806 Ccna1.923 Ctnnd1.900 Ednrb.3701 Folr1.92 
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Folr2.1075 Grhpr.468 Inppl1.945 Mdk.474 Myo10.7990 
Folr2.355 Grhpr.628 Inppl1.1072 Mdk.631 Myo10.956 
Folr2.52 Grhpr.771 Inppl1.1627 Mdk.639 Myo1d.1890 
Folr2.680 Herc4.2552 Inppl1.3469 Mdk.642 Myo1d.1939 
Folr2.740 Herc4.2657 Inppl1.4434 Med19.1091 Myo1d.2145 
FoxN3.1482 Herc4.3413 Inppl1.457 Med19.1097 Myo1d.4761 
FoxN3.2207 Herc4.3568 Kbtbd4.1039 Med19.1147 Myo1d.720 
FoxN3.2386 Herc4.574 Kbtbd4.2145 Med19.1328 Myocd.2874 
FoxN3.2514 Hk1.209 Kbtbd4.2232 Med19.1776 Myocd.3969 
FoxN3.708 Hk1.2369 Kbtbd4.2266 Mfhas1.2757 Myocd.4206 
Gas7.3443 Hk1.2537 Kbtbd4.2359 Mfhas1.3288 Myocd.4499 
Gas7.3501 Hk1.2599 Kcne3.571 Mfhas1.4081 Myocd.658 
Gas7.4460 Hk1.2630 Kcne3.840 Mfhas1.4869 Myst3.2590 
Gas7.4483 Hkdc1.1016 Kcne3.88 Mfhas1.4961 Myst3.3127 
Gas7.6555 Hkdc1.3367 Kcne3.894 Mmp13.1241 Myst3.3485 
Gata4.2478 Hkdc1.3425 Kcne3.981 Mmp13.1284 Myst3.4554 
Gata4.2882 Hkdc1.3426 LONRF1.1065 Mmp13.1662 Myst3.6844 
Gata4.2989 Hkdc1.359 LONRF1.1533 Mmp13.1906 Neil2.1184 
Gata4.343 Hnrph3.1561 LONRF1.2779 Mmp13.2534 Neil2.1850 
Gata4.416 Hnrph3.1599 LONRF1.2852 Mtch2.1392 Neil2.440 
Gins4.1105 Hnrph3.1684 LONRF1.3622 Mtch2.2058 Neil2.787 
Gins4.1294 Hnrph3.1899 Lrp4.4384 Mtch2.2245 Neil2.923 
Gins4.621 Hnrph3.486 Lrp4.604 Mtch2.409 Nf1.3226 
Gins4.723 Igfbpl1.1968 Lrp4.6063 Mtch2.850 Nf1.6052 
Gins4.822 Igfbpl1.504 Lrp4.7106 Mtmr9.1156 Nf1.6074 
Gja3.1067 Igfbpl1.560 Lrp4.7332 Mtmr9.1627 Nf1.9045 
Gja3.139 Igfbpl1.624 Madd.1519 Mtmr9.1653 Nf1.9930 
Gja3.1391 Igfbpl1.792 Madd.1688 Mtmr9.1837 Nox3.1135 
Gja3.809 Il17d.1054 Madd.2701 Mtmr9.995 Nox3.1514 
Gja3.968 Il17d.1173 Madd.3130 Mybpc3.1176 Nox3.1550 
Gjb2.1905 Il17d.379 Madd.4588 Mybpc3.1367 Nox3.30 
Gjb2.2099 Il17d.806 Maml2.208 Mybpc3.3497 Nox3.894 
Gjb2.2264 Il17d.920 Maml2.2143 Mybpc3.3608 Nr1h3.1739 
Gjb2.569 Il18bp.1004 Maml2.3352 Mybpc3.4122 Nr1h3.1845 
Gjb2.599 Il18bp.1134 Maml2.3492 Myh1.2060 Nr1h3.1853 
Gjb6.1082 Il18bp.1266 Maml2.92 Myh1.2590 Nr1h3.563 
Gjb6.1252 Il18bp.1368 Map2k4.218 Myh1.283 Nr1h3.788 
Gjb6.1382 Il18bp.857 Map2k4.3198 Myh1.4540 Numa1.1262 
Gjb6.775 Indo.1030 Map2k4.3242 Myh1.5641 Numa1.1391 
Gjb6.882 Indo.1053 Map2k4.3553 Myh2.1129 Numa1.4538 
Golga7.1249 Indo.1367 Map2k4.420 Myh2.221 Numa1.6275 
Golga7.1353 Indo.1368 Mcart1.1792 Myh2.2240 Numa1.7111 
Golga7.142 Indo.1381 Mcart1.2770 Myh2.23 Nup160.2099 
Golga7.146 Indol1.1567 Mcart1.3405 Myh2.3767 Nup160.255 
Golga7.1685 Indol1.2425 Mcart1.3560 Myo10.1124 Nup160.5392 
Grhpr.1009 Indol1.2564 Mcart1.3803 Myo10.1685 Nup160.5556 
Grhpr.361 Indol1.296 Mdk.227 Myo10.6841 Nup160.992 
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Omg.1201 Polr1e.2910 Rab11fip4.2924 Rtn4rl2.203 Slc43a3.2572 
Omg.1378 Polr1e.388 Rapsn.1568 Rtn4rl2.457 Slc43a3.868 
Omg.1700 Polr1e.999 Rapsn.442 Rtn4rl2.905 Smad9.1349 
Omg.368 Postn.1066 Rapsn.682 Rtn4rl2.967 Smad9.2944 
Omg.800 Postn.1649 Rapsn.871 Rufy2.156 Smad9.2965 
P4ha3.1187 Postn.2709 Rapsn.96 Rufy2.2013 Smad9.3054 
P4ha3.1382 Postn.2764 Rasef.1619 Rufy2.4145 Smad9.4358 
P4ha3.1587 Postn.848 Rasef.1733 Rufy2.870 Sox7.1012 
P4ha3.305 Ppp1r3b.2670 Rasef.2360 Rufy2.8828 Sox7.1623 
P4ha3.669 Ppp1r3b.2720 Rasef.3787 Scel.1412 Sox7.2541 
Pacsin3.1067 Ppp1r3b.2793 Rasef.982 Scel.2134 Sox7.3030 
Pacsin3.1329 Ppp1r3b.340 Rb1.2317 Scel.2294 Sox7.3201 
Pacsin3.1598 Ppp1r3b.3999 Rb1.3736 Scel.253 Srgn.202 
Pacsin3.1685 Psmc3.1232 Rb1.4191 Scel.2892 Srgn.411 
Pacsin3.740 Psmc3.1524 Rb1.508 Serping1.1194 Srgn.536 
Pax5.154 Psmc3.318 Rb1.901 Serping1.1674 Srgn.661 
Pax5.328 Psmc3.59 Rcvrn1.1005 Serping1.1772 Srgn.865 
Pax5.601 Psmc3.947 Rcvrn1.231 Serping1.291 Ssrp1.1022 
Pax5.852 Psmd11.1021 Rcvrn1.557 Serping1.998 Ssrp1.1100 
Pax5.914 Psmd11.1081 Rcvrn1.576 Sfrp1.1803 Ssrp1.329 
Pbld.1197 Psmd11.1122 Rcvrn1.838 Sfrp1.1887 Ssrp1.431 
Pbld.1333 Psmd11.1149 Rfwd2.1866 Sfrp1.1978 Ssrp1.702 
Pbld.1434 Psmd11.139 Rfwd2.2025 Sfrp1.3781 Stx8.1328 
Pbld.1530 Pspc1.1714 Rfwd2.3664 Sfrp1.3903 Stx8.2538 
Pbld.660 Pspc1.180 Rfwd2.3816 Sgcz.1008 Stx8.3979 
Pcdh9.1446 Pspc1.2288 Rfwd2.4896 Sgcz.2367 Stx8.3995 
Pcdh9.4411 Pspc1.880 Rhbdl3.1333 Sgcz.401 Stx8.93 
Pcdh9.5145 Pspc1.993 Rhbdl3.1692 Sgcz.909 Supv3l1.1295 
Pcdh9.5219 Ptk2b.1393 Rhbdl3.3158 Sgcz.950 Supv3l1.1425 
Pcdh9.623 Ptk2b.1460 Rhbdl3.3319 Sirt1.1708 Supv3l1.1936 
Pgm2l1.1544 Ptk2b.3282 Rhbdl3.3465 Sirt1.1779 Supv3l1.496 
Pgm2l1.2972 Ptk2b.3571 Rhot1.1737 Sirt1.1921 Supv3l1.532 
Pgm2l1.3051 Ptk2b.551 Rhot1.1869 Sirt1.2191 Tacr2.1357 
Pgm2l1.3250 Ptpmt1.1078 Rhot1.3285 Sirt1.688 Tacr2.1531 
Pgm2l1.7527 Ptpmt1.1080 Rhot1.334 Slc25a16.1575 Tacr2.1780 
Phox2a.1307 Ptpmt1.1140 Rhot1.4055 Slc25a16.2535 Tacr2.1816 
Phox2a.1316 Ptpmt1.1201 Rnf121.416 Slc25a16.2639 Tacr2.228 
Phox2a.1373 Ptpmt1.884 Rnf121.60 Slc25a16.3108 Tiam2.2834 
Phox2a.1415 Ptprj.4708 Rnf121.740 Slc25a16.322 Tiam2.3111 
Phox2a.543 Ptprj.5046 Rnf121.768 Slc39a13.1018 Tiam2.5046 
Pold3.1213 Ptprj.5347 Rnf121.791 Slc39a13.1544 Tiam2.5567 
Pold3.2223 Ptprj.538 Rp1l1.4559 Slc39a13.2027 Tiam2.5675 
Pold3.2668 Ptprj.7284 Rp1l1.5608 Slc39a13.2236 Tle4.1870 
Pold3.427 Rab11fip4.1840 Rp1l1.5895 Slc39a13.778 Tle4.286 
Pold3.641 Rab11fip4.2058 Rp1l1.6565 Slc43a3.1040 Tle4.3126 
Polr1e.1726 Rab11fip4.2291 Rp1l1.6697 Slc43a3.2221 Tle4.3521 
Polr1e.2529 Rab11fip4.290 Rtn4rl2.1030 Slc43a3.2483 Tle4.822 
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Ube2l6.1022 Zmat4.1785    
Ube2l6.192 Zmat4.1806    
Ube2l6.461 Zmat4.604    
Ube2l6.620     
Ube2l6.630     
Unc5d.1851     
Unc5d.2469     
Unc5d.2930     
Unc5d.2952     
Unc5d.3319     
Vps26a.138     
Vps26a.1860     
Vps26a.2089     
Vps26a.713     
Vps26a.732     
Wdr32.2157     
Wdr32.2235     
Wdr32.3030     
Wdr32.3807     
Wdr32.6353     
Xkr6.1012     
Xkr6.310     
Xkr6.379     
Xkr6.852     
Xkr6.886     
Xpo4.1196     
Xpo4.2016     
Xpo4.2146     
Xpo4.2658     
Xpo4.375     
Zbtb5.1220     
Zbtb5.1228     
Zbtb5.2090     
Zbtb5.3265     
Zbtb5.379     
Zcchc7.430     
Zcchc7.503     
Zcchc7.588     
Zcchc7.831     
Zcchc7.859     
Zdhhc5.135     
Zdhhc5.2488     
Zdhhc5.4273     
Zdhhc5.542     
Zdhhc5.85     
Zmat4.1079     
Zmat4.1166     
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in vivo by utilizing a murine stem cell virus (MSCV) based retroviral vector that expresses a 

human miR-30-based shRNA (Dickins et al. 2005). This pLMS (MLS) vector also contains a 

constitutively expressed green fluorescent protein (GFP) marker, used to identify 

transduced cells [FIGURE 2.1a]. As described further in Materials and Methods, shRNAs 

were generated from a pool of 97mer oligonucleotides and subcloned into pLMS. Sanger 

sequencing of individual bacterial clones following retransformation of the pLMS pools 

allowed identification of individual shRNAs. This enabled the assembly of a sequence 

validated library and access to shRNAs targeting individual genes for follow-up analysis. 

The positive selection in vivo screen design is based on two assumptions: a) shRNA-

mediated silencing can mimic the loss of TSGs; b) if reduced protein levels of a candidate 

TSG confers a growth or survival advantage, that shRNA will be selectively enriched during 

tumor growth. To identify enriched shRNAs the following work-flow is employed: 1) once a 

tumor has developed, genomic DNA is isolated and shRNAs contained in the retrovirus are 

cloned out using sequence specific primers to the human miR-30 backbone; 2) changes in 

shRNA representation are assessed by comparing abundance of each shRNA in the initial 

population to its presence in the resulting tumor; and 3) over-represented shRNAs indicate 

the possible identification of a novel TSG. To avoid results obtained through off-target 

effects, it is important that more than one shRNA against any particular gene scores in the 

assay. Short hairpin RNAs also need to show specific target knockdown by qRT-PCR or by 

Western blot if an antibody is available. All positive hits identified from the pooled 

screening approach must also be validated in vivo as single shRNAs. A caveat to this 

screening approach is that the lack of an effective shRNA will result in a false negative 

result where a valid candidate TSG will be missed due to insufficient knockdown. Efforts to 
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ameliorate shRNA design and efficacy has been an on-going area of research by other 

members of the laboratory (Fellmann et al. 2011).  

 

Screening platform development 

There are several important criteria for designing a well-adapted in vivo cancer 

model system for the purpose of conducting a positive selection screen. Firstly, it must be 

physiologically relevant to the human disease, reflecting both the genetics and 

histopathology of the cancer. Secondly, representation of the screening library should be 

maintained following transplantation of the cell population, taking into account ‘tumor 

seeding’ rates. Thirdly, a robust screening assay, in this case tumor development, which 

provides a clear window for detection of disease acceleration over baseline. In sum, each 

tissue and disease type present unique mouse modeling challenges that require careful 

consideration in order to maximize the utility of in vivo experimentation. 

One advantage of a ‘mosaic’ transplantation model, where transduced mouse cells 

are orthotopically transplanted into a wild type recipient mouse, is that a physiological 

disease microenvironment is faithfully maintained (Zender et al. 2008; Bric et al. 2009; Zuber 

et al. 2009; Zuber et al. 2011b). With the exception of inherited genetic mutations, most 

tumorigenic cells arise surrounded by healthy, normal stromal tissue. Mosaic models also 

allow for a great deal of flexibility for the modular introduction of transgenes and RNAi 

constructs, as well as fluorescent and bioluminescent reporters that allow for easy tracking 

of the developing tumor. Importantly, primary cells with defined genetic manipulations are 

genetically tractable in a manner in which xenograft models relying on human cancer cells 

lines are not.  
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We sought to exploit the observation that the majority of murine mammary gland 

development occurs postnatally in a method that would combine the gland-reconstituting 

capacity of mammary stem/progenitor cells (MaSCs) with ex vivo genetic manipulation via 

viral transduction. Initial attempts to develop an orthotopic transplantation-based, modular 

and mosaic mouse model of breast cancer consisted of the following features and steps [also 

shown schematically in Figure 2.1b]. Beginning at three weeks of age, the endogenous 

mammary epithelium begins to develop into and populate the fat and connective tissue of 

the mammary gland, a process which is compete by ten weeks of age (Richert et al. 2000). 

Primary MaSCs would therefore be isolated from the mammary glands of adult donor 

female mice, approximately 8-12 weeks in age. The primary cells would be maintained in 

mammosphere in vitro culture to enrich for the stem/progenitor cells prior to introducing 

shRNA plasmids via lentiviral infection. Transduced cells would be implanted into the 

cleared fat pads of three-week-old syngeneic recipient animals. The clearing process 

removes the native stem cell population, allowing for the transplanted cells to reconstitute 

the mammary epithelium during puberty. Previous studies have shown that a single 

mammary stem cell transplanted into the developing gland of a prepubescent mouse is 

capable of reconstituting the entire gland (Shackleton et al. 2006; Stingl et al. 2006). Tumors 

would then develop in an immune-competent, wild type animal in the presence of the 

appropriate stromal and microenvironmental cues.  

Although the intended model was optimal for positive selection, as it allows for 

implanted cells to fully integrate into the native glandular and stromal architecture before 

oncogenic transformation, it proved too complex to scale to a high-throughput screening 

platform. Side-by-side comparisons demonstrated that in our hands one freeze-thaw 

process could greatly reduce the efficiency of reconstitution following orthotopic 
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implantation of MaSCs (data not shown). The low yield of MaSCs per donor mouse made it  

prohibitively labor-intensive to harvest sufficient quantities of cells to conduct well-

controlled experiments. While preserving as many of the original design elements as 

possible, we sought to find feasible alternatives.  

The multi-potent mammary progenitor cell line Comma-D was a strong candidate to 

replace the primary cells for in vivo RNAi screening (Medina et al. 1986). Comma-D cells are 

capable of reconstituting a functionally normal mammary gland when transplanted into a 

cleared fat pad of a recipient mouse. However, these cells begin to transform after 

approximately twenty passages in culture and have two well-defined mutations in TP53 – a 

substitution of tryptophan for cysteine at codon 138 and a deletion of the first 21 nucleotides 

at exon five – that have been suggested as the sources of genomic instability and 

susceptibility to neoplastic transformation in vitro (Jerry et al. 1994; Barcellos-Hoff and 

Ravani 2000). The lack of genetic tractability and the heterogeneity following passages in 

vitro caused dual concern for building a screening system, as genomic instability could 

cause a high rate of transformation in vitro and variation among the cells could compromise 

even shRNA library infection efficiency and representation. Diluting c-Myc overexpressing 

Comma-D cells into MaSCs to directly assess differences in the reconstituted gland 

morphology was used to test their mammary gland reconstitution capability. Twelve weeks 

after implantation, we observed that a higher percentage of Comma-D cells gave a more 

hyperplastic, branched ductal morphology [Figure 2.2]. In contrast, those glands with a 

predominantly MaSC population closely resembled endogenous control glands. The high 

rate of transformation raised the possibility that each reconstituted gland would contribute 

many initiating tumor cells and consequently confound the assay.  

!  
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NMuMG cells are non-transformed mouse mammary epithelial cells that were 

originally derived from normal glandular tissue of an adult NAMRU mouse (Owens 1974; 

David et al. 1981; Hall et al. 1982). They were the next choice for a mouse mammary 

epithelial cell line because at low-passage NMuMG cells have been demonstrated to have 

typical epithelial morphology, display no cytologic instability, and also form structurally 

normal continuous basal lamina in vivo when injected into athymic nude mice (David et al. 

1981). They have been used extensively in the literature to study transforming growth 

factor-beta (TGF-!) signaling and epithelial to mesenchymal transition (EMT) (Piek et al. 

1999; Deckers et al. 2006). One major disadvantage of the NMuMG cell line, however, is the 

discontinuation of its syngeneic NAMRU strain, whereas Comma-D cells can be re-injected 

into syngeneic BALB/c mice (Medina et al. 1986).  

There was no clear evidence in the literature to suggest that NMuMG cells had lost 

functional p53, an important step in tumorigenesis in many tumor types. Mutations in TP53 

occur at a frequency of ~23% in breast cancer, where is it the second most frequently 

mutation gene after PIK3CA (26%) (COSMIC) (Forbes et al. 2011). We reasoned that 

depletion of p53 in NMuMG cells might accelerate disease and serve as a clinically relevant 

positive control for the screen. To verify that NMuMG cells express functional p53, the 

parental cell line was treated with the DNA damaging agent Adriamycin that is known to 

promote stabilization of p53 and downstream activation of p21 (Watring et al. 1974). As 

expected Adriamycin treatment (0.25µg/mL) induced a dramatic upregulation of p53 and 

p21, an effect that was abrogated in the presence of a potent shRNA targeting p53 (shRNA-

p53.1244) (Dickins et al. 2005; Xue et al. 2007) [Figure 2.3]. We were unable to detect p19ARF 

by Western blot but could not rule out this may be due to technical difficulties with the 

antibody. Alternatively, gain of replicative potential in culture often comes as a consequence 
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of the loss of the INK4A/ARF locus (Collado et al. 2007), and this could be expected as a 

step in the immortalization process of this cell murine line cell. 

The first three elements in defining an RNAi screening platform are the sensitized 

background, shRNA pool size and positive controls. We considered the use of 

overexpressed c-Myc and HER2, as well as a mutant PI3 kinase catalytic subunit p110! 

(PIK3CAH1047R), as the sensitizing oncogenic stimulus. Ideally, since the candidate genes in 

our library were identified from patients comprising multiple different subtypes of breast 

cancer, the screen would be performed in multiple sensitized backgrounds in order to 

identify context specific as well as common TSGs. 

We began by lentivirally transducing NMuMG cells with a construct containing the 

mutant rat ortholog of ERBB2, neuV664E (NeuNT), driven under the control of the Ubiquitin C 

(UbC) promoter. Neu has been commonly used in transgenic mouse models of HER2-

positive breast cancer to mimic the effects of HER2 overexpression frequently seen in 

patients (Muller et al. 1988; Bouchard et al. 1989). Our data showed that overexpression of 

NeuV664E initiated tumor formation in NMuMG cells injected into the fat pads of nude mice 

[Figure 2.4], in contrast to parental NMuMG cells that do not form tumors at long latency 

(over 3 months post-injection; data not shown). 

We discovered that an shRNA targeting the TSG phosphatase and tensin homolog (Pten) 

was highly efficient in accelerating the disease onset and tumor size in NeuNT 

overexpressing NMuMG cells, even more strongly than shRNA-p53.1244 [Figure 2.5]. 

Further testing confirmed this result but also uncovered that the window for detection of 

disease acceleration between RNAi of a real positive control or candidate TSG and the 

appearance of baseline disease driven by the aggressive oncogenic stimulus was less than 

four weeks (data not shown). Factoring the inevitable variability of in vivo experimentation, 



!"

A B

C

!"#$%&'()*'+,$,-'.&//0'12&%&34%&00"5#'+&$+6)' # $%&#'()*(+,#-./*)#/,#0+/*(1,#.2)3*()#/4#
56768#9(..)#/:(+(;0+())1,<#5(75=#4+/>#?6@#0+/>/*(+A#$B&#CD?#/,#*7>/+)#)(9*1/,)#4+/>#
?6@E5(75=#/:(+(;0+())1,<#56768#9(..)#*+3,)0.3,*(F#1,*/#,7F(#>19(A#$?&#DGH#)*31,1,<#
/4#*7>/+#)(9*1/,)#4+/>#/+*I/*/019#*+3,)0.3,*3*1/,#/4#56768#9(..)#(;0+())1,<#5(75=#4+/>#
(1*I(+#?6@#/+#J-?#0+/>/*(+)K#J-?E5(75=#)7-9./,(F#9(..)#$9./,3.#.1,(#LM&#<3:(#>/+(#<.3,E
F7.3+#3,F#F144(+(,*13*(F#>/+0I/./<2#9/>03+(F#*/#J-?E5(75=#-7.N#0/07.3*1/,A#

-Ki67-ErbB2/neu

H&E

UbC-NeuNT
Bulk pupulation Subclone #6

4x

10x

CMV-NeuNT
Bulk population

non-in
fected

-Tubulin

-p-Tyrosine

-ErbB2/neu

-p-Akt (S473)

CMV-N
euNT

-IgG



!"

A

B

!"#$%&'()*'+,-./0",1"2#'34,"-"5&'642-%40'74%',6%&&2"2#8',19:;'-.%#&-"2#'<=+:'6443&%.-&,'
>"-1':&$:='"2':?$?@'6&00,)'#$%&#'()*+,-.(#/0#-1,2345,2-,-./2#,33,67#89:9;#(*553#-1,23<
=:(*=#>.-)#?@A<8*:8BC#49DE<3)F8%3#.2-1/=:(*=#,-#).G)#(/46#2:+@*1#,2=#4:1/+6(.2#

3*5*(-*=#@*0/1*#-1,2345,2-,-./2H##$I&#%J*1,G*#-:+/1#>*.G)-#4*1#(/)/1-#$2KL#-:+/13&#,-#),1J*3-C#

->/<-,.5*=#:24,.1*=#-#-*3-H

shRLuc shPTEN sh-p53
0

100

200

300

400

500

600

Tu
m

or
 w

ei
gh

t a
t h

ar
ve

st
 (m

g) p = 0.0052
**

ns



 39 

several weeks represented an insufficient period of time for conducting a positive selection 

screen of any complexity with the requisite sensitivity. However, pilot in vivo assays using 

GFP reporter tagged shRNA-Pten.1522 demonstrated a quantifiable success in increasing its 

representation within a tumor as compared to neutral shRNA controls (data not shown). We 

posited that decreasing the strength of the NeuNT cDNA overexpression might address this 

lack of dynamic range. Deriving clonal cell lines to standardize and quantify oncogene 

expression levels, reducing the multiplicity of infection (MOI) during lentiviral 

transduction, and using a weaker promoter were among several strategies we tested in an 

attempted to increase the temporal resolution of our orthotopic transplantation assay by 

delaying the onset of disease driven by the sensitizing driver alone.  

Our first attempt to address these issues involved replacing the bulk population of 

transduced cells that was potentially comprised of diverse oncogene expression levels and 

cellular phenotypes. By deriving clonal lines we were able to cross-compare NeuNT 

expression levels, observe growth rates in vitro and verify for cobblestone epithelial 

morphology indistinguishable from the parental population [Figure 2.6a]. Two sub-clonal 

lines with moderate oncogene expression, compact epithelial cellular morphology and 

moderate growth rates – NMuMG UbC-NeuNT Clone #6 and #7 – were expanded and 

tested in vivo along side the parental bulk-population [Figure 2.6b-c]. In both bulk 

populations and clonal lines, shRNA-Pten.1522 showed reproducible acceleration of tumor 

formation compared to a neutral control shRNA that targets Renilla Luciferase (RLuc.713). 

Ultimately, however, the latency of tumor onset and tumor growth rates were still too 

aggressive to envisage a positive selection screen, as assessed by the failure to observe 

enrichment of a potent shRNA targeting an established TSG such as Pten when introduced 

into cells with a 50-fold excess of a neutral shRNA construct [Figure 2.6d].  
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Several promoters tagged with GFP were tested for expression levels in NMuMG 

cells in an attempt to identify a weaker substitute for the UbC promoter (data not shown). A 

suitable replacement was not found but we were reassured to find that the Cytokeratin-19 

(CK-19) promoter expressed well in these cells, confirming their luminal cellular origins.  

In a further attempt to reduce the aggressiveness of the spontaneous disease, a wild 

type sub-clonal line of NMuMG cells dubbed “NMEC#6” (NMuMG Mammary Epithelial 

Cells Clone #6) was transduced with lower titers of UbC-NeuNT lentivirus to decrease the 

number of viral integrations and clones were isolated following antibiotic selection. Low-

expressing NeuNT clones were identified by ‘In-Cell’ Western blot for ErbB2/neu 

expression [Figure 2.7a]. Since empirical observations from in vitro work with the parental 

NMuMG cells indicated heterogeneity in cellular morphology, several NMEC clonal lines 

were produced and tested (data not shown). NMEC#6 had tight epithelial cell-to-cell 

junctions, cobblestone cellular morphology, a moderate growth rate in vitro, and 

importantly, maintained these traits for many passages in culture. The NMEC#6 clone was 

also tested in vivo and like the untransformed parental line did not give rise to tumors at 

long latency (data not shown).   

NMEC#6 UbC-NeuNT clonal line #3 and #5 were tested in vivo with control 

shRNAs undiluted and in 1:50 dilution configurations, employing a combination of both 

GFP and dsRed flurescent marker-tagged vectors [Figure 2.7b: results shown only for clonal 

line #5]. The populations transduced with GFP tagged shRNA retrovirus were 

approximately 30% for undiluted controls and approximately 1% for 1:50 dilutions [Figure 

2.7c]. Tumors were harvested 7.5 weeks after orthotopic injection and gross anatomy was 

observed using a dissecting microscope to assess levels of the fluorescent reporters [Figure 

2.7d]. In tumors resulting from cells co-expressing shRNA-Pten.1522 were significantly 



!"

A

B C

!"#$%&'()*'+,$,-'./01+&$+2'3$/456785' 5"7&3)' #$%&'()*(+,&-./*0&12324&5(..)& *+6,)7
835(8&9:*;&<-=71(31>?&)(.(5*(8?&*;(,&)3-5./,(8@&AB&6,8&AC&5;/)(,&D/+&3)(&!"#$!$%E&#F%&G5;(7
H6*:5& /D& *+6,)I.6,*6*:/,& 6))6J& */& *()*& 5./,6.& .:,()& AB& 6,8& AC@& ,(3*+6.& 5/,*+/.& );K1$7
K(,:..6L35:D(+6)(EC"M&:,&I2LK&N(5*/+&9:*;&8)K(8&+(I/+*(+&:,)*(68&/D&4OPE&#=%&F+:Q;*D:(.8&&6,8&
D.3/+()5(,5(&:H6Q()&/D&*3H/+)&6*&;6+N()*E&#R%&>3H/+&9(:Q;*)&6*&;6+N()*?&I(+&5/;/+*&#,S!%E&

Bulk 
NMuMG 

N.I. #1 #2 #3 #4 #5 #6 #7 #8

-Tubulin

merge: ErbB2 + p-Tyr

-ErbB2

-phospho-Akt (S473)

-phospho-Tyrosine

UbC-NeuNT  subclonal lines

#9 #10 #11 #12 #14

No shRNA shRLuc shPTEN 1:50 dilution shPTEN:shRLuc

BF

GFP

dsRed

NMuMG parental

UbC-NeuNT clone #6 UbC-NeuNT clone #7

BF

GFP

dsRed

No shRNA shRLuc shPTEN 1:50 dilution shPTEN:shRLuc No shRNA shRLuc shPTEN 1:50 dilution shPTEN:shRLuc

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Days post-transplantation

NMuMG parental no hairpin
NMuMG parental MLR-RLuc.713
NMuMG parental MLS-PTEN.1522
NMuMG parental 1:50 dilution 

UbC-NT #6  no hairpin
UbC-NT #6  MLR-RLuc.713
UbC-NT #6  MLS-PTEN.1522
UbC-NT #6  1:50 dilution 

UbC-NT #7 no hairpin
UbC-NT #7 MLR-RLuc.713
UbC-NT #7 MLS-PTEN.1522
UbC-NT #7 1:50 dilution 

Av
er

ag
e 

tu
m

or
 w

ei
gh

t a
t h

ar
ve

st
 (m

g)

D



!"

A

C

!"#$%&'()*'+,-./0'12.3+&$+4'5678&9:'!"#$!%&'';8<'!"#$!$''5=;%;5>&%"?;>"78)'#$%&'()*+,,&
-+./+0(&1,2/&3..34&5(&657+89:+0;+31,5<+8&=>2,+&?+,,.@&ABC*DE&?+,,.&/03(.8F?+8&=5/>&G1*)
A+FAH@& />+(&?,2(3,& ,5(+.& 5.2,3/+8I& #J%&K?>+;3/5?&26& /03(.:,3(/3/52(&3..34L&ABC*DE&G1*)
A+FAH&?,2(+.&DM&3(8&DN&=+0+&/+./+8&!"#$!$%&36/+0&0+/02O503,&5(/028F?/52(&26&.>PA$.I&Q3/3&620&
?,2(+&DN&.>2=(R&#*%&$..+..;+(/&26&STU&:2.5/5O+&:2:F,3/52(&5(&+3?>&+7:+05;+(/3,&?2(85/52(&
5;;+853/+,4& :0520& /2& /03(.:,3(/3/52(I& #Q%& J05V>/65+,8& 3(8& 6,F20+.?+(/& 5;3V+.& 26& /F;20.&
>30O+./+8&WIN&=++X.&36/+0&/03(.:,3(/3/52(I&#C%&HF;20&=+5V>/.&3/&>30O+./L&/=2)/35,+8&F(:350+8&
/&/+./I

normalizing 
protein dye-ErbB2 -phospho-Erk 1/2 normalizing 

protein dye

1

3

4

5

7

8

9

12

13

14

15

Neg

16

Pos

Clones B

shRLuc shPTEN 1:50 dilution
with shPTEN

0

200

400

600

800

1000

1200

Tu
m

or
 w

ei
gh

t a
t h

ar
ve

st
 (m

g)

p = 0.0182

p = 0.0278

p = 0.3363

*

*

D EBF GFP dsRed

MLS-RLuc

MLS-PTEN

1:50
MLS-RLuc : MLR-RLuc

1:50
MLS-PTEN : MLR-RLuc

MLS-RLuc MLS-PTEN 1:50 MLS-RLuc : MLR-RLuc 1:50 MLS-PTEN : MLR-RLuc

34% GFP+ 27% GFP+ 0.59% 
GFP+

1.12% 
GFP+



 43 

larger than control tumors and there was a net increase in the GFP signal, confirming that 

we were able to detect the oncogenic contribution of a strong TSG shRNA over baseline in 

these cells [Figure 2.7e]. Similar assays were used to investigate the potential utility of c-

Myc, mutant PIK3CA, human HER2, wild type mouse ErbB2 and activated mutant 

ErbB2(NT) as sensitizing lesions. However, these experiments all yielded inconsistent 

results in vivo (data not shown) and ultimately we chose to concentrate our efforts on 

optimizing NeuNT in our screening platform development.   

Before embarking on a screen for all 745 shRNAs in our library, we decided to first 

test whether shRNA-Pten.1522 TSG activity could be successfully identified from a pool of 

non-neutral shRNAs. A random pool of 49 sequence-verified shRNAs from the library were 

assembled and spiked with either the Pten.1522 or RLuc.713 control shRNA and tested in 

the same in vivo assay as before with NMEC#6 UbC-NeuNT clonal line #5. The pMLS 

plasmid pools were transduced at low MOI that approximated a single retroviral integration 

per cell. Disappointingly, shRNA-Pten.1522 failed to enrich in this context (data not shown), 

and the decision was made that the system established was not suitable for large pooled-

format screening. Instead efforts were focused towards testing a small set of candidates on a 

gene-by-gene basis. 

 

Pilot screen 

For the gene-by-gene trial, fourteen candidates were chosen from a list of 35 genes 

that represented an overlap between two methods of ROMA data analysis [Table 2.3]. The 

initial analysis had been founded on focal event counting, where the frequency and size of 

the chromosomal deletions detected in the CGH arrays produced a candidate list of 144 

genes (of which 112 incorporated into the shRNA library). The Genentech study had been 



! 44 

Table 2.3  Candidate tumor suppressor genes screened in gene-by-gene pilot 

Candidate Gene name a. b. c. pilot screen 

ARHGAP1 Rho GTPase activating protein 1 
 

x x x set 1 

BASP1 brain abundant, membrane 
attached signal protein 1 

x x x set 1 

Ctnnd1 catenin (cadherin-associated 
protein), delta 1 

x x  set 2 

CUGBP1 CUG triplet repeat, RNA binding 
protein 1 

x  x set 2 

DLG2 discs, large homolog 2 (Drosophila) 
 

x x x set 1 

FNBP4 formin binding protein 4 
 

x  x set 1 

KBTBD4 kelch repeat and BTB (POZ) 
domain containing 4 

x  x set 2 

MAP2K4 mitogen-activated protein kinase 
kinase 4 

x  x set 1 

MYO10 myosin X 
 

x x x set 2 

Nf1 neurofibromin 1 
 

x x  set 2 

Numa1 nuclear mitotic apparatus protein 1 
 

x x  set 2 

PTPRJ protein tyrosine phosphatase, 
receptor type, J 

x  x set 1 

UNC5D uncp5 homolog D (C. elegans) 
 

x x x set 2 

ZCCHC7 zinc finger, CCHC domain 
containing 7 

x  x set 1 

 
a. 5% focal deletion analysis (149 gene library) 
b. high potential "priority" candidates (19 genes) 
c. pinning algorithm candidates (500 genes) 
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used to complement that list with another 37 genes derived a list of 49 candidates. 

Additionally, during the process of the original library design 18 candidates had been 

flagged as ‘high priority’ based on information regarding the candidate in the literature, 

such as their involvement in particular pathways or as TSGs in other cancer types. These 

lists were compared to new set of 500 candidate genes generated by a second analysis 

method applied to the same ROMA datasets by Alex Krasnitz (CSHL) using a ‘pinning 

algorithm’.  

One of the more commonly applied methods of CGH profile analysis is by event 

counting, where a frequency plot of all loci in the sample data set is produced to visualize 

this basic measure of recurrence of copy number gains and losses. In many cancer types 

including breast, large chromosomal events are common and such simplistic methods of 

assessing relevance through frequency can lead to large portions of the genome being 

flagged. The ‘pinning algorithm’ was an alternative method of data analysis developed by 

Alex Krasnitz to allow for a more focused search for candidate driver genes where the 

length of any copy number variation and the potential for the overlapping events to move 

the calculated peak away from the actual epicenter is also taken into account. Surprisingly 

only 42 genes overlapped between the two candidate lists (38 with ROMA and 4 with 

Genentech candidates), 35 of which were part of our shRNA library, underscoring the 

importance in the choice of methods for the data analysis, both conceptually and 

computationally.  

We combined the shRNA plasmids for transfection into a packaging cell line, 

generating small pools of five sequence-verified shRNAs targeting each gene. Knockdown 

efficiency of the shRNAs against each target was not tested prior to the assay. Each small 

pool was introduced into NMEC#6 UbC-NeuNT (clonal line #5) using a viral titer intended 
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to generate cell populations carrying multiple viral integrations, thus increasing the 

likelihood of potent gene silencing. Infection rates were determined by assessing percentage 

of GFP positive cells: for the first set an average of 83.4% GFP positivity (range 73-89%) and 

for the second set an average of 77.8% (range 72-87%). For practical reasons we conducted 

the ex vivo manipulations and orthotopic injection surgeries in two batches, each round with 

its own set of controls. All experimental steps were conducted in identical manner. Tumors 

were harvested 7 and 8.5 weeks post-transplantation for the first and second sets, 

respectively. None of the candidate gene shRNA pools gave statistically significant results 

[Figure 2.8]. In some cases there seemed to be a no selective advantage afforded by the 

shRNA pool in this assay since GFP negative tumors were also observed (data not shown). 

The screen was repeated in NMEC#6 cells expressing CMV promoter driven wild type 

mouse ErbB2 but this experiment similarly produced no positive selection of candidate gene 

pools. The overall latency was very long and we also experienced incomplete penetrance of 

the positive control (data not shown). 

We noticed that despite a lack of statistical significance in tumor weight at harvest, 

the tumors resulting from the shRNA pool targeting the gene neurofibromin 1 (Nf1) did 

present an above average tumor burden and importantly, all four tumors were GFP 

positive. Encouraged by these results, the Nf1 shRNA pool was retested. Tumors were 

harvested and weighed two months post-transplantation and this time the increase in tumor 

burden was statistically significant [Figure 2.9a,b]. Crude tumor lysates were probed for 

NF1 protein levels and strong knockdown was observed [Figure 2.9c], but there were no 

major changes in histology, density of GFP positive cells or growth as indexed by Ki-67 

staining [Figure 2.9d,e]. We verified protein knockdown efficacy of each shRNA 

individually at both high and low MOI levels in NMuMG cells [Figure 2.10a]. Owing to 
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technical difficulties regarding the health of nude mice under experimentation we were 

unable to draw any robust conclusions, but accelerated tumor onset and growth was also 

documented in the context of PIK3CAH1047R (with 5 shRNA pool) and wild type mouse 

ErbB2 overexpression (with two independent shRNAs alone) in NMEC#6 in vivo 

transplantation assays, albeit at a longer latency of approximately 5 months (data not 

shown).  

NF1 is an established TSG in leukemia and is well characterized as a negative 

regulator of the oncogene Ras (Mullally and Ebert 2010). As a Ras-GTPase activating protein 

(GAP), its loss can lead to the constitutive activation of the Ras pathway in a manner similar 

to oncogenic point mutations in Ras itself (Kalra et al. 1994; Bollag et al. 1996). We 

investigated the Nf1 pool shRNA tumor lysates for changes in the downstream signaling 

and found an upregulation in phosphorylated ERK, phosphorylated MEK, and 

phosphorylation of AKT at both the Thr-308 and Ser-473 sites [Figure 2.10b]. Unexpectedly, 

we did not perceive any of these changes in cells transduced with Nf1 shRNAs growing in 

vitro, and similarly we also did not observe any changes in growth or cellular morphology 

in culture. We attributed the lack of changes in signaling to the growth factor rich culture 

conditions that included insulin and 10% fetal bovine serum.  

In an attempt to identify differences in signaling in NMuMG cells transduced with a 

functionally validated and potent shRNA targeting Nf1, the effects of growth factor 

stimulation time course with epidermal growth factor (EGF) and insulin after an overnight 

starvation (no serum or insulin) were investigated. Neither in the presence or absence of 

NeuNT did we observe any changes in signaling [Figure 2.11]. Since it is conceivable that 

NF1 loss would result not in a strong signal upon upstream stimulation but instead allow 

for a prolongation of any signal downstream of Ras, we next performed a time course where 
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cells were starved for 6 hours, stimulated with EGF/insulin for 10 minutes, then maintained 

in starvation conditions for a variable length of time. Once again, no significant changes 

were observed in downstream signaling phosphorylation by Western blot [Figure 2.12]. To 

generate a reagent that would allow us to study the tumor suppressive mechanism of NF1 

loss in vitro more effectively in the future, we established a series of tumor-derived cell lines 

from NMEC#6 transplant tumors expressing two MLP-shRNAs against NF1 (data not 

shown).  

The original CGH array data was re-examined to verify that NF1 deletions, found at 

a frequency of 5% in this small dataset, co-occur with ERBB2 chromosomal amplifications. 

There is some indication of linkage between focal deletions of NF1 (on 17q11.2) and ERBB2 

(on 17q12), which would imply a lack of biological significance in the co-occurrence of these 

events within tumors. The TSG TP53 is located on the short arm of chromosome 17 (17p13.1) 

and there also appears to be a frequent overlap between TP53 and NF1 deletions (over 10% 

in human breast cancer cell lines). When considering broader deletions encompassing NF1, 

they appear random with regard to MYC or ERBB2 amplification but are found to co-occur 

in both cases (Jim Hicks, personal communication).  

 

Making new shRNA transgenic mouse strains targeting Nf1 

As a parallel strategy for investigating the role of NF1 in breast cancer, we generated 

two tetracycline-inducible shRNA transgenic mice that enable reversible silencing of 

endogenous NF1 expression. To do this we took advantage of previous work by Lowe lab 

colleagues who established a fast and reproducible pipeline for the production of these 

shRNA transgenic strains (Premsrirut et al. 2011; Dow et al. 2012). A gene-targeting vector 

can be rapidly cloned to contain the shRNA sequence of choice in an inducible expression 
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cassette flanked by FRT sites. The shRNA cassette consists of the human miR-30-based 

shRNA embedded in the 3’ UTR of a GFP transcript downstream of a tetracycline 

responsive element (TRE) promoter [Figure 2.13a]. In our case, we employed a modified 

targeting construct containing the TREtight promoter (TREt), which shows 40-fold lower 

expression in the absence of tetracycline analog doxycycline (dox) compared to the 

conventional TRE promoter (Clontech 2003; Backman et al. 2004). This modification had 

been validated in transgenic models expressing shRNAs targeting essential genes where it 

had been imperative that basal expression levels be reduced (McJunkin et al. 2011).  

Following electroporation of the targeting vector alongside a plasmid expressing 

Flpe recombinase into KH2 ESCs, the TRE(t)-GFP-miR30 construct integrates into a defined 

locus downstream of the collagen A1 gene (ColA1) on mouse chromosome 11 via 

recombinase-mediated cassette exchange (Beard et al. 2006; Premsrirut et al. 2011) [Figure 

2.13a]. KH2 cells are 129, C57BL/6 F1 hybrid ESCs that contain not only the ColA1 homing 

cassette but also a reverse tetracycline-transactivator (rtTA) cDNA expressed from the 

endogenous Rosa26 promoter (Hochedlinger et al. 2005; Beard et al. 2006). In this ‘Tet-On’ 

system, the presence of dox can drive expression of the GFP-shRNA cassette in the targeted 

KH2 ESCs (Gossen et al. 1995).  

We generated targeted clones using three different NF1 shRNAs in KH2 ESCs and 

examined knockdown by western blot in two independent clones following 5 days 

treatment with dox. All three shRNAs showed robust protein knockdown [Figure 2.13b]. 

We decided to proceed with shRNA-NF1.6074 and NF1.8594 because these had previously 

been shown to be functionally active in accelerating disease in AML in vivo models. Three 

clones for each shRNA that showed compact, undifferentiated ESC morphology were 

placed on and off dox before assessment of GFP induction levels [Figure 2.13d]. Single-site 
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integration was also verified by Southern blot [Figure 2.13c]. Finally, candidate clone lysates 

were blotted once more to confirm protein knockdown levels [Figure 2.13e]. The clones 

displaying the strongest shRNA induction, protein knockdown, and healthiest 

undifferentiated ESC morphology were used for mouse production by tetraploid embryo 

complementation (Eggan et al. 2001). The production of transgenics by tetraploid 

complementation guarantees that recombined cells contribute to both somatic and germ line 

tissues in resultant male founders, permitting heritable transmission of transgenic alleles 

(KH2 cells are XY). 

 Once TtG-shNF1.6074 and TtG-shNF1.8594 founders reached sexual maturity they 

were crossed with C57BL/6 females in order to isolate mouse embryonic fibroblasts (MEFs) 

from embryos harboring both the Rosa26-rtTA-M2 (Rosa-rtTA) and TREt-GFP-miR30 alleles 

(Hochedlinger et al. 2005). Reversible GFP induction in the MEFs was verified by FACS 

analysis (data not shown). NF1 knockout strains are embryonic lethal when homozygous 

(Brannan et al. 1994). However, preliminary results from dox treated embryo litters did not 

show any phenotype in double transgenic pups, suggesting there was an insufficient 

knockdown of the target NF1 by either of the shRNAs tested in our model [Figure 2.14].  

As the expression pattern of TREtight-GFP-miR30 had not been previously 

examined in detail, we sought to test the induction of the allele in the presence of Rosa-rtTA 

in adult female mice after two weeks of dox treatment and also to compare the GFP 

induction levels in various tissues types between the TRE and TREtight promoters. 

Additionally, we included a different rtTA allele, CAGs-rtTA3, which has a broader and 

stronger expression pattern than the Rosa allele (Premsrirut et al. 2011). This data is 

summarized in the Appendix, and indicates a limited application of the TtG-shNF1.6074 

and TtG-shNF1.8594 transgenic strains for modeling NF1 loss more broadly, as neither short 
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hairpin will be capable of sufficient suppression of its target in many tissue types while in 

their current configuration downstream of the TREt promoter. 

The results for TREt promoter induction in the mammary gland were inconclusive. 

However, from previous work it had been established that TRE expresses robustly in the 

mammary gland when combined with CAGs-rtTA3 and MMTV-tTA (data now shown). We 

therefore intend to test TtG-shNF1.6074 and TtG-shNF1.8594 in the multi-allelic transgenic 

model described in Chapters 3 and 4. Preliminary evidence suggests that the TREt 

promoter, like TRE, can be induced in that model (data not shown) and experiments to 

validate NF1 as a tumor suppressor in this transgenic setting are currently ongoing.  

 

DISCUSSION 

This chapter describes efforts towards conducting a positive selection screen for the 

identification of novel tumor suppressors in breast cancer based on copy number variation 

data from human breast cancer genomic analysis. The approach was founded on the 

hypothesis that chromosomal regions frequently deleted in human cancers are enriched for 

TSGs. While some preliminary trials were conducted with c-Myc, mutant PIK3CA and wild 

type ErbB2 with mixed results, most of our efforts centered around the use of a mutant neu 

allele as the sensitized background for modeling HER2-positive breast cancer. In the context 

of developing an orthotopic transplantation model, we encountered considerable difficulty 

in establishing the appropriate level of oncogenic stimulus. Where the other oncogenes gave 

incomplete penetrance even at long latency, NeuNT was too aggressive and did not allow 

for a large enough window for the detection of accelerated disease over baseline. 

Although we were unsuccessful in developing a high throughput platform suitable 

for screening, we noticed that our strong positive control shRNA against Pten was capable 
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of undergoing positive selection in our in vivo orthotopic transplantation assay employing 

NMuMG cells. In an alternative gene-by-gene approach, we conducted a small pilot screen 

for high priority candidate TSGs frequently deleted in human breast tumor tissue, which 

lead to the identification of neurofibromin 1 (Nf1).  

When first identified in the pilot screen there was little evidence in the literature 

linking NF1 directly to breast cancer as a tumor suppressor gene, with the exception of one 

study demonstrating the failure of the human breast cancer cell line MDA-MB-231 to 

express NF1 (Ogata et al. 2001) and a few publications that addressed the increased risk of 

breast cancer in patients with the common autosomal dominant genetic disorder 

neurofibromatosis type I (NF-1) which is caused by inherited mutations in NF1 (Guran and 

Safali 2005; Sharif et al. 2007; Brems et al. 2009; Ripperger et al. 2009; Salemis et al. 2010). 

Only two reports implicated spontaneous NF1 loss to breast cancer tumorigenesis (Guran 

and Safali 2005; Lee et al. 2010). However, analysis of The Cancer Genome Atlas (TCGA) 

breast cancer data sets has revealed that 27.7% of human breast tumors have NF1 deletions 

or mutations, most being heterozygous (Wallace et al. 2012). Furthermore, in basal and 

HER2-positive patient subtypes as high as 40% of tumors display NF1 loss or mutation. In 

their study, Schimenti and colleagues examined the genomic profiles of tumors arising in 

inbred Chaos3 mice that exhibit high levels of genomic instability leading to mammary 

tumors and found that Nf1 was lost in 59 out of 60 tumors analyzed by CGH (Wallace et al. 

2012). An earlier study by Shannon and colleagues had found that mutagen-exposed 

(radiation and cyclophosphamide) heterozygous Nf1 mutant mice developed soft tissue 

sarcomas and breast carcinomas (Chao et al. 2005). Collectively, these studies support our 

preliminary finding that NF1 is a candidate tumor suppressor in breast cancer and provides 
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a possible explanation as to why Ras mutations are found so rarely in breast tumors (HRAS 

1%, KRAS 4%, NRAS 2%) (Pylayeva-Gupta et al. 2011). 

NF1 has been studied primarily as a tumor suppressor in myeloid malignancies but 

in addition to breast, but there is increasing evidence to suggest that it is also involved in 

solid cancers such as lung (Ding et al. 2008; De Raedt et al. 2011), colon (Cacev et al. 2005; 

Ahlquist et al. 2008), glioblastoma (See et al. 2012), melanoma (Whittaker et al. 2013), and 

ovarian cancer (Sangha et al. 2008), with implications in both disease progression and 

therapy resistance. Taking advantage of the strong expression of the TREt promoter in the 

intestinal tissues, we have crossed TtG-shNF1.6074 and TG-shNF1.8594 to the APCmin 

(Adenomatous polyposis coli multiple intestinal neoplasia) strain commonly used to study 

intestinal and colorectal neoplasms (Moser et al. 1990). Preliminary data suggests that NF1 

suppression accelerates the disease phenotype with shortened tumor-free survival (data 

now shown) and further characterization of NF1 as a candidate TSG in this model is 

ongoing.  

Multiple aspects of the work described in this chapter points towards an important 

lesson in mouse modeling: that each model system can bring challenges unique to the tissue 

type and disease under interrogation. In addition, any new element introduced into the 

model can have unpredictable consequences on the behavior of that system. Although we 

proceeded with due caution and sought to avoid drawing incorrect conclusions, it was 

unique aspects of mammary gland biology and difficulties in titrating the oncogenic force of 

tumor initiating lesions that caused a series of setbacks in adapting to the murine mammary 

gland a blueprint previously outlined in a successful hepatocellular carcinoma tumor 

suppressor screen from which this study had been fashioned (Zender et al. 2008). With the 

experience gained within our laboratory through our work with the murine mammary 
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gland and various positive selection screening platforms, we believe that future iterations of 

this project would circumvent many of the roadblocks that were encountered.  

 

CHAPTER CONTRIBUTIONS 

Uli Bialucha compiled the initial list of breast cancer tumor suppressor genes in 

collaboration with Jim Hicks and members of Michael Wigler’s group (CSHL) (Table 2.1). 

Uli Bialucha and Johannes Zuber designed the shRNAs (Table 2.2). Uli Bialucha was 

instrumental in the many aspects of the development of the screening platform (Fig 2.1b, Fig 

2.4). Alex Krasnitz developed and applied the “pinning algorithm” on the ROMA data. 

Jessica Bolden ran the Southern blot (Fig 2.13c). Sang Yong Kim performed the tetraploid 

complementation. Saya Ebbesen conducted all other experiments.  
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III. A conditional RNAi transgenic mouse model for validation and 

characterization of novel breast cancer tumor suppressor genes in vivo 

 

INTRODUCTION 

HER2 amplification and subsequent overexpression occurs in 20-30% of all human 

breast cancers and is associated with poor clinical outcome in metastasized disease (Slamon 

et al. 1987; Slamon et al. 1989; Andrulis et al. 1998; Arteaga et al. 2012). Although HER2 

mutations are rare, efforts to recapitulate this disease in genetically engineered mouse 

models (GEMMs) have focused on the use of the activated NeuNT allele under the control of 

the Mouse Mammary Tumor Virus Promoter Enhancer (MMTV), which results in the 

efficient induction of aggressive, multifocal mammary tumors (Muller et al. 1988; Bouchard 

et al. 1989). By contrast, expression of the wild type neu allele under the control of the same 

promoter gives rise to focal tumors after a much longer latency (Guy et al. 1992b). A third 

series of strains expressing the ‘neu deletion’ (NDL) transgene carrying in-frame deletions of 

the oncogene were also generated and displayed an intermediate phenotype (Siegel et al. 

1994; Siegel et al. 1999). The MMTV promoter enhancer has been shown to be hormonally 

responsive and induced during pregnancy and lactation (Henrard and Ross 1988), which 

may be problematic when studying a disease where hormonal regulation plays such a major 

role. It nonetheless remains one of the most commonly employed tissue-specific promoters 

for studies focused on the mouse mammary gland. 

The development of sophisticated RNAi technology in mammalian systems has 

produced a powerful tool for the study of TSGs in vivo. Short hairpin RNAs targeting 

relevant TSGs have been designed to hijack the endogenous RNAi machinery and to allow 
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for the stable suppression of target gene expression through mRNA cleavage or 

translational repression (Dickins et al. 2005; Silva et al. 2005; Chang et al. 2006). The use of 

an endogenous microRNA backbone, human miR-30, has enabled the technology to be 

adapted flexibly for use in vivo for both transgenic models and through ex vivo viral delivery 

prior to transplantation (Zender et al. 2008; Bric et al. 2009; Premsrirut et al. 2011). 

There are several important components that must be considered when building an 

effective in vivo tool for the investigation of genomic, molecular and cellular changes that 

occur in a developing tumor. Firstly, for affording organ specificity, one method is the use of 

tissue-specific promoters. Secondly, in most cases we seek to examine a particular 

interaction between two or more genetic lesions that are commonly found in the disease 

under investigation. Choosing the appropriate genetic background is therefore essential. For 

many cancer types the predominant or defining landscape of oncogenic changes have now 

been well characterized and can be mimicked through the overexpression of a specific 

oncogene, a mutant allele, or the disruption of a TSG. Genetic alterations that occur during 

the evolution of a tumor cell may not be simultaneous, and thus temporal flexibility and 

control can add a powerful dimension to the experimental model and tetracycline-inducible 

systems can provide that conditional control. Tetracycline inducible systems permit 

reversible perturbation of pathways, which can mimic the actions of a small molecule 

inhibitor, and help determine how addicted cancer cells have become to a particular genetic 

lesion. RNAi technology, namely the use of shRNAs for target knockdown, is an elegant 

and reversible technique for altering the protein level of a gene of interest without 

permanently altering the endogenous genomic locus. Lastly, imaging modalities such as 

fluorescence or bioluminescence can be hugely helpful in visualizing the initiation and 

progression of disease without sacrificing experimental animals, enabling longitudinal 
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monitoring and quantification. Such reporters are also beneficial for the detection of 

circulating tumor cells and metastatic growth at distal organs.  

This chapter describes efforts to bring together an existing mouse model of HER2-

positive breast cancer with the transgenic RNAi technology recently developed in our 

laboratory.  

 

RESULTS 

Multi-allelic model for achieving tissue specific expression of shRNA and incorporation 

of fluorescent markers 

With the goal of building a transgenic mouse model that allowed for the temporally 

regulated, reversible expression of shRNAs in the mammary epithelium, we conceived of 

the following multi-allelic strategy [Figure 3.1]. To achieve the desired tissue-specificity, we 

chose the whey acidic promoter (WAP) driven Cre recombinase strain (Wagner et al. 1997). 

Three different promoter systems have been commonly used for studies on the mammary 

gland: MMTV-Cre (mouse mammary tumor virus) (Wagner et al. 1997; Wagner et al. 2001), 

BLG-Cre (beta-lactoglobulin) (Selbert et al. 1998), and WAP-Cre. The WAP promoter is 

induced during lactation following pregnancy during nursing [Figure 3.1a]. Once expressed, 

Cre recombinase can act on the LoxP-Stop-LoxP (LSL) cassette embedded within a CAGs-

LoxStopLox-rtTA3-ires-mKate2 (RIK) allele (J. Pelletier and L. Dow, unpublished) [Figure 

3.1b]. The RIK transgene contains a cytomegalovirus (CMV) early enhancer element and 

chicken beta actin (CAG) promoter upstream of the LSL, followed by a modified rtTA with 

increased dox-sensitivity (rtTA3), internal ribosomal entry site (IRES) and the fluorescent 

protein mKate2. mKate2 is a monomeric far-red fluorescent protein that was designed for 
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imaging in living tissues (Shcherbo et al. 2009). Importantly, it is three-fold brighter than the 

previously published mKate protein and 10-fold brighter than mPlum. 

The CAGs promoter expresses ubiquitously in most mouse tissues and can therefore 

drive widespread expression of downstream transgenic elements (Sawicki et al. 1998). Since 

the lactation-induced WAP promoter has already provided the tissue specificity, we opted 

for the use of a promoter upstream of the rtTA element whose expression levels would be 

unlikely to be modulated by changes in cellular differentiation/dedifferentiation during the 

course of tumorigenic transformation.  

Once the luminal cells of the mammary ductal epithelium have begun expressing 

rtTA3, dox can be used to induce expression of the shRNA transgenic allele (TRE-GFP-

miR30) (Premsrirut et al. 2011). In this Tet-On set-up, the tetracycline-responsive element 

promoter (TRE) is active when bound by rtTA [Figure 3.1c]. In a similar fashion to the 

shRNA vectors described in Chapter 2, GFP has been coupled with the expression of the 

shRNA. However, while GFP reporter expression in the context of the MLS retroviral vector 

serves to confirm the presence of the shRNA construct, here the strength of the fluorescent 

signal corresponds inversely to the knockdown level of the target protein (Premsrirut et al. 

2011).  

Lastly, in line with our decision to model HER2-positive breast cancer in Chapter 2, 

we overlaid the three transgenic alleles described above onto the oncogenic background of 

the viral MMTV promoter driven mutant rat ortholog of HER2, neuV664E (MMTV-NeuNT) 

(Muller et al. 1988) [Figure 3.2a]. This mutated form of neu has a point mutation in its 

transmembrane domain that results in increased receptor homodimerization and 

constitutive activation of the kinase domain even in the absence of a ligand. It should be 

noted that we acquired the founder strain “TG.NK” available through the Jackson 
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Laboratory (http://jaxmice.jax.org/), while most of the characterization shown in the 1988 

publication focuses on strain “TG.NF”. This latter strain displayed a significant ectopic 

expression of the transgene in male mice, notably in the salivary gland and epididymis 

(Muller et al. 1988). 

We had previously attempted to use the MMTV-tTA allele to drive shRNA 

expression over the MMTV-NeuNT background but these experiments gave mixed results, 

notably a very long latency and incomplete tumor penetrance within cohorts (data now 

shown) (Hennighausen et al. 1995). While there are advantages of using a Tet-Off system, 

such as increased precision in the timing of target protein re-expression and reduced levels 

of possibly deleterious lingering dox molecules (Riond and Riviere 1988; Anders et al. 2012), 

and additionally the MMTV-tTA allele circumvented the need for pregnancy in the 

experimental outline, we remained unsatisfied with variable disease phenotypes observed.  

 

Breeding strategy for efficient production of multi-allelic experimental mice with 

appropriate littermate controls 

A well-planned strategy for mouse husbandry is important in allowing the efficient 

production of experimental animals. Since the objective is to study breast cancer, and the 

model system requires pregnancy, only females are useful for analysis. To minimize 

production of unnecessary mice, the best strategy was to first create breeder mice that 

contain two copies of each transgene such that all female pups that are born can be used for 

experimentation. In the current mouse model, we are fortunate that all of the alleles can be 

maintained in a homozygous state without loss of viability or fertility, although 

homozygous, parous MMTV-NeuNT females have a greatly shortened lifespan due to early 

tumor onset. 
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The multi-allelic model was built without undergoing the time-consuming process of 

backcrossing each transgenic strain onto the same mouse strain background. While the 

MMTV-NeuNT allele is on an FVB/n background, WAP-Cre is C57BL/6. RIK and the TG-

shRNA lines were derived using F1 hybrid ESCs that are composed of 129 and C57BL/6. 

Interbreeding these mice introduced three strain backgrounds into the experimental cohort 

and the proportion at which each strain contributed to any particular animal could not be 

measured. To control for the variable effects of strain background on disease phenotypes 

(Linder 2006; Serpi et al. 2013), we sought to follow a tactic where a control shRNA strain is 

integrated into the breeding scheme from the start. By creating compound homozygous 

animals carrying one experimental and one control shRNA, both targeted to the ColA1 

locus, we could produce litters that segregated the shRNAs in a Mendelian fashion (Linder 

2006; McJunkin et al. 2011; Dow et al. 2012). We currently have two neutral shRNA control 

strains that are routinely used: Renilla-Luciferase.713 (RLuc.713) and Luciferase.1309 

(Luci.1309) [see TABLE 6.1 in Materials and Methods]. While the shRNA-Luci.1309 targets 

the luciferase gene, the RLuc shRNA has the advantage of being compatible with in vivo 

luciferase imaging as it does not repress the reporter and has been used as the control strain 

in the experiments described in Chapter 4 (Premsrirut et al. 2011) [Figure 3.2a]. In addition 

to having no known target in the mouse genome, RLuc.713 was chosen for its high level of 

efficient expression and processing (Zuber et al. 2011a). 

 

Experimental timeline for induction of WAP-cre allele and shRNA knockdown 

The WAP-Cre transgene has a Cre recombinase cDNA driven from the promoter 

region of the murine whey acidic protein (Wap) gene that is expressed in mammary epithelial 

cells in response to lactogenic hormones. High-level expression of the endogenous Wap gene 
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is confined to the last few days of pregnancy and lactation, while robust activity of the 

WAP-Cre transgene was detected as early as day 14 of pregnancy and most strongly during 

lactation (Wagner et al. 1997). The original publication reports that cells with efficient Cre 

activity were observed after involution, a process whereby much of the terminally 

differentiated epithelial cells have undergone apoptosis during the remodeling of the gland.  

The molecular and cellular effects of pregnancy have been successfully mimicked in 

mice using hormone pellets (Ingberg et al. 2012). However, as there was no literature citing 

the use of hormones to mimic lactation we opted to use traditional husbandry and nursing 

as a means of activating the WAP-Cre transgene. 

With the understanding that many of the cells that activate WAP-Cre inevitably die 

during post-lactation involution, we decided upon an experimental timeline that 

incorporated a full three-weeks of nursing after pregnancy. Experimental females with the 

four alleles – MMTV-NeuNT ; RIK ; WAP-Cre ; TG-shRNA – began mating at 

approximately 7 weeks of age when sexual maturity had been reached. They were housed in 

proximity to male mice prior to mating to help maintain regular estrus cycling. Although 

the mice were harem mated, each pregnant female was separated into a new cage before the 

birth of her litter, thus exact litter counts and any potential difficulties in lactation could be 

noted [Figure 3.2b]. The gestation period of a mouse pregnancy can vary between 18-22 

days. The experimental mating colony was monitored daily and in most cases the 

experimental female was placed on dox treatment within 24 hours of litter birth to induce 

expression of the shRNA. After the experimental litters were weaned 21 days after birth, the 

mothers were housed randomly and remained continuously on dox treatment unless 

otherwise noted. Palpation for tumors began one week following weaning, though it was 
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rare that palpable tumor growth was observed during the first four weeks of dox treatment 

in any of the experiments described in Chapter 4. 

The use of Adeno-Cre in place of the WAP allele was tested in the abdominal 

mammary fat pads of RIK mice by direct injection into the fatty tissue near the base of the 

ductal tree [Figure 3.3]. Further improvements to this approach could involve the use of 

direct intraductal injection of the virus through the nipple, a technique we would like to 

explore further in the future (Vonderhaar and Ginsburg 2000; Behbod et al. 2009). The use of 

the viral Cre could potentially activate the shRNA in a different set of epithelial cells. This 

could result in altered tumor phenotypes or differentiation, and would also reduce the 

number of cells in which the shRNA is expressed, perhaps better modeling physiological 

heterogeneity, although at the expense of variable transgene penetrance. 

In Chapter 4, we will discuss control cohorts consisting of MMTV-NeuNT ; RIK ; 

WAP-Cre ; TG-shRNA mice that were kept as virgins but placed on dox at 10-11 weeks of 

age to approximate the treatment of the regular parous cohorts. These mice were included 

primarily to control for ectopic expression of the WAP promoter in the absence of 

pregnancy. Although the levels were insufficient to accelerate tumor onset over 

background, we did observe GFP positive ductal epithelium in some mice (data not shown). 

The timing of this ectopic activation was not investigated further. In the experiments 

described at the end of Chapter 2 in the context of modeling NF1 tumor suppressive gene 

function, parental breeders with only one copy of WAP-Cre were used to generate 

littermates that harbored either a control or experimental shRNA, with or without the Cre 

allele. This allowed for the incorporation of controls that could undergo pregnancy and dox 

treatment in the same fashion as the experimental cohorts, thus normalizing the effects of  
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pregnancy on the mouse and on the MMTV-NeuNT transgene expression levels and 

patterns.  

The mouse has five pairs of mammary glands that extend from the neck region all 

the way to the groin [Figure 3.4]. The mammary epithelial tissue does not begin to develop 

until puberty, at approximately 4 weeks of age and the full ductal branching is achieved at 

about 8 weeks. Since both the WAP-Cre and the MMTV-NeuNT transgenes express 

ubiquitously in all of the mammary tissue of the mouse, monitoring for tumor onset was 

conducted by weekly palpation of the thoracic and abdominal regions of each mouse. 

Anesthesia was used in cases where the precision of palpation while scruffing the animal 

was compromised. To facilitate the longitudinal monitoring of tumor onset and growth, a 

“quadrant system” was devised to section the mammary glands into four regions [Figure 

3.4]. In this manner, tumor onset was scored separately for each quadrant and the number 

of tumor bearing quadrants could used to grossly approximate disease penetrance and 

progression.  

 

Characterization of the MMTV-NeuNT ; RIK ; WAP-Cre ; TG-shRNA transgenic model: 

luminal epithelial expression, in vivo imaging and single transgene controls 

Successful luminal expression of the RIK transgene after recombination by the WAP 

promoter driven Cre was first assessed by fluorescence activated cell sorting (FACS) using 

cell surface markers. A cohort of age-matched mice was prepared as shown in Table 3.1. The 

tri-allelic MMTV-NeuNT ; RIK ; WAP-Cre mice were littermates and biological replicates 

were used for the parous category. For parous animals, excess pups were euthanized to 

allow for normalization of litter size to 5-6 pups that were weaned after 21 days of nursing 

[Figure 3.5a].  
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Table 3.1  Experimental categories for model characterization by FACS 

Strain Virgin Parous 

MMTV-NeuNT ; RIK ; WAP-Cre ✓ ✓ 

MMTV-NeuNT ; RIK ✓ ✓ 

WAP-Cre ✓ ✓ 

C57BL/6 ✓  

 

 

Non-invasive, optical in vivo imaging was conducted using a Xenogen IVIS® 

Spectrum. The fluorescence marker associated with the expression of RIK, mKate2, 

displayed robust tissue penetration through the skin in areas where the fur had been 

removed [Figure 3.5b]. We observed a decrease in the fluorescence signal in the weeks 

following litter weaning due to involution of the mammary gland. Additionally, the 

expression patterns of the GFP reporter from the TG-shRNA allele were also confirmed for 

tissue penetrance using a separate cohort of mice [Figure 3.5c].  

For FACS analysis, mammary glands were harvested 21 days after the end of 

lactation, a total of six weeks after litter birth. We postulated that all effects of involution 

and tissue remodeling would be complete at this time point, thus providing an accurate 

portrayal of the recombined cells that would remain in the gland. The cell surface markers 

CD24 and CD29 were used to define the luminal lineage of the mKate2 positive sub-

population of the mammary epithelial cells [Figure 3.6]. Virgin controls showed almost no 

mKate2 positivity.  

In the first iteration of the model, we chose to test the behavior and oncogenic 

background of the published transgenes in our own hands. MMTV-NeuNT+/- mice on a 

FVB/n, C57BL/6 hybrid background were generated, as well as MMTV-NeuNT+/- ; RIK+/- 

and MMTV-NeuNT+/- ; RIK+/- ; WAP-Cre+/- females on a mixed 129, FVB/n, C57BL/6 
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background that best resembled the undefined final strain composition of experimental 

cohorts described in Chapter 4. Additionally, C57BL/6 wild type mice and WAP-Cre+/- mice 

were prepared. Although these mice were not administered a dox treatment, some were 

kept as virgins and others underwent one pregnancy [Table 3.2]. To normalize for the 

variable age at which animals became pregnant (7-16 weeks; average 8.3 weeks), the term 

“experimental age” was used to refer to the time following the day of birth of her first litter. 

This nomenclature will apply to all experiments described in Chapter 4. As expected, the 

controls with no oncogenic transgene (C57BL/6 and WAP-Cre only) did not develop any 

tumors within the timeframe of this experiment (over 230 days in experimental age). Parous 

animals with MMTV-NeuNT remained tumor free on an average of 180 days in 

experimental age [Figure 3.7]. 

 

Table 3.2  Control cohorts: characterization of allelic components, background latency 

Strain Virgin (n) Parous (n) 

MMTV-NeuNT ; RIK ; WAP-Cre 5 12 

MMTV-NeuNT ; RIK 4 4 

MMTV-NeuNT 3 4 

WAP-Cre 2 7 

C57BL/6 5 3 

 

 

The experimental terminal disease endpoint, determined by unbiased assessment of 

veterinary staff, was established as any adult mouse with a tumor size exceeding 20mm at 

the largest diameter. Ulcerated tumors were also a cause for euthanasia irrespective of 

tumor size. However, this definition had its caveats for the purposes of our experiments. 
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Firstly, the location of the tumor greatly influenced the distress caused to the animal, as well 

as visibility during routine checks by veterinary staff. Secondly, the MMTV-NeuNT model 

can give rise to blood-filled cysts that can balloon quickly but do not share the same disease 

phenotypes or consequences as more solid, epithelial primary tumors. Thirdly, in the 

presence of a cooperating shRNA, the model produced mice with a tumor burden 

representing the sum of many tumors within one animal (discussed further in Chapter 4).  

 

DISCUSSION 

We have generated and tested a new transgenic mouse model for the study of HER2 

positive breast cancer that incorporates inducible RNAi technology, fluorescent reporters, in 

vivo imaging capacities, and restricted transgene expression in the luminal sub-

compartment of the mammary epithelium. The multi-allelic model makes use of the WAP-

Cre allele’s tissue specificity and induction through lactation to temporally and spatially 

restrict the expression of the GFP-tagged shRNAs via the RIK allele, which allows for strong 

and sustained expression of the rtTA3 and mKate2 elements. The dual fluorescent marker 

system is particularly powerful in experiments taking advantage of the reversibility of the 

shRNA allele. While the GFP protein level inversely correlates to target knockdown, mKate2 

tracks all cells that can express the shRNA regardless of the doxycycline treatment regimen. 

This is invaluable for tumor maintenance studies, as will be discussed further in Chapter 4. 

mKate2 expression as a Cre lineage tracer is also particularly relevant in this model where 

expression of the sensitizing oncogene, mutant neu, can drive tumor growth in cells that do 

not express the WAP promoter – these tumors are easily distinguished by absence of 

mKate2.  
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There are several distinct advantages and caveats to the model that should be noted. 

Two major advantages are the capacity to control the timing of shRNA induction and the 

near absence of ectopic tissue expression. In contrast, our experience with the MMTV-tTA 

allele were mixed. We saw high levels of GFP expression in the salivary gland and a low 

disease penetrance at long latency despite the presence of NeuNT and an shRNA targeting a 

potent TSG. It is possible that the two MMTV alleles – MTV-NeuNT and MMTV-tTA – had 

only a small overlapping cell population despite being driven from the same viral promoter, 

or that modulation of the transactivator expression levels caused by cyclical hormonal 

effects was deleterious towards sustained target gene suppression. A recent publication by 

Wagner and colleagues describes a novel MMTV-tTA transgenic strain with which it might 

be interesting to repeat the original experiments (Sakamoto et al. 2012). Additionally, we are 

looking into the possibility of testing the MMTV-cre strain in combination with our RIK 

allele in future iterations of this breast cancer mouse model. One caveat of our model is the 

dependency on pregnancy to induce lactation and expression of the shRNA allele. This 

makes the process more labor intensive and restricts our studies to sexually mature, parous 

animals; yet, the incidence of breast cancer is markedly higher in older women, many who 

have undergone one or more pregnancy. 

Multi-allelic models such as this one rely heavily on the overlapping expression of 

various promoters in the cell type of interest, at the accurate and desired time in 

development, and with as little ectopic tissue expression as possible. The transgenes have 

been engineered to the best of our capacity to ensure the reliable expression of all essential 

elements: shRNA, oncogene, rtTA, and fluorescent markers. However, the robustness of the 

model can only be tested through actual experimentation as unexpected phenotypes are 

routinely observed. Even within our research group, we have seen examples of transgene 
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‘silencing’ and other unexpected dosage effects that are not easily explained (McJunkin et al. 

2011). The RIK and TRE-GFP-miR30 strains are based on the integration of transgenic 

elements into a known locus of the mouse genome. This is preferable for several reasons but 

namely because disruption of housekeeping genes can be definitively avoided and cross-

comparison of mouse strains, for example in an allelic series or between two shRNAs, can 

be conducted more reliably. Founder mice that are made through pronuclear injection are 

usually tested thoroughly as variable sites of integration can have dramatic “founder 

effects” on the expression levels and patterns of the same transgenic element (Lin 1966; 

Muller et al. 1988).  

While some promoters are chosen for their tissue or cell-type specificity, others are 

incorporated because of their broader expression potential. In the system developed here, 

we are depending on the robust and efficient expression of the WAP promoter, and 

subsequently require linked CAGs and TRE promoter activity in the same luminal cells. 

Additionally, in order to observe cooperation of the shRNA target with NeuNT 

overexpression, we need to have sufficient, overlapping expression of TRE with the MMTV 

promoter at its particular genomic integration site. During some preliminary experiments to 

test the fluorescence compatibility of our model for intravital microscopy with the Egeblad 

laboratory in CSHL, we made the unexpected observation that a small percentage of cells 

that express the cre-excised RIK allele do not express the TRE-GFP-miR30 allele [Figure 3.8]. 

We have not yet quantified the prevalence or investigated the cause of this phenomenon 

since we do not believe it impacts our immediate experimental needs. It is nonetheless 

another reminder of how any new mouse model must be carefully tested and vetted before 

they can be used to probe meaningful hypotheses and draw accurate conclusions. It also 
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motivates us to set up platforms that will allow for faster and more systematic methods of 

model building. 

To this end, and to maximize the potential for the assessment of breast cancer gene 

function in vivo, we hope to pursue a secondary project in the future where we will re-derive 

ESCs from multi-allelic breast cancer GEMMs such as the one described in this chapter. The 

use of ESC re-derivation in cancer mouse models has been pioneered by Jonkers and 

colleagues at the Netherlands Cancer Institute (Huijbers et al. 2011) and members of our 

laboratory (Premsrirut et al. 2011; Dow et al. 2012). Our ESCs would be pre-engineered to 

harbor various cancer predisposing alleles, imaging reporters, and tetracycline-regulated 

transactivators, to which we would apply our transgenic in vivo RNAi technology pipeline 

to add the component of inducible, reversible suppression of endogenous genes directly 

into these GEMM-ESCs through ex vivo manipulation. We believe that bringing together 

these two technologies, ESC re-derivation and RNAi, will make transgenic breast cancer 

mouse modeling an even more flexible and scalable exercise as multiple combinations of 

cooperating genetic legions could be readily analyzed in parallel and the effects of tissue-

specific transient gene activation or inhibition could be assessed at different stages of 

disease using reversible, inducible alleles. This strategy has the potential to permit the rapid 

generation of breast cancer mouse models while bypassing the bottlenecks of traditional 

breeding approaches. Importantly, this method would also allow for the scalable production 

of age- and gender- matched experimental animals. Other members of the Lowe laboratory 

have been working to adopt this strategy in the context of pancreatic cancer (Saborowski, et 

al. In preparation) and colon cancer (L. Dow, unpublished), with the shared objective of 

making the translation of cancer genomic data to the clinic a faster process and to eventually 

change the standards of preclinical drug trials conducted in mice. 
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other experiments. 
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 IV. Exploration of ERBB2 and PTEN as cooperating events using a novel 

inducible PTEN shRNA transgenic mouse  

 

INTRODUCTION 

In 1998 the targeted therapeutic agent trastuzumab, developed by Genentech (brand 

name Herceptin®), was approved by the US Food and Drug Administration for the 

treatment of HER2/neu-overexpressing breast cancer (Fendly et al. 1990; Robertson 1998). 

The recombinant, humanized anti-p185HER2 monocolonal antibody had cytostatic growth 

inhibitory effects on breast cancer cells overexpressing HER2 and enhanced the cytotoxic 

effects of chemotherapeutic agents in preclinical models (Baselga et al. 1998). HER2 has been 

found overexpressed in 20-30% of human breast cancers and leads to an aggressive disease 

with poor patient survival (Slamon et al. 1987; Yu and Hung 2000). Early clinical trials 

showed trastuzumab was active when used in conjunction with existing chemotherapy, and 

that the combination significantly prolonged the median time to disease progression, 

increased the overall response rate, increased the duration of response, and improved 

median survival time by approximately 25% compared to the use of chemotherapy alone 

(Cobleigh et al. 1999; Baselga 2001; Seidman et al. 2001; Slamon et al. 2001; Esteva et al. 

2002). However, these trials reported less than 35% of patients with HER2-overexpresisng 

metastatic breast cancer responding to the drug as a single agent (Cobleigh et al. 1999; Vogel 

et al. 2002). 

Despite over a decade of active research, an incomplete understanding of the 

mechanism behind trastuzumab’s antitumor activity remains. Early studies suggested as 

possible mechanisms of action the downregulation of HER2 (Petit et al. 1997), the induction 

of antibody-dependent cellular cytotoxicity (ADCC) (Clynes et al. 2000), an induction of G1 
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arrest and the cyclin-dependent kinase inhibitor p27kip1 (Sliwkowski et al. 1999), or the 

inhibition of HER2 extracellular domain cleavage preventing the production of an active 

truncated HER2 fragment (Molina et al. 2001). Inhibition of PI3K/Akt signaling has also 

been implicated, with studies demonstrating a downregulation of HER2 signaling (Hudziak 

et al. 1989; Yakes et al. 2002) or an increase in PTEN membrane localization and 

phosphatase activity leading to a decline in PI3K/Akt pathway activation and consequently 

an inhibition of proliferation (Nagata et al. 2004). This last study by Nagata and colleagues 

not only showed that PTEN antagonizes tumorigenesis but also sensitizes breast cancers to 

trastuzumab treatment.  

The tumor suppressor gene PTEN opposes the activation of the proto-oncogenic 

PI3K/Akt signaling pathway and is found disrupted in many cancer types (Cantley and 

Neel 1999). PTEN was originally identified as a gene frequently mutated in brain, breast and 

prostate cancers through the mapping of homozygous deletions on human chromosome 

10q23 (Li and Sun 1997; Li et al. 1997; Steck et al. 1997). Early studies reported loss of 

heterozygosity (LOH) of the 10q23 chromosomal region in as many as 30-40% of invasive 

breast carcinomas, while no LOH was seen in intraductal carcinomas, thus associating the 

loss of this locus with tumor progression (Bose et al. 1998; Singh et al. 1998; Feilotter et al. 

1999; Garcia et al. 1999) 

In the classic Knudson model of neoplastic transformation, a tumor suppressor gene 

begins with a somatic or inherited mutation in one allele, to which the subsequent loss of the 

other allele causes a selective proliferative or survival advantage (Knudson 1971; Cavenee et 

al. 1983; Knudson 2001).  However, numerous TSGs, including TP53 and PTEN, have been 

shown to exhibit haplo-insufficiency due to dose-dependent anti-tumorigenic functions 

(Berger and Pandolfi 2011). Pten hypermorphic mice, expressing 80% of normal Pten protein 
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levels, develop a spectrum of tumors but notably, breast tumors occur with the highest 

penetrance (Alimonti et al. 2010). 

PTEN normally opposes the activation of phosphatidylinositol 3’ kinase (PI3K) 

through cleavage of the D3 phosphate of phosphatidylinositol (3,4,5)-triphosphate (PIP-3), 

its main substrate (Maehama and Dixon 1998). Loss of PTEN function therefore results in 

AKT hyperactivation that leads to protection from various apoptotic stimuli (Stambolic et al. 

1998). Early studies in mouse models demonstrated that the inactivation of even one Pten 

allele could lead to a dramatic impact on the survival and proliferative capacity of cells (Di 

Cristofano et al. 1999). It has been suggested that PTEN plays an essential and cell-

autonomous role in regulating the proliferation, differentiation and apoptotic functions of 

mammary epithelial cells as conditional loss of PTEN in the mammary gland gives rise to 

precocious lobulo-avelolar development, excessive ductal branching, delayed involution 

and severely reduced apoptosis (Li et al. 2002).  

With the goal of improving the availability of biomarkers that accurately predict 

responses to cancer therapy vital to the rational use of cancer drugs in the clinic, Berns and 

colleagues used a HER2-overexpressing breast cancer cell line BT-474 and conducted a 

large-scale RNAi genetic screen using a library of 24,000 shRNA retroviral vectors targeting 

8000 human genes (Berns et al. 2007). BT-474 cells are sensitive to treatment by trastuzumab 

and respond by a reduction in proliferation. PTEN knockdown was the only gene loss that 

conferred resistance to the drug, in line with previous observations (Nagata et al. 2004). 

Fujita and colleagues also published similar findings where changes in sensitivity to 

trastuzumab in SKBR3 cells were examined with and without PTEN knockdown by siRNAs 

(Fujita et al. 2006). 
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Reduced or complete loss of PTEN expression has been documented in 30% of 

relapsed sporadic IDCs and primary ductal adenocarcinomas (Perren et al. 1999; Jones et al. 

2013), in over 50% of patients treated with tamoxifen as single adjuvant therapy (Tanic et al. 

2012), and as mentioned above, LOH of 10q23 has been repeatedly reported to be found in 

over 40% of invasive carcinomas. However somatic intragenic mutations in PTEN are only 

observed in a fraction of primary breast cancers (frequency <5%) (Saal et al. 2005), making it 

is unlikely that PTEN loss of function alone can serve to explain the frequent primary and 

acquired resistance to trastuzumab seen in patients (Nagata et al. 2004; Berns et al. 2007; 

Gallardo et al. 2012). However, loss of function mutations in PTEN or decreased PTEN 

expression lead to a hyperactivation of the PI3K pathway, and PI3K pathway activation can 

result from other, more frequent events found in breast cancer such as activating mutations 

in the p110a catalytic subunit of PI3K (PIK3CA) that occur in approximately 25% of primary 

breast cancers (Saal et al. 2005). Additionally PTEN loss and PIK3CA mutations are rarely 

present in the same tumors (Saal et al. 2005; Berns et al. 2007; Gallardo et al. 2012), and 

increased PI3K signaling is also capable of inducing strong trastuzumab resistance in cell 

culture (Berns et al. 2007). 

Here, we have introduced an shRNA targeting Pten into our multi-allelic mouse 

model developed in Chapter 3 with the aim of generating an experimental system that may 

help further interrogate the role of the TSG PTEN in HER2 positive breast cancer disease 

progression. Mice harboring the lesions conferring PTEN knockdown and NeuNT 

overexpression show a dramatic acceleration to disease onset and progression, as well as 

shortened overall survival. There was also an increased incidence of metastatic disease in 

the lung. Lastly we show that PTEN loss is important for tumor maintenance in this model. 
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RESULTS 

PTEN shRNA knockdown accelerates NeuNT driven disease onset and progression 

Two shRNA strains targeting Pten were previously made and functionally tested in 

the context of the Eu-Myc lymphoma model (Miething, et al., In preparation). Efficient 

knockdown of the target and proper regulation of PTEN protein levels were shown in MEFs 

and in KH2 EHCs [Figure 4.1a,c]. Using the stronger shRNA strain TG-shPTEN.1522 [Figure 

4.1b], we sought to test the cooperation between PTEN knockdown and oncogenic NeuNT 

in the multi-allelic model developed in Chapter 3. The experimental protocols previously 

outlined were followed as described earlier unless otherwise noted. Accordingly, control 

shRNA mice were produced as littermates in all cases. We are still working towards testing 

the second shRNA allele, TG-shPTEN.2049, to fully validate our results described in this 

chapter. However, in addition to PTEN being a well-characterized TSG, given the extensive 

use of the shPTEN.1522 shRNA in multiple breast cancer models as well as in many other in 

vivo cancer model systems in our research group, we are confident that the phenotypes we 

observe here are not due to off-target effects of this particular shRNA. Here after “TG-

shPTEN” refers to the TG-shPTEN.1522 strain. 

Due to consequences of the move from CSHL to Memorial Sloan-Kettering Cancer 

Center (MSKCC) in August 2011, the following in vivo experiments were performed twice, 

with as few changes introduced as possible in the replicate round [Table 4.1]. An 

acceleration of disease was seen in terms of tumor onset, with a shortened latency of tumor-

free survival for mice carrying TG-shPTEN [Figure 4.2], and this was accompanied by a 

decreased overall survival [Figure 4.3]. The quadrant scoring system was used to define loss 

of tumor-free survival – a tumor in any area of the animal meant a classification as tumor 

bearing – and each quadrant was tracked separately. A faster progression from tumor-free 
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Table 4.1  Experimental variables for shRLuc and shPTEN experimental cohorts  
 

Variable CSHL  
TG-shRLuc 

 
TG-shPTEN 

MSKCC 
TG-shRLuc 

 
TG-shPTEN 

Age at litter birth 
(days) 

average  76.2 

range      67~137 

77.3 

58~107 

74.4 

65~113 

75.9 

67~110 

Litter size average  7.8 

range       3~12 

8.2 

5~10 

7.0 

1~11 

7.5 

2~11 

Experimental age(*) at  
start of dox treatment** 

average  1.4 

range      -3 ~ 8 

1.1 

-6 ~ 7 

0 

0 ~ 1 

0 

0 ~ 2 

Lactation duration average  20.9 

range      19-22 

20.8 

18-22 

21.0 

20-22 

20-24 

21.1 

Litter loss*** 
(% cohort) 

0% 

 

0% 4.4% 6.6% 

Unrelated death**** 
(% cohort) 

2.6% 

 

0% 15.9% 3.3% 

All animals listed here are parous MMTV-NeuNT ; RIK ; WAP-Cre ; TG-shRNA animals 
*Experimental age defined as day of litter birth for parous animals 
**For mice under regular dox treatment protocol, where treatment begins simultaneously with nursing 
***Incidence of successful pregnancy and birth of litter followed by cannibalization or starvation of pups 
****Deaths in young mice unrelated to breast tumorigenesis, usually during or soon after the period of lactation 

 
!
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HR = 18.68
95% CI (8.245 to 42.31)

Log-rank (Mantel-Cox) Test
p < 0.0001

Median survival:
   TG-shPTEN    72 days
   TG-shRLuc    159.5 days

HR = 24.43
95% CI (12.29 to 48.58)

Log-rank (Mantel-Cox) Test
p < 0.0001

Median survival:
   TG-shPTEN    62 days
   TG-shRLuc    168 days
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HR = 31.13
95% CI (11.45 to 84.62)

Log-rank (Mantel-Cox) Test
p < 0.0001

Median survival:
   TG-shPTEN    108 days
   TG-shRLuc     207 days

HR = 79.42
95% CI (27.67 to 228.0)

Log-rank (Mantel-Cox) Test
p < 0.0001

Median survival:
   TG-shPTEN    110 days
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to a full four-quadrant penetrance of the disease was observed for TG-shPTEN mice [Figure 

4.4a, 4.5]. This overall increase in tumor burden and penetrance was also quantified through 

the final quadrant penetrance at terminal disease endpoint and tumor burden in weight at 

harvest [Figure 4.4b,c].  

As the data show, the combined effect of PTEN knockdown and NeuNT 

overexpression causes disease latency to be halved, all the while dramatically increasing the 

number of tumors found in each experimental animal. Additionally, while every tumor 

harvested from mice harboring the TG-shPTEN allele has been GFP positive, in TG-shRLuc 

mice only a small fraction of the tumors display fluorescence (less than 25%), indicating that 

PTEN knockdown is driving tumor growth in a WAP promoter expressing subpopulation 

of epithelial cells that are not per se the cell of origin for many of the MMTV-NeuNT allele 

driven tumors [Figure 4.6]. We concluded that the multifaceted aspect of the model’s tumor 

growth patterns did not allow for precise quantification of tumor burden via in vivo 

fluorescence imaging, but it remains a powerful component of the system that can be used 

for longitudinal studies [Figure 4.7]. 

Although some preliminary controls had been tested in Chapter 3, there remained 

some uncertainty regarding which parts of the multi-allelic model would require extra 

controls. During the first round of experimentation at CSHL, we modulated the pregnancy 

status, the presence of WAP-Cre and the dox treatment in a number of small control cohorts 

to better pinpoint any weaknesses in the system [Table 4.2]. Through these controls we 

found that WAP-Cre expresses at basal levels in the absence of lactation in the mammary 

ductal epithelium, and that it also occasionally expresses ectopically in other tissue types 

such as the muscle tissue of the lung (data not shown). These control mice also served to test 

the efficiency of the pregnancy protocol and establish the latency of parous MMTV-NeuNT 
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mice with a heavy contribution of C57BL/6 in their strain background. In our hands we find 

that the onset of NeuNT-driven disease is parity dependent [Figure 4.8].  

 

 

Table 4.2  Control conditions: CSHL cohort 

Condition Control cohort for 

Virgin, no WAP-Cre, no dox NeuNT background in mixed strain setting 

Virgin, on dox WAP-Cre allele leakiness in absence of lactation 

Parous, no WAP-Cre, on dox Doxycycline treatment control 

Parous, no dox TRE leakiness in absence of dox treatment 

Parous, on dox   Regular experimental condition 

Four alleles unless otherwise noted 

 

 

During the second round of experimentation at MSKCC, it became clear that there 

were additional variables to consider. We continued to monitor for the ectopic activation of 

WAP-Cre in the absence of pregnancy and lactation, but also modulated the timing of dox 

treatment vis-à-vis lactation [Table 4.3] [Figure 4.9, 4.10]. We found that delaying the 

induction of TG-shPTEN until after the end of lactation and involution, a period of 4 weeks, 

had an impact on the overall survival of mice, although the disease phenotype did not 

fundamentally change [Figure 4.10a]. We also included controls where MMTV-NeuNT was 

absent, to definitively distinguish a cooperative effect versus the impact of PTEN 

knockdown alone [Figure 4.9c, 4.10c]. A small cohort has only allowed for preliminary 

conclusions but thus far mice with TG-shPTEN in the absence of NeuNT (n=4) have not 

developed tumors at a latency of over 220 days in experimental age.  
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Table 4.3  Control conditions: MSKCC cohort 

Condition Control cohort for 

Virgin, on Dox WAP-Cre allele leakiness in absence of lactation 

Parous, no MMTV-NeuNT, delayed dox Effect of shRNA allele in absence of NeuNT 

Parous, no MMTV-NeuNT, on dox Effect of shRNA allele in absence of NeuNT 

Parous, delayed dox Effect of delayed shRNA induction 

Parous, on dox Regular experimental condition 

Four alleles unless otherwise noted 

 

 

Tumor pathology and primary disease phenotype 

We analyzed the tumors through immunohistochemistry to gain some insight into 

the disease architecture at a cellular level. PTEN protein knockdown was consistently very 

robust in tumor tissue, which concurrently showed strong expression of GFP and mKate2. 

These areas also displayed strong staining for Neu/ErbB2 at the cell membrane and a high 

Ki-67 index, a marker for cellular proliferation [Figure 4.11]. In order to better characterize 

the molecular phenotype of the primary tumors, the expression pattern of luminal 

(CK8/CK19) and myoepithelial (CK5/CK14) markers, as well as epithelial-mesenchymal 

transition (EMT) markers vimentin and E-cadherin, is ongoing. Characterization of the 

hormone receptor status (ER/PR) of the tumors is also in progress.  

We observed strong nuclear pleomorphism (3 points), a high mitotic count (3 points) 

and lack of tubule formation (3 points) by hematoxylin and eosin (H&E) staining of tumor 

sections. With a total sum of 9 points, the tumors were classified as resembling most closely 

a high grade, poorly differentiated tumor type with poor prognosis in humans [Figure 4.12]. 

With a histological likeness to patient biopsies diagnosed as “invasive ductal carcinoma, not 

otherwise specified (NOS)”, these NeuNT-driven tumors correspond to the most common 
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type of malignant breast tumor seen in the clinic. There were no differences observed 

between shRLuc and shPTEN tumors harvested at terminal disease endpoint. Other features 

observed included large areas of necrosis, reactive stroma and evidence of ductal carcinoma 

in situ (DCIS) in intact mammary glands with early lesions. ErbB2/neu transgenics have been 

previously reported to frequently present microscopic fields that can be easily mistaken for 

human DCIS (Cardiff and Wellings 1999; Cardiff et al. 2000). 

 

Characterization of disseminated disease 

Using the fluorescent reporters we were able to track spontaneous disseminated 

disease to the lung, liver, bone, and spleen of TG-shPTEN animals [Figure 4.13]. Metastasis 

to the lung was most frequent, observed in 100% of TG-shPTEN mice, while lesions in the 

liver and bone were more rarely observed. If present, micromets observed in the liver were 

very small and would have not been detected if not for the fluorescent markers integrated 

into the model. Infiltration of GFP positive cells in the spleen was noted at a high frequency 

in mice with high tumor burden. We attributed this phenotype to a likely large quantity of 

circulating GFP positive tumor cells. Immunohistochemical analysis was performed on lung 

metastatic tumor sections to verify PTEN protein knockdown and expected expression of 

fluorescent markers [FIGURE 4.14]. Similar to the primary mammary tumors, there was also 

strong Neu/ErbB2 and Ki-67 staining. The frequency of metastasis were harder to quantify 

in control mice since GFP positive cells comprised only a fraction of the tumor burden, 

making the detection of small mets less accurate.   

The highly epithelial and ductal morphological resemblances between primary lung 

tumors and lung metastasis of mammary origin is a confounding diagnostic problem in the 

clinic (Yang and Nonaka 2010). The immunohistochemical pattern of expression of thyroid  
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transcription factor 1 (TTF1) is an established clinical marker used to aid in accurate 

diagnostic distinction between primary and metastatic pulmonary adenocarcinomas, 

although some controversy over specificity and clinical effectiveness still remains (Reis-

Filho et al. 2000; Moldvay et al. 2004; Zhu and Michael 2007; Maeshima et al. 2008). Staining 

of lung lesions with TTF1 is ongoing. Additionally, we have begun probing the lung 

sections with luminal and myoepithelial markers for cross-comparison to their respective 

primary tumors, and we will also stain for hormone receptors, which are traditionally 

associated with mammary tumors (Tennis et al. 2010).  

Histological assessment of lung mets based on H&E staining indicated cell 

morphology, high mitotic index and undifferentiated growth patterns that drew a very close 

resemblance to the primary mammary tumors, providing additional confirmation that the 

observed phenotype was in fact invasive, spontaneous metastasis originating in the 

mammary gland [Figure 4.14]. 

 

In vitro culture of tumor-derived cells and in vivo serial transplantation 

We were successful in culturing tumor-derived cells in vitro for multiple passages in 

low serum (1%) and low oxygen (5-7%) conditions on gelatin-coated plates in RPMI media 

supplemented with hydrocortisone, insulin and prolactin [Figure 4.15a]. The fluorescent 

markers were used in some cases to enrich for tumor cells by FACS sorting. Cells were 

maintained on dox in vitro at all times unless otherwise noted.  

We tested the capacity for transplantation of the spontaneous mammary tumors 

from primary transgenic animals into secondary recipient mice as a potential platform for 

future experimentation (Varticovski et al. 2007). The mixed strain background prevents the 

use of syngeneic animals and consequently we opted for orthotopic transplantation into the 
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un-cleared mammary fat pads of athymic nude mice on a dox diet. Tumors were harvested 

from primary transgenics, mechanically and enzymatically dissociated to generate a single-

cell digest, and then plated overnight on gelatin-coated plates before transplantation the 

following day. In preliminary experiments, the tumor-derived cells from two independent 

TG-shPTEN animals with advanced disease (TG-shPTEN line #9 and #10) were injected and 

these cells displayed similar latency and growth patterns [Figure 4.15b]. The histological 

assessment of tumor sections stained in H&E indicated a similarly high mitotic index and a 

cell morphology resembling the primary transgenic tumors. Additionally, formation of 

glandular structures at the periphery was noted (data not shown). 

Subsequently, serial transplantation was tested. Tumors isolated from nude 

recipients were dissociated under the same conditions as before and transplanted into 

secondary recipients on a dox diet. The tumors arising from these injections showed a slight 

acceleration in growth in the secondary transplant setting compared to their first transplant 

(TG-shPTEN line #9 and #10) [FIGURE 4.15c]. Additionally, we explored the option of 

transplanting small 1mm3 tumor fragments that were frozen after tumor harvest. This 

method has the advantage of preserving the stromal architecture of the original primary 

transgenic tumor, reminiscent of the practice of xenografting patient tumor isolates from the 

clinic directly into mice (Vargo-Gogola and Rosen 2007). GFP positive tumor fragments 

from one TG-shRLuc and one TG-shPTEN mouse with advanced disease were thawed and 

inserted into the fat pads of recipient mice. Although tumors developed from fragments in 

both cases, a discrepancy was observed in the latency to tumor onset, penetrance, survival 

of transplanted animals and incidence of lung metastasis between TG-shRLuc and TG-

shPTEN [Figure 4.15d-f]. 
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PTEN knockdown is required for tumor maintenance 

The cooperation between PTEN knockdown and NeuNT overexpression was very 

robust, demonstrating an undeniable advantage in tumor initiation, progression, and 

metastasis. We next took advantage of the reversible nature of the RNAi technology to 

examine the effects of restoring PTEN protein levels in the growing tumors to ask the 

question if PTEN loss is required for tumor maintenance. 

In a pilot experiment, we monitored a parous MMTV-NeuNT ; RIK ; WAP-Cre ; TG-

shPTEN.1522 mouse that began dox treatment 21 days after giving birth to her litter, 

simultaneous with weaning of her pups. After approximately two and a half months, the 

animal presented tumors in all four quadrants. The largest tumor was surgically removed 

from the left abdominal fat pad region and dox was removed from the diet. Over the course 

of a month, the GFP signal disappeared and tumor regression was observed [Figure 4.16]. 

The in vivo fluorescence imaging showed that the abdominal right region had a tumor that 

was largely negative in reporter signal when imaged sagittally. The large quantity of bloody 

fluid in this cyst is the likely explanation for why the tumor did not show any sign of 

shrinkage. 

We subsequently conducted a small study involving five parous MMTV-NeuNT ; 

RIK ; WAP-Cre ; TG-shPTEN.1522 mice. Dox treatment was administered 4 weeks after 

litter birth (i.e. one week after the weaning of her pups). After thirteen weeks on dox 

treatment, three of the five mice were placed on regular chow and all five were monitored 

through small animal magnetic resonance imaging (MRI) [Figure 4.17]. We complemented 

this approach with caliper measurements for rapid assessment of changes in tumor burden. 

While the sum total tumor burden in the mice with PTEN knockdown continued to increase 

exponentially, with a rapid need for euthanasia, those mice with restored PTEN levels 
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showed a dramatic reduction in tumor burden during the first three weeks and a greatly 

increased overall survival. While two of the three off dox animals began to show increases 

in tumor burden after a month and a half, one mouse failed to develop any substantial 

tumor burden for over 90 days after removal of dox from the diet.  

To test whether our results would be reproducible over a larger cohort of animals, 

we followed-up with a study involving twelve parous MMTV-NeuNT ; RIK ; WAP-Cre ; 

TG-shPTEN.1522 mice that began dox treatment the day of litter birth, as described in the 

standard experimental procedure in Chapter 3. In this iteration, shPTEN.1522 mice were 

monitored through weekly palpation until the first tumor was observed. Dox treatment was 

halted two weeks after tumor onset and weekly caliper measurements were used to assess 

tumor burden. All twelve mice showed some degree of reduction in tumor burden but the 

intensity of the effect varied [Figure 4.18a]. Despite the wide range of responses, a 

statistically significant increase in survival benefit was observed, as well as a slowed 

progression in quadrant progression and penetrance [Figure 4.18b]. Control TG-shRLuc 

mice were also taken off dox to verify that the change in diet does not contribute to altered 

patterns of tumor growth [Figure 4.19a]. During these tumor regression studies fur removal 

was avoided to prevent increased stress and adverse inflammatory responses that could 

affect experimental outcomes.  

Some degree of tumor regression was also observed in transplanted recipients with 

TG-shPTEN primary tumor-derived cell lines (#9 and #10) after removal of dox [Figure 

4.19b]. In this context, the short-lived and moderate response was attributed to the large size 

of the transplanted tumors as well as their origin in primary mice with aggressive, advanced 

mammary tumors. In culture, tumor-derived cell lines did not display any significant 

changes in proliferation upon dox removal, although GFP signal steadily decreased as  
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expected over the first 7 days, indicating that the Tet-On system was still intact (data not 

shown). 

 

Exploring the mechanism of tumor regression and long term resistance upon restoration 

of PTEN protein  

As demonstrated in the experiments described above [Figure 4.17, 4.19], quantifiable 

and consistent reduction in tumor burden was observed after the withdrawal of dox from 

the diets of MMTV-NeuNT ; RIK ; WAP-Cre ; TG-shPTEN.1522 mice at early stages of 

tumorigenesis. This effect appears to diminish in mice bearing a larger tumor burden at the 

start of the experiment, and this trend persisted in the transplant setting. In early trials 

involving mice with tumor burdens nearing experimental disease endpoint, the 

documented effect was at best cytostatic, as no regression could be measured although 

tumor growth was diminished and overall survival could also be extended in these mice 

(data not shown).  

Elevated levels of necrosis is a common feature in the fast growing transgenic TG-

shPTEN tumors under dox treatment, confounding the use of necrotic features in dox 

withdrawn tumors as an index of heighted cell death. However, transplanted tumors 

display lowered rates of proliferation in the first two weeks following the removal of dox 

diet, as evidenced both in reduced staining of the proliferation index Ki-67 and a decreased 

mitotic index by histological assessment (data not shown).  

Complementing the observed slowed rate of tumor cell proliferation, we expect to 

find evidence of increased cell death in these tumors. Hyperactivation of the AKT pathway 

is expected to decline upon restored of PTEN phosphatase activity, thus leading to an 

increase in apoptotic signal. To gain a better understanding of the mechanism underlying 
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the tumor shrinkage phenotype, efforts to quantify changes in signaling, cell proliferation, 

and rates of apoptosis (cleaved caspase-3) are currently ongoing. 

In this model, MMTV-NeuNT can drive tumorigenesis in cells that do not express 

the WAP-Cre transgene, a feature that has been confirmed from the high rate of tumors 

arising in TG-RLuc mice that are negative for GFP/mKate2 fluorescence signal. 

Consequently, we expect to see the eventual appearance of NeuNT-driven tumor growth in 

TG-shPTEN animals where substantial tumor regression was initially observed upon dox 

withdrawal. Interestingly, tumors harvested from TG-shPTEN mice that suffered from 

‘resistance’ to PTEN restoration, a more complex picture emerged. In addition to the 

expected presentation of fluorescence-negative tumors, we also documented lesions that 

were mKate2+/GFP- and mKate2+/GFP(+) [Figure 4.20]. This latter category of tumors 

indicates a breakdown in the tet-regulatable machinery, since the TRE-GFP-miR30 allele is 

being expressed in the absence of dox, albeit at substantially lowered levels compared to 

dox treated tumors. The most interesting set of tumors are the mKate2+/GFP- samples, 

which may be mimicking a therapy resistance phenotype. We are actively investigating 

these samples in order to identify the escape mechanism underlying the rapid growth of 

cells that had previously benefitted from the strong knockdown of PTEN. Of note, some 

mice displayed evidence of all three tumor types at tumor burden endpoint harvest. 

 

DISCUSSION 

Using our transgenic RNAi model comprising of the MMTV-NeuNT, WAP-Cre, RIK 

and TG-shRNA alleles, we were able to demonstrate a highly significant acceleration of 

mammary tumorigenesis when Pten is knocked down. The disease phenotype displayed 

shortened tumor-free and overall survival, with 100% penetrance. Additionally, there was  
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an increase in the rate and severity of the metastatic phenotype. The shortened latency was 

so dramatic that almost all of the TG-shPTEN mice had achieved terminal disease endpoint 

before tumor onset was observed in control TG-shRLuc animals. Although this finding 

serves to demonstrate the level of impact that PTEN knockdown has on NeuNT oncogene 

driven tumorigenesis, it complicated experimental analysis since tumors from TG-shPTEN 

and TG-shRLuc mice could not be harvested at the same time point for meaningful cross-

comparative analysis of disease phenotypes.  

Two publications from Bill Muller’s group had previously made similar observations 

using a conditional knockout model of Pten (Dourdin et al. 2008; Schade et al. 2009). In the 

first study, ErbB2 overexpression was driven from its endogenous promoter (ErbB2KI) and 

coupled with an MMTV-Cre that acted on the PTEN conditional knockout allele (Andrechek 

et al. 2000; Li et al. 2002). Mammary-specific deletion of PTEN resulted in a dramatic 

acceleration of ErbB2-induced tumor progression and also increased the incidence of 

metastasis to the lung. In this particular model they report that the PTEN-deficient tumors 

acquired pathologic characteristics resembling the basal-like subtype of human breast 

cancers. The study included animals with both heterozygous and homozygous conditional 

loss of PTEN. Interestingly, tumor progression was associated with LOH at the PTEN locus 

in over 50% of tumors from PTEN heterozygous null animals.  

After examination of upstream and downstream targets of PTEN and ErbB2, 

Dourdin and colleagues conclude that sustained activation of the PI3K/Akt signaling 

pathway is not the mechanism responsible for the accelerated mammary tumor formation in 

their PTEN-deficient/ErbB2KI mouse model. We plan to verify these findings in our own 

system through comparative analysis of pathway activation status in TG-shPTEN and TG-

shRLuc tumors, although potential discrepancies in findings could be explained by 
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differences in basic tumor biology arising from the molecular and histopathological 

heterogeneity described in this knockout model and the general homogeneity and luminal 

phenotype observed in our RNAi model. 

In the second study, Schade and colleagues exchanged the ErbB2KI strain for a 

system that drives transcription of an activated ErbB2/Neu from the strong viral MMTV 

promoter in a bicistronic configuration with Cre recombinase (MMTV-NIC), which couples 

the expression of the oncogene and Cre within the same mammary epithelial cells (Siegel et 

al. 1999; Ursini-Siegel et al. 2008). In line with the previous study, they report a dramatic 

acceleration of mammary tumor onset, and the development of multifocal and invasive 

metastasizing disease in mice with homozygous inactivation of PTEN in the presence of 

NeuNT. In contrast, however, they describe tumors with a homogenous morphology and a 

loss of basal and myoepithelial markers leading to histopathological and molecular 

characteristics of the luminal subtype, as well as a hyperactivation of the PI3K/Akt 

pathway. 

The variation in phenotypes conferred by the various mouse models once again 

emphasizes the importance of the fundamental model design, and how differences in the 

timing of transgene expression, subtle discrepancies in the expression levels of key 

elements, or selection of distinct cell populations may all have a profound impact on 

experimental results.  

Although we cannot circumvent the issue of highly discrepant tumor latency, some 

of the control TG-shRLuc tumors, those expressing GFP and thus resulting from the same 

luminal cell compartment as the TG-shPTEN tumors, could be used as a strong point of 

reference when examining the mechanism of cooperation behind the combined oncogenic 

effect of heightened HER2/neu signaling and PTEN impairment. Thus far the pathological 
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analysis does not indicate any differences in morphology and once developed, these control 

tumors also display fast growth and invasive capacity. Nonetheless we plan to look for 

evidence of PTEN loss and PIK3CA mutations in these tumors, as well as other possible 

changes in signaling patterns, that might point towards an explanation for the strong 

cooperation documented in these models of cooperation between PTEN loss and ErbB2/neu 

hyperactivity.  

In this regard, our inducible RNAi model presents some unprecedented 

opportunities. We have already explored one setting of delayed doxycycline treatment but 

this could be extended further to, for example, better mimic what is found in the clinic or to 

generate a series of tumor samples where the cooperating shRNA is introduced at staggered 

time points. In the knockout models discussed above and in our own current iteration 

described in this chapter, PTEN deficiency has been incorporated into the initiation of the 

tumorigenic process and this presents itself as a major caveat in the accurate portrayal of 

human tumor biology. Additionally, the employment of the mutant neu allele undermines 

our capacity to test targeted therapies against ErbB2 or ErbB3. Although the latency is 

longer, in future studies it may be preferable to switch to the wild type MMTV-neu strain 

such that our platform might serve as a better preclinical model for testing novel therapeutic 

agents. Furthermore, to gain the capacity to effectively study resistance to trastuzumab in 

the context of a GEMM of mammary adenocarcinoma, the transgenic strain overexpressing 

human HER2 (huHER2) from the MMTV promoter would need to be employed (Finkle et 

al. 2004). Genentech has developed and tested the murine form of trastuzumab, mu4D5, in 

the MMTV-huHER2 model and observed some acquired resistance although the mechanism 

was not determined. 
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Our finding that TG-shPTEN driven tumors regress upon restoration of PTEN 

protein levels suggests that heightened PI3K/Akt signaling is a critical element of these 

tumor cells’ sustained survival and proliferative advantage. However, depending on the 

size and stage of tumor growth, we observe a varied degree and length of responses to the 

reversal of PTEN knockdown. We are actively investigating the mechanisms by which these 

tumors progress through the initial phases of reduction in tumor burden followed by the 

eventual return of a highly proliferative disease. We are confident that the re-activation of 

PTEN function can be more than cytostatic and truly cytotoxic since some tumors suffer a 

substantial and long-term reduction in tumor burden. As our primary experimental animals 

are immune competent, it would be equally tempting to investigate the possible role of 

immune clearance or wound healing, as well as the involvement of other components of the 

microenvironment, that may contribute to this regression phenotype.  

Preliminary analysis of the ‘relapsed’ tumors indicates that in some circumstances 

the tumor cells have found ways to bypass the tet-regulated machinery. Mutations in rtTA 

have been previously reported in the literature (Podsypanina et al. 2008), and the presence 

of faint levels of GFP in some tumors points towards such a breakdown in the system. 

Confirmation of the rtTA mutational status, and an estimate of its prevalence, is pending. 

Tumors that display mKate2 signal but no GFP have presumably found alternative 

mechanisms of restoring the survival and proliferative advantages from which they 

previously benefitted. A thorough analysis of the downstream signaling profile of these 

tumors, as well as examination of the mutational status of PIK3CA and PTEN or a possible 

LOH of 10q23, will help to explain this ‘acquired resistance’ phenomenon.  

Previous examples of restoration of tumor suppressor function include studies in 

GEMMs of lymphoma, sarcoma and hepatocellular carcinoma, were it was demonstrated 
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that p53 restoration induced tumor cell apoptosis (lymphoma) or senescence 

(sarcoma/carcinoma) and resulted in tumor regression and clearance (Martins et al. 2006; 

Ventura et al. 2007; Xue et al. 2007). In the context of breast cancer, Boxer and colleagues 

reported a lack of sustained regression of c-Myc induced mammary adenocarcinomas 

following both brief and prolonged inactivation of the oncogene in a doxycycline-inducible 

system driving rtTA from MMTV-LTR (Gunther et al. 2002; Boxer et al. 2004). In parallel 

studies, the downregulation of neu expression in an MMTV-rtTA driven tet-regulatable 

NeuNT model resulted in tumor regression. However, mice bearing fully regressed tumors 

eventually developed spontaneous recurrences in the absence of neu expression (Moody et 

al. 2002), and the transcriptional repressor Snail was shown to be spontaneously 

upregulated and accompanied by EMT in these recurrent tumors in vivo (Moody et al. 2005). 

Virtually all targeted therapies used in the clinic today were developed on the 

principle that one oncogenic mutation can be identified and selected for treatment by a 

specific agent. This paradigm fundamentally ignores the role of cellular signaling crosstalk 

and the intrinsic plasticity of mechanisms that allow for maintained cellular homeostasis. 

Many studies have illustrated the dynamic interactions between major signaling networks, 

all emphasizing the role of feedback activation of pathways as a roadblock in attaining the 

desired therapeutic benefit of single agent targeted therapies. Inhibition of the mTORC1 

complex with rapamycin-like drugs causes activation of PI3K and AKT, thus limiting their 

clinical efficacy due to the release of a negative regulatory feedback loop that triggers AKT 

and ERK signaling (O'Reilly et al. 2006; Cloughesy et al. 2008; Tabernero et al. 2008; Baselga 

et al. 2009). Similarly, inhibition of AKT has been shown to induce the expression and 

phosphorylation of multiple RTKs (Chandarlapaty et al. 2011). Moreover, inhibition of MEK 
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in basal-like breast cancer also caused activation of RTKs, precluding a response to single-

agent MEK inhibitors in vivo (Duncan et al. 2012). 

In follow-up studies, we plan to delve further into the metastatic phenotype as much 

remains to be explored. By taking advantage of the secondary transplantation and in vitro 

culture systems that were established, it would be very interesting to examine how each site 

of dissemination exerts unique requirements for successful metastasis and how those sites 

may differ, or not, in their responses to the reactivation of Pten. The dual-fluorescent 

reporter system allows us to easily track the relevant disseminated cells and continue to 

monitor their activity even after the shRNA has been shut off. This element of our mouse 

model offers us many new experimental possibilities.  

Finally, the novel allelic combination of WAP-Cre and RIK to drive the shRNA 

transgene has yielded reproducible and clean results, and we believe that we have been able 

to build a robust model that will be essential in the validation of novel tumor suppressor 

genes, such as Nf1, that will be identified in larger screening efforts in the future. 
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V. Conclusions and Future Perspectives 

 

Diversity and complexity are hallmarks of the cancer genome (Hanahan and 

Weinberg 2000; Hanahan and Weinberg 2011). Even in cancer types where clear driving 

oncogenes have been identified, a complex web of additional genetic lesions help to 

facilitate the uncontrolled expansion and eventual metastasis of the tumor. As a 

consequence, the behavior of individual tumors is heterogeneous and remains difficult to 

predict. The advent of sophisticated array and sequencing technology has exposed the 

complexity of the cancer genome; yet functional studies are required to determine the 

impact of different genetic configurations on cancer progression and to identify the unique 

vulnerabilities they create.  

The vast majority of published studies use cell culture models to examine the effects 

of specific genes on the processes of disease initiation, progression and maintenance, as well 

as response to therapy. Undoubtedly, certain aspects of the transformed phenotype can be 

mimicked in cell culture, but cancer is fundamentally a disease of the whole organism. In 

addition to the vast complexity of multiple cellular mechanisms, cancerous disease is 

influenced significantly by the cellular microenvironment, a fact that has been extensively 

documented in breast cancer (Egeblad et al. 2010; Polyak and Kalluri 2010). Therefore, while 

in vitro approaches can uncover and characterize certain important and novel details, 

ultimately their relevance must be verified in vivo. In addition, in vivo models provide a 

robust means to identify novel mechanisms involved in the malignant progression of 

cancer, both at the physiological and molecular level, which is critical towards a better 

understanding of metastasis, the form of disseminated disease that is the main cause of 

death in human breast cancer patients.  



 129 

However, such studies, particularly those involving relevant in vivo experimentation, 

have been slow, expensive, and often unable to efficiently model the diversity of human 

breast cancer subtypes in a way that allows for conclusive and meaningful insights. A major 

goal of our efforts described in this thesis has been to speed up these analyses through the 

development and adaptation of innovative research methodology, such as the RNAi 

technology pioneered by our laboratory, to explore the biology of tumor suppressor genes. 

A major goal of the work described in Chapter 2 was the development of an 

orthotopic transplantation model that would be well adapted for high-throughput 

screening, and we aimed to be able to search for novel TSGs or oncogenes through in vivo 

positive selection of virally introduced constructs. Our first setback was in the choice of cells 

for transplantation. Previous efforts in the lab to produce mosaic models of different cancer 

types had relied on the isolation of tissue progenitor cells, such as hematopoietic stem and 

progenitor cells or hepatoblasts, that can be readily cultured and re-transplanted into 

recipients (Zender et al. 2008; Bric et al. 2009; Zuber et al. 2009; Zuber et al. 2011b; Scuoppo 

et al. 2012). This approach has the advantage of developing physiologically relevant mouse 

models of cancer without the burden of producing and crossing many germ line mutant 

strains, complementing the transgenic methods such as those discussed in Chapters 3 and 4. 

However, while we were able to harvest primary mammary progenitor cells capable of 

differentiating into a fully branched ductal epithelium, we were unsuccessful in isolating 

and propagating these cells at sufficient numbers to produce a tractable and affordable 

mosaic model for large-scale studies. In future iterations of such a screening project, we 

hope to circumvent these technical difficulties and perhaps adopt the methodology of 

combining in vitro screens utilizing human cell lines with individual hit validation in mouse 

models. Our identification of NF1 as a putative novel tumor suppressor, nonetheless, 
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confirms that the fundamental strategy of mining human patient copy number variation 

data for deleted chromosomal regions for subsequent filtering through the mouse remains 

an efficient way of finding relevant driver genes.  

When this positive selection screen was first conceived, the concept of molecular 

profiles of human breast cancer subtypes was only just emerging. If we were to repeat this 

project again we would undoubtedly segregate the patient tumor samples into the 

appropriate molecular categories, provided sufficient numbers could be gathered to achieve 

statistical significance. Combining this refinement of the candidate cancer gene lists with 

additional knowledge regarding the predicted cells-of-origin and the sensitizing oncogenes 

most relevant to each subgroup would allow us to conduct screens with more sophistication 

and an increased likelihood of achieving clinical relevance.  

Chapter 3 described the development of a multi-alleleic RNAi mouse model that 

utilizes a novel combination of both established and newly generated genetically engineered 

mouse strains. In Chapter 4, this model was then applied to the study of the role of PTEN in 

HER2 positive breast cancer, and we characterized the aggressive, highly metastatic disease 

phenotype observed. The cooperation of PTEN knockdown and NeuNT overexpression in 

the luminal mammary epithelium was almost too efficient, as we observed highly 

proliferative and multifocal tumor growth, but the model system proved robust and a 100% 

penetrance of mammary tumor development was documented in TG-shPTEN animals. 

Since spontaneous metastasis to multiple organ sites is a rare feature in most animal models 

of cancer, further studies to test the differential requirement for cellular transformation 

required for efficient homing to and growth in the lung, liver and bone niches may provide 

important answers. Techniques such as barcoding or single-cell whole genome sequencing 

could be powerful in furthering our understanding of critical details such as the clonality of 
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the primary and metastatic tumorigenic processes, the timing of circulating tumor cell 

shedding and the potential role of self-seeding in tumor evolution, or the relationship 

between cellular changes that occur in the primary versus distal niches and their 

contribution to the transformative selection and growth (Kim et al. 2009; Navin et al. 2011). 

Finally, to maximize the potential of the multi-allelic mouse model such as the one 

described here for the assessment of gene function in vivo, we hope to expand our 

methodology to include the re-derivation of ESCs and further apply ex vivo manipulation to 

introduce inducible, reversible alleles (shRNAs, cDNAs, microRNAs) to the ColA1 locus. 

The ultimate goal is to make breast cancer mouse modeling a more rapid, flexible, and 

scalable platform where multiple combinations of cooperating genetic legions can be 

analyzed in parallel and the effects of tissue-specific transient gene activation or inhibition 

can be easily assessed at different stages of disease using the inducible, reversible alleles. 

Such models increase our capacity to physiologically filter through the vast quantities of 

oncogenomic data being produced, for which the biological impact remains largely 

uncharacterized. While xenograft models are an effective means of propagating human 

cancers and capturing their unique complexity, well-defined and sophisticated GEMMs 

present a genetically tractable arena in which sporadic and de novo tumorigenesis can be 

studied in an immunologically competent organism.  
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VI. Materials and Methods 

ROMA breast cancer data set 

Representational Oligonucleotide Microarray Analysis (ROMA) was conducted as 

previously described (Lucito et al. 2003; Hicks et al. 2006). Pinning analysis was conducted 

on ROMA data from 247 frozen breast tissue samples: 139 from the Karolinska Institute in 

Stockholm, Sweden, and 118 from the Radium Hospital in Oslo, Norway. The deletion 

size/frequency analysis was performed on those 247 samples plus ROMA data from 43 

human breast cancer cell lines.  

shRNA library production 

BIOPREDsi was used to design shRNA sequences (Huesken et al. 2005). 125-bp 

oligonucleotides encompassing the whole stem-loop miR-30 shRNA precursor, flanked by 

EcoRI and XhoI cloning sites were ordered from Agilent (Santa Clara, CA), and amplified 

with a library-specific reverse primer (for main library: TTCTGCAAGGCCTCCAGGTTGG, 

for priority set:  TTCACGATCTGCTGCAGAATGTGTCT) and a common forward primer 

(miRXhoF: TACAATACTCGAGAAGGTATATTGCTGTTGACAGTGAGCG). Pooled 

cloning was conducted as described (Zuber et al. 2011a; Scuoppo et al. 2012). To avoid the 

introduction of oligonucleotides with synthesis errors, such as mutations introduced during 

PCR amplification steps or concatemerization of inserts during vector ligation, each unique 

shRNA vector was verified by sequencing before inclusion in the resulting library. Clones 

were miniprepped and sequenced in 96-well format.  

Viral constructs 

shRNA vectors – MLS and MLP (LMP) miR-30 based shRNA vectors were cloned as 

previously described (Dickins et al. 2005). For MLR, the GFP cDNA was replaced with 
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dsRed cDNA. shRNAs were designed using the BIOPREDsi algorithm (www.biopredsi.org, 

discontinued) (Huesken et al. 2005), PCR amplified from oligos, and cloned into the miR-30 

backbone as described using XhoI/EcoRI restriction sites (Zuber et al. 2011a). 

Oncogene vectors – MultiSite Gateway® Cloning Technology (Invitrogen 

Technologies) was use to make all lentriviral plasmid vectors, including UbC-NeuNT, 

CMV-NeuNT and all other oncogene cDNA overexpression vectors employed. These 

vectors contained a blasticidin resistance marker. 

Cell lines 

Comma-D cells were obtained from Senthil Muthuswamy. NMuMG cells were 

purchased from ATCC (Catalog # CRL-1636). 

Cell culture 

Retroviral transfections/infections – For calcium phosphate transfection, 6x106 phoenix 

cells were plated in 10cm plates 6 to 12 hours prior to transfection with 15µg shRNA 

construct and 5 µg ecotropic helper plasmid (McCurrach and Lowe 2001). Fresh media was 

added 12 hours after transfection and viral supernatant was collected twice at 36 and 48 

hours post-transfection. Viral supernatant was filtered through a .45µm filter, then diluted 

1:2 with fresh media and supplemented with polybrene (4µg/mL final conc.) for a single 

infection of target cells. Target cells (NMuMG, Comma-D) were split 1:3 from confluent 

plates 12~24 hours prior to second virus collection. Infection rates were determined using 

GUAVA flow cytometers (Millipore, Billerica, MA).  

Lentiviral transfections/infections – Similarly, for lentiviral calcium phosphate 

transfections, 293FT cells were plated for transfection density 8x106 cells per 10cm plate. 

10µg plasmid DNA was combined with 3.5µg VSVG, 2.5µg REV and 6.5µg MDL helper 



 134 

constructs during transfection. After collection of the viral supernatant, it was centrifuged 

prior to filtration in order to remove the large quantity of cell debris.  

ESC targeting and culture 

ColA1-targeting constructs were cloned as described (Premsrirut et al. 2011; Dow et 

al. 2012). TREtight promoter modified version was previously described (McJunkin et al. 

2011). KH2 ESCs were targeted by electroporation of 50µg of targeting construct with 25µg 

pCAGGs-Flpe as described (Premsrirut et al. 2011; Dow et al. 2012). ESCs were cultured on 

irradiated DR4 fibroblast feeder layers on gelatinized plates in M15 media containing LIF as 

described (Beard et al. 2006).  

Primary mammary gland harvest and isolation of MaSCs 

Isolation of primary murine mammary stem/progenitor cells was conducted as 

previously described (Shackleton et al. 2006). Briefly, 8 to 14 week old mice were euthanized 

by CO2 inhalation, followed by cervical dislocation. A midline incision of the skin was 

performed and the mammary fad pads were exposed. The mammary glands were excised 

and placed into mammary gland digestion medium. Crude epithelial organoids were 

obtained by incubating the mammary glands in digestion medium for 6 to 8 hours at 37 °C 

with hourly pipetet-mixing and vortexing. A single cell suspension of mammary epithelial 

cells was obtained by sequentially digesting the organoids with Trypsin/EDTA, dispase 

and DNAse and trituration using fire-polished glass pasteur pipettes. The resulting cell 

suspension was filtered through a 40um cells strainer and cells were plated into growth 

medium on ultra-low attachment tissue culture plates. 
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in vivo animal studies 

The Institutional Animal Care and Use Committees of Cold Spring Harbor 

Laboratory and Memorial Sloan-Kettering Cancer Center approved all mouse experiments 

conducted in their respective animal facilities.  

Orthotopic transplantation into mammary fat pads 

Orthotopic transplantations were conducted as follows: the mouse was anesthetized 

with isoflurane (1-4%) administered with a precision vaporizer. Depth of anesthesia was 

monitored at least every 10 minutes throughout the procedure by observing that there was 

no change in respiratory rate associated with surgical manipulation. Following confirmation 

that a suitable anesthetic plane (no response to stimulation) has been attained, the fur 

covering the lower abdominal area was removed (unless conducting surgery on a nude 

mouse) with an electric clipper with a #40 blade exposing an area of skin approximately 

150% larger than the area of the incision and sterile eye lubricant was applied to both eyes to 

prevent corneal drying during surgery. Loose fur was removed with a moist gauze pad. A 

small volume (0.1-0.2cc) of local anesthetic agent, such as bupivacaine (Marcaine 0.25-0.5%), 

was infiltrated into the tissue adjacent to the intended incision line. The mouse was placed 

on a circulating water heating pad and covered with a drape. The area was then prepped for 

surgery using three rounds of alternating scrubs of 10% povidone-iodine and 70% ethanol 

soaked gauze sponges. The skin was then painted with a 10% povidone-iodine. All surgical 

instruments and equipment were sterilized by steam sterilization prior to surgery and 

sterilized between individuals using a glass bead sterilizer. The animal, which was 

positioned in the supine position, was covered with sterile surgical crepe paper. A 3.0 cm x 

3.0 cm square hole that has been cut into the drape was located over the intended incision 

site. Sterilized surgical scissors were used to make an incision in the abdominal region that 
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penetrates the skin but not into the peritoneal cavity. The opening was be enlarged 

vertically and horizontally in order to expose the abdominal mammary fat pads of the 

mouse. To avoid drying of the exposed tissue, each flank of the animal was manipulated in 

sequential order. In some cases the fat pad was cleared, removing all of the tissue before the 

lymph node. The fat pad was then injected with cells (primary or cell line), tumor (fragment 

or digested) or virus (Adeno) using a syringe. The volume ranged from 10 to 20µL. After 

both abdominal fat pads were manipulated, the skin was be brought together and closed 

using sterile 4-0 or 5-0 vicryl sutures or surgical glue or both. After surgery, animals were 

observed until they could maintain sternal recumbency. Before being returned to the 

housing area, they were administered 1 mg/kg buprenorphine, SQ. They were evaluated at 

least one additional time the day of surgery and at least daily for the next 48 hours. Tumor 

progression was monitored by in vivo fluorescence imaging, palpation and/or caliper 

measurements depending on the assay. 

Immunohistochemistry 

Immunostaining was conducted on a Discovery Ultra automated device (Ventana) 

with the following antibodies and concentrations: GFP (Cell Signalling 2956,1:200), tRFP (for 

mKate2; Evrogen AB233, 1:5000), ErbB2 (for Neu; Abcam ab2428, 1:500), PTEN (Cell 

Signaling 9559, 1:100), Ki-67 (Abcam 16667,1:100), CK5 (Covance PRB-160P, 1:10000), CK14 

(Covance PRB-155P, 1:1000), CK19 (Abcam ab15463, 1:100), TTF1(Novus Biologicals,1:100). 

Primary antibodies were applied at room temperature for 3 hours and secondary antibody 

from goat source (Vector Laboratories) was applied at 1:300 at 37,C for 20 minutes. 

Streptavidin-biotin peroxidase-based DAB Map Detection Kit (Ventana 760-124) was used 

and slides were counterstained with Hematoxylin (Ventana, 760-2021) and Bluing Reagent 

(Ventana, 760-2037). 



 137 

Doxycycline treatment 

Cell culture – All dox-containing media was prepared at a dose of 1µg/ml 

doxycycline (Sigma-Aldrich, St. Louis, MO). 

Animal studies – Mice were treated with doxycycline hyclate at a dose of 625mg/kg 

in alfalfa-free rodent diet with 18.2% protein, 48% carbohydrate and 5.8% fat content 

(Harlan Laboratories, Madison, WI). The diet is designed to deliver a daily dose of 2-3mg of 

doxycycline based on consumption of 4-5g/day by a mouse; doxycycline hyclate contains 

approximately 87% doxycycline. Since the chlorophyll from the alfalfa found in standard 

mouse food has been found to fluoresce in the near infrared part of the spectrum; we used 

alfalfa-free dox chow in our experimentation (Troy et al. 2004; Inoue et al. 2008). 

Adenoviral Cre 

Adeno-Cre virus was purchased commercially from the Gene Transfer Vector Core 

of the University of Iowa. A 10µL volume was injected into the fat pad at a dose of 109pfu. 

!  
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Table 6.1  shRNA sequences 

shRNA  

(Prediction algorithm) 

Sequence 

Renilla-Luciferase.713 

(BIOPREDsi) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGCAGGAAT
TATAATGCTTATCTATAGTGAAGCCACAGATGTATAGATA
AGCATTATAATTCCTATGCCTACTGCCTCGGAATTC 
 

Luciferase.1309 

(Codex) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGCCCGCCT
GAAGTCTCTGATTAATAGTGAAGCCACAGATGTATTAATC
AGAGACTTCAGGCGGTTGCCTACTGCCTCGGAATTC 
 

Pten.1522 

(BIOPREDsi) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGACCAGCT
AAAGGTGAAGATATATAGTGAAGCCACAGATGTATATATC
TTCACCTTTAGCTGGCTGCCTACTGCCTCGGAATTC  
 

Pten.2049 

(BIOPREDsi) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGAAAGATC
AGCATTCACAAATTATAGTGAAGCCACAGATGTATAATTT
GTGAATGCTGATCTTCTGCCTACTGCCTCGGAATTC 
 

Nf1.6074 

(BIOPREDsi) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGACAGATG
TATCCTTCTATTCAATAGTGAAGCCACAGATGTATTGAATA
GAAGGATACATCTGCTGCCTACTGCCTCGGAATTC  
 

Nf1.8594 

(Codex) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGAGCTGGC
AGTTTCAAACGTAATTAGATGAAGCACAGATGTAATTACG
TTTGAAACTGCCAGCGTGCCTACTGCCTCGGAATTC  
 

Nf1.9930 

(BIOPREDsi) 

CTCGAGAAGGTATATTGCTGTTGACAGTGAGCGCCTCAGTT
AAGATTGAACTATATAGTGAAGCCACAGATGTATATAGTT
CAATCTTAACTGAGATGCCTACTGCCTCGGAATTC  
 

*shRNA sequences are listed as full length 116nt XhoI/EcoRI fragments for miR-30 cloning. 
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Table 6.2  Genotyping PCR primer sequences 

Transgenic allele  Primers 

Renilla-Luciferase.713 

(shRNA specific) 

5' GTATAGATAAGCATTATAATTCCTA 
5' GAAAGAACAATCAAGGGTCC 

Pten.1522 

(shRNA specific) 

5' CAGATGTATATATCTTCACCTTT 
5' CACCCTGAAAACTTTGCCCC 

Nf1.6074 

(shRNA specific) 

5' GCCACAGATGTATTGAATAGAA 
5' GAAAGAACAATCAAGGGTCC 

Nf1.8594 

(shRNA specific) 

5' CCACAGATGTAATTACGTTTGA 
5' CACCCTGAAAACTTTGCCCC 

ColA1 locus 

Targeted/wild type 

5’ AATCATCCCAGGTGCACAGCATTGCGG 
5’ CTTTGAGGGCTCATGAACCTCCCAGG 
5’ ATCAAGGAAACCCTGGACTACTGCG 

ColA1 locus 

Targeted/empty CHC 

5' AATCATCCCAGGTGCACAGCATTGCGG 
5' GGATGTGGAATGTGTGCGAG 
5' CTTTGAGGGCTCATGAACCTCCCAGG 

Rosa26 locus 

(for RIK or R26-rtTA2) 

5’ AAAGTCGCTCTGAGTTGTTAT 
5’ GCGAAGAGTTTGTCCTCAACC 
5’ GGAGCGGGAGGAATGGATATG 

WAP-Cre 

Presence/absence 

5' CTAGGCCACAGAATTGAAAGATCT 
5' GTAGGTGGAAATTCTAGCATCATCC 
5' GCGGTCTGGCAGTAAAAACTATC 
5' GTGAAACAGCATTGCTGTCACTT 

MMTV-NeuNT 

Presence/absence 

5' CCCCGGGAGTATGTGAGTGA 
5' TGAGCTGTT TTGAGGCTGCA 

CAGs-rtTA3 

(“4288”) 

5’ TGCCTATCATGTTGTCAAA 
5’ CGAAACTCTGGTTGACATG 
5’ CTGCTGTCCATTCCTTATTC 
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Table 6.3  Transgenic mouse strains 

Strain Reference 

Renilla-Luciferase.713 TRE promoter: Premsrirut et al. 2011 

TREtight promoter: unpublished 

Pten.1522 Miething, et al., In preparation 

Pten.2049 Miething, et al., In preparation 

Nf1.6074 Unpublished 

Nf1.8594 Unpublished 

Rosa26-rtTA-M2 Hochedlinger et al. 2005 

MMTV-tTA Hennighausen et al. 1995 

RIK Unpublished  

WAP-Cre Wagner et al. 1997 

MMTV-NeuNT Muller et al. 1988 

CAGs-rtTA3 “4288” Premsrirut et al. 2011 

!  



 141 

VII. References 

Ahlquist T, Bottillo I, Danielsen SA, Meling GI, Rognum TO, Lind GE, Dallapiccola B, Lothe 
RA. 2008. RAS signaling in colorectal carcinomas through alteration of RAS, RAF, 
NF1, and/or RASSF1A. Neoplasia 10: 680-686, 682 p following 686. 

Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. 2004. Therapeutic implications of 
cancer stem cells. Curr Opin Genet Dev 14: 43-47. 

Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, 
Sampieri K, Haveman WJ, Brogi E et al. 2010. Subtle variations in Pten dose 
determine cancer susceptibility. Nat Genet 42: 454-458. 

American Cancer Society. 2012. Cancer facts and figures 2012. American Cancer Society. 

Anders K, Buschow C, Charo J, Blankenstein T. 2012. Depot formation of doxycycline 
impairs Tet-regulated gene expression in vivo. Transgenic Res 21: 1099-1107. 

Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ. 2000. 
Amplification of the neu/erbB-2 oncogene in a mouse model of mammary 
tumorigenesis. Proc Natl Acad Sci U S A 97: 3444-3449. 

Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S, Pritzker KP, 
Hartwick RW, Hanna W, Lickley L et al. 1998. neu/erbB-2 amplification identifies a 
poor-prognosis group of women with node-negative breast cancer. Toronto Breast 
Cancer Study Group. J Clin Oncol 16: 1340-1349. 

Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. 2012. Treatment of 
HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin 
Oncol 9: 16-32. 

Backman CM, Zhang Y, Hoffer BJ, Tomac AC. 2004. Tetracycline-inducible expression 
systems for the generation of transgenic animals: a comparison of various inducible 
systems carried in a single vector. J Neurosci Methods 139: 257-262. 

Balkwill F, Charles KA, Mantovani A. 2005. Smoldering and polarized inflammation in the 
initiation and promotion of malignant disease. Cancer Cell 7: 211-217. 

Barcellos-Hoff MH, Ravani SA. 2000. Irradiated mammary gland stroma promotes the 
expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60: 
1254-1260. 

Baselga J. 2001. Clinical trials of Herceptin(trastuzumab). Eur J Cancer 37 Suppl 1: S18-24. 

-. 2011. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 
16 Suppl 1: 12-19. 



 142 

Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. 1998. Recombinant humanized anti-
HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and 
doxorubicin against HER2/neu overexpressing human breast cancer xenografts. 
Cancer Res 58: 2825-2831. 

Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, 
Kubista E, Greil R, Bianchi G et al. 2009. Phase II randomized study of neoadjuvant 
everolimus plus letrozole compared with placebo plus letrozole in patients with 
estrogen receptor-positive breast cancer. J Clin Oncol 27: 2630-2637. 

Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman 
AD, Hudis CA, Moore J et al. 1996. Phase II study of weekly intravenous 
recombinant humanized anti-p185HER2 monoclonal antibody in patients with 
HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14: 737-744. 

Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. 2006. Efficient method to generate 
single-copy transgenic mice by site-specific integration in embryonic stem cells. 
Genesis 44: 23-28. 

Beatson GT. 1896. On the treatment of inoperable cases of carcinoma of the mamma: 
Suggestions for a new method of treatment, with illustrated cases. Lancet 2: 104-107 
and 162-165. 

Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, Young E, 
Mukhopadhyay P, Yeh HW, Allred DC et al. 2009. An intraductal human-in-mouse 
transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer 
Res 11: R66. 

Berger AH, Pandolfi PP. 2011. Haplo-insufficiency: a driving force in cancer. J Pathol 223: 
137-146. 

Bernards R. 2012. A missing link in genotype-directed cancer therapy. Cell 151: 465-468. 

Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, 
Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M et al. 2007. A functional 
genetic approach identifies the PI3K pathway as a major determinant of trastuzumab 
resistance in breast cancer. Cancer Cell 12: 395-402. 

Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, 
Yakovlev AY, Habbema JD, Feuer EJ. 2005. Effect of screening and adjuvant therapy 
on mortality from breast cancer. N Engl J Med 353: 1784-1792. 

Berry DA, Inoue L, Shen Y, Venier J, Cohen D, Bondy M, Theriault R, Munsell MF. 2006. 
Modeling the impact of treatment and screening on U.S. breast cancer mortality: a 
Bayesian approach. J Natl Cancer Inst Monogr: 30-36. 

Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, 
Beare D, Latimer C et al. 2010. Signatures of mutation and selection in the cancer 
genome. Nature 463: 893-898. 



 143 

Bloom HJ, Richardson WW. 1957. Histological grading and prognosis in breast cancer; a 
study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11: 359-
377. 

Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, 
McCormick F, Jacks T et al. 1996. Loss of NF1 results in activation of the Ras 
signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 
12: 144-148. 

Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R. 1998. Allelic loss of chromosome 10q23 
is associated with tumor progression in breast carcinomas. Oncogene 17: 123-127. 

Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. 1989. Stochastic appearance of mammary 
tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57: 931-936. 

Boxer RB, Jang JW, Sintasath L, Chodosh LA. 2004. Lack of sustained regression of c-MYC-
induced mammary adenocarcinomas following brief or prolonged MYC inactivation. 
Cancer Cell 6: 577-586. 

Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, 
Jenkins NA, Parada LF, Copeland NG. 1994. Targeted disruption of the 
neurofibromatosis type-1 gene leads to developmental abnormalities in heart and 
various neural crest-derived tissues. Genes Dev 8: 1019-1029. 

Brems H, Beert E, de Ravel T, Legius E. 2009. Mechanisms in the pathogenesis of malignant 
tumours in neurofibromatosis type 1. Lancet Oncol 10: 508-515. 

Bric A, Miething C, Bialucha CU, Scuoppo C, Zender L, Krasnitz A, Xuan Z, Zuber J, Wigler 
M, Hicks J et al. 2009. Functional identification of tumor-suppressor genes through 
an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16: 324-
335. 

Brierley J. 2006. The evolving TNM cancer staging system: an essential component of cancer 
care. CMAJ 174: 155-156. 

Brummelkamp TR, Bernards R, Agami R. 2002. A system for stable expression of short 
interfering RNAs in mammalian cells. Science 296: 550-553. 

Buzdar AU, Hortobagyi G. 1998. Update on endocrine therapy for breast cancer. Clin Cancer 
Res 4: 527-534. 

Cacev T, Radosevic S, Spaventi R, Pavelic K, Kapitanovic S. 2005. NF1 gene loss of 
heterozygosity and expression analysis in sporadic colon cancer. Gut 54: 1129-1135. 

Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast 
tumours. Nature 490: 61-70. 

Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655-1657. 



 144 

Cantley LC, Neel BG. 1999. New insights into tumor suppression: PTEN suppresses tumor 
formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl 
Acad Sci U S A 96: 4240-4245. 

Cardiff RD, Moghanaki D, Jensen RA. 2000. Genetically engineered mouse models of 
mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 5: 421-437. 

Cardiff RD, Wellings SR. 1999. The comparative pathology of human and mouse mammary 
glands. J Mammary Gland Biol Neoplasia 4: 105-122. 

Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham 
ML, Perou CM. 2007. The triple negative paradox: primary tumor chemosensitivity 
of breast cancer subtypes. Clin Cancer Res 13: 2329-2334. 

Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, 
Strong LC, White RL. 1983. Expression of recessive alleles by chromosomal 
mechanisms in retinoblastoma. Nature 305: 779-784. 

Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, 
Majumder PK, Baselga J, Rosen N. 2011. AKT inhibition relieves feedback 
suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19: 58-71. 

Chang K, Elledge SJ, Hannon GJ. 2006. Lessons from Nature: microRNA-based shRNA 
libraries. Nat Methods 3: 707-714. 

Chao RC, Pyzel U, Fridlyand J, Kuo YM, Teel L, Haaga J, Borowsky A, Horvai A, Kogan SC, 
Bonifas J et al. 2005. Therapy-induced malignant neoplasms in Nf1 mutant mice. 
Cancer Cell 8: 337-348. 

Chin L, Gray JW. 2008. Translating insights from the cancer genome into clinical practice. 
Nature 452: 553-563. 

Clontech. 2003. Gene Expression Systems. Clontechniques XVIII: 1. 

Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, 
Wang W, Youngkin D et al. 2008. Antitumor activity of rapamycin in a Phase I trial 
for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5: e8. 

Clynes RA, Towers TL, Presta LG, Ravetch JV. 2000. Inhibitory Fc receptors modulate in 
vivo cytotoxicity against tumor targets. Nat Med 6: 443-446. 

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton 
V, Shak S, Lieberman G et al. 1999. Multinational study of the efficacy and safety of 
humanized anti-HER2 monoclonal antibody in women who have HER2-
overexpressing metastatic breast cancer that has progressed after chemotherapy for 
metastatic disease. J Clin Oncol 17: 2639-2648. 

Collado M, Blasco MA, Serrano M. 2007. Cellular senescence in cancer and aging. Cell 130: 
223-233. 



 145 

Courtney KD, Corcoran RB, Engelman JA. 2010. The PI3K pathway as drug target in human 
cancer. J Clin Oncol 28: 1075-1083. 

David G, Van der Schueren B, Bernfield M. 1981. Basal lamina formation by normal and 
transformed mouse mammary epithelial cells duplicated in vitro. J Natl Cancer Inst 
67: 719-728. 

De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, Maertens O, Jeong SM, Bronson 
RT, Lebleu V et al. 2011. Exploiting cancer cell vulnerabilities to develop a 
combination therapy for ras-driven tumors. Cancer Cell 20: 400-413. 

Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P. 2006. The 
tumor suppressor Smad4 is required for transforming growth factor beta-induced 
epithelial to mesenchymal transition and bone metastasis of breast cancer cells. 
Cancer Res 66: 2202-2209. 

Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. 1999. Impaired 
Fas response and autoimmunity in Pten+/- mice. Science 285: 2122-2125. 

Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW. 2005. 
Probing tumor phenotypes using stable and regulated synthetic microRNA 
precursors. Nat Genet 37: 1289-1295. 

Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich 
H, Muzny DM, Morgan MB et al. 2008. Somatic mutations affect key pathways in 
lung adenocarcinoma. Nature 455: 1069-1075. 

Dinh P, Sotiriou C, Piccart MJ. 2007. The evolution of treatment strategies: aiming at the 
target. Breast 16 Suppl 2: S10-16. 

Dourdin N, Schade B, Lesurf R, Hallett M, Munn RJ, Cardiff RD, Muller WJ. 2008. 
Phosphatase and tensin homologue deleted on chromosome 10 deficiency accelerates 
tumor induction in a mouse model of ErbB-2 mammary tumorigenesis. Cancer Res 
68: 2122-2131. 

Dow LE, Premsrirut PK, Zuber J, Fellmann C, McJunkin K, Miething C, Park Y, Dickins RA, 
Hannon GJ, Lowe SW. 2012. A pipeline for the generation of shRNA transgenic mice. 
Nat Protoc 7: 374-393. 

Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, Johnson NL, 
Granger DA, Jordan NV, Darr DB et al. 2012. Dynamic reprogramming of the 
kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 
149: 307-321. 

Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E, Peeters G, 
Krummel MF, Werb Z. 2008. Visualizing stromal cell dynamics in different tumor 
microenvironments by spinning disk confocal microscopy. Dis Model Mech 1: 155-
167; discussion 165. 



 146 

Egeblad M, Rasch MG, Weaver VM. 2010. Dynamic interplay between the collagen scaffold 
and tumor evolution. Curr Opin Cell Biol 22: 697-706. 

Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, 3rd, Yanagimachi 
R, Jaenisch R. 2001. Hybrid vigor, fetal overgrowth, and viability of mice derived by 
nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 98: 
6209-6214. 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-
nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 
411: 494-498. 

Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, Cristofanilli M, Arun B, 
Esmaeli B, Fritsche HA et al. 2002. Phase II study of weekly docetaxel and 
trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin 
Oncol 20: 1800-1808. 

Feilotter HE, Coulon V, McVeigh JL, Boag AH, Dorion-Bonnet F, Duboue B, Latham WC, 
Eng C, Mulligan LM, Longy M. 1999. Analysis of the 10q23 chromosomal region and 
the PTEN gene in human sporadic breast carcinoma. Br J Cancer 79: 718-723. 

Fellmann C, Zuber J, McJunkin K, Chang K, Malone CD, Dickins RA, Xu Q, Hengartner 
MO, Elledge SJ, Hannon GJ et al. 2011. Functional identification of optimized RNAi 
triggers using a massively parallel sensor assay. Mol Cell 41: 733-746. 

Fendly BM, Kotts C, Vetterlein D, Lewis GD, Winget M, Carver ME, Watson SR, Sarup J, 
Saks S, Ullrich A et al. 1990. The extracellular domain of HER2/neu is a potential 
immunogen for active specific immunotherapy of breast cancer. J Biol Response Mod 
9: 449-455. 

Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E, Wong WL, Hollingshead P, 
Schwall R, Koeppen H et al. 2004. HER2-targeted therapy reduces incidence and 
progression of midlife mammary tumors in female murine mammary tumor virus 
huHER2-transgenic mice. Clin Cancer Res 10: 2499-2511. 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific 
genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 
806-811. 

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, 
Menzies A et al. 2011. COSMIC: mining complete cancer genomes in the Catalogue 
of Somatic Mutations in Cancer. Nucleic Acids Res 39: D945-950. 

Fujita T, Doihara H, Kawasaki K, Takabatake D, Takahashi H, Washio K, Tsukuda K, 
Ogasawara Y, Shimizu N. 2006. PTEN activity could be a predictive marker of 
trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J 
Cancer 94: 247-252. 



 147 

Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR. 2001. Cancer and 
genomics. Nature 409: 850-852. 

Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, Barnadas A, Adrover E, 
Sanchez-Tejada L, Giner D et al. 2012. Increased signalling of EGFR and IGF1R, and 
deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance 
in HER2 breast carcinomas. Br J Cancer 106: 1367-1373. 

Garcia JM, Silva JM, Dominguez G, Gonzalez R, Navarro A, Carretero L, Provencio M, 
Espana P, Bonilla F. 1999. Allelic loss of the PTEN region (10q23) in breast 
carcinomas of poor pathophenotype. Breast Cancer Res Treat 57: 237-243. 

Gelber RD, Bonetti M, Castiglione-Gertsch M, Coates AS, Goldhirsch A. 2003. Tailoring 
adjuvant treatments for the individual breast cancer patient. Breast 12: 558-568. 

Gossen M, Bujard H. 1992. Tight control of gene expression in mammalian cells by 
tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89: 5547-5551. 

Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. 1995. Transcriptional 
activation by tetracyclines in mammalian cells. Science 268: 1766-1769. 

Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, 
Condeelis JS. 2005. Macrophages promote the invasion of breast carcinoma cells via a 
colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65: 
5278-5283. 

Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, 
Butler A, Stevens C et al. 2007. Patterns of somatic mutation in human cancer 
genomes. Nature 446: 153-158. 

Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, Chodosh LA. 2002. A 
novel doxycycline-inducible system for the transgenic analysis of mammary gland 
biology. FASEB J 16: 283-292. 

Guran S, Safali M. 2005. A case of neurofibromatosis and breast cancer: loss of 
heterozygosity of NF1 in breast cancer. Cancer Genet Cytogenet 156: 86-88. 

Guy CT, Cardiff RD, Muller WJ. 1992a. Induction of mammary tumors by expression of 
polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. 
Mol Cell Biol 12: 954-961. 

Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. 1992b. Expression of 
the neu protooncogene in the mammary epithelium of transgenic mice induces 
metastatic disease. Proc Natl Acad Sci U S A 89: 10578-10582. 

Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A. 2009. BioMart Central Portal-
-unified access to biological data. Nucleic Acids Res 37: W23-27. 



 148 

Hall HG, Farson DA, Bissell MJ. 1982. Lumen formation by epithelial cell lines in response 
to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A 79: 
4672-4676. 

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100: 57-70. 

-. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. 

Hannon GJ. 2002. RNA interference. Nature 418: 244-251. 

Harvey HA. 1996. Aromatase inhibitors in clinical practice: current status and a look to the 
future. Semin Oncol 23: 33-38. 

Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S, Wu TD, Cavet G, Zhang Z, 
Chant J. 2008. High-resolution genomic and expression analyses of copy number 
alterations in breast tumors. Genes Chromosomes Cancer 47: 530-542. 

Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC, Nicholson RI, 
Griffiths K. 1982. A prognostic index in primary breast cancer. Br J Cancer 45: 361-
366. 

Hennighausen L, Wall RJ, Tillmann U, Li M, Furth PA. 1995. Conditional gene expression in 
secretory tissues and skin of transgenic mice using the MMTV-LTR and the 
tetracycline responsive system. J Cell Biochem 59: 463-472. 

Henrard D, Ross SR. 1988. Endogenous mouse mammary tumor virus is expressed in 
several organs in addition to the lactating mammary gland. J Virol 62: 3046-3049. 

Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones 
LP, Assefnia S, Chandrasekharan S et al. 2007. Identification of conserved gene 
expression features between murine mammary carcinoma models and human breast 
tumors. Genome Biol 8: R76. 

Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge 
J, Grubor V et al. 2006. Novel patterns of genome rearrangement and their 
association with survival in breast cancer. Genome Res 16: 1465-1479. 

Hochedlinger K, Yamada Y, Beard C, Jaenisch R. 2005. Ectopic expression of Oct-4 blocks 
progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121: 465-
477. 

Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. 1989. p185HER2 
monoclonal antibody has antiproliferative effects in vitro and sensitizes human 
breast tumor cells to tumor necrosis factor. Mol Cell Biol 9: 1165-1172. 

Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, 
Rosenberg A, Cohen D et al. 2005. Design of a genome-wide siRNA library using an 
artificial neural network. Nat Biotechnol 23: 995-1001. 



 149 

Huijbers IJ, Krimpenfort P, Berns A, Jonkers J. 2011. Rapid validation of cancer genes in 
chimeras derived from established genetically engineered mouse models. Bioessays 
33: 701-710. 

Ingberg E, Theodorsson A, Theodorsson E, Strom JO. 2012. Methods for long-term 17beta-
estradiol administration to mice. Gen Comp Endocrinol 175: 188-193. 

Inoue Y, Izawa K, Kiryu S, Tojo A, Ohtomo K. 2008. Diet and abdominal autofluorescence 
detected by in vivo fluorescence imaging of living mice. Mol Imaging 7: 21-27. 

Jelovac D, Wolff AC. 2012. The adjuvant treatment of HER2-positive breast cancer. Curr 
Treat Options Oncol 13: 230-239. 

Jerry DJ, Medina D, Butel JS. 1994. p53 mutations in COMMA-D cells. In Vitro Cell Dev Biol 
Anim 30A: 87-89. 

Jones N, Bonnet F, Sfar S, Lafitte M, Lafon D, Sierankowski G, Brouste V, Banneau G, Tunon 
de Lara C, Debled M et al. 2013. Comprehensive analysis of PTEN status in breast 
carcinomas. Int J Cancer. 

Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. 2001. 
Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse 
model for breast cancer. Nat Genet 29: 418-425. 

Jordan VC, Dowse LJ. 1976. Tamoxifen as an anti-tumour agent: effect on oestrogen binding. 
J Endocrinol 68: 297-303. 

Kalra R, Paderanga DC, Olson K, Shannon KM. 1994. Genetic analysis is consistent with the 
hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84: 3435-3439. 

Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J. 2009. 
Tumor self-seeding by circulating cancer cells. Cell 139: 1315-1326. 

King CR, Kraus MH, Aaronson SA. 1985. Amplification of a novel v-erbB-related gene in a 
human mammary carcinoma. Science 229: 974-976. 

Klarenbeek S, van Miltenburg MH, Jonkers J. 2013. Genetically engineered mouse models of 
PI3K signaling in breast cancer. Mol Oncol. 

Kluger HM, Chelouche Lev D, Kluger Y, McCarthy MM, Kiriakova G, Camp RL, Rimm DL, 
Price JE. 2005. Using a xenograft model of human breast cancer metastasis to find 
genes associated with clinically aggressive disease. Cancer Res 65: 5578-5587. 

Knudson AG. 2001. Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157-162. 

Knudson AG, Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc Natl 
Acad Sci U S A 68: 820-823. 

Lacroix M, Leclercq G. 2004. Relevance of breast cancer cell lines as models for breast 
tumours: an update. Breast Cancer Res Treat 83: 249-289. 



 150 

Lee J, Wang J, Torbenson M, Lu Y, Liu QZ, Li S. 2010. Loss of SDHB and NF1 genes in a 
malignant phyllodes tumor of the breast as detected by oligo-array comparative 
genomic hybridization. Cancer Genet Cytogenet 196: 179-183. 

Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes 
small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. 

Leong AS, Zhuang Z. 2011. The changing role of pathology in breast cancer diagnosis and 
treatment. Pathobiology 78: 99-114. 

Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, 
McGrath S, Hickenbotham M et al. 2008. DNA sequencing of a cytogenetically 
normal acute myeloid leukaemia genome. Nature 456: 66-72. 

Li DM, Sun H. 1997. TEP1, encoded by a candidate tumor suppressor locus, is a novel 
protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer 
Res 57: 2124-2129. 

Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, 
Lane TF, Liu X et al. 2002. Conditional loss of PTEN leads to precocious 
development and neoplasia in the mammary gland. Development 129: 4159-4170. 

Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, 
McCombie R et al. 1997. PTEN, a putative protein tyrosine phosphatase gene 
mutated in human brain, breast, and prostate cancer. Science 275: 1943-1947. 

Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M 
et al. 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited 
breast and thyroid cancer syndrome. Nat Genet 16: 64-67. 

Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang KW, Frank SA, Lee WH, 
Lee EY. 2004. Somatic mutation of p53 leads to estrogen receptor alpha-positive and -
negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64: 
3525-3532. 

Lin TP. 1966. Microinjection of mouse eggs. Science 151: 333-337. 

Linder CC. 2006. Genetic variables that influence phenotype. ILAR J 47: 132-140. 

Litton JK, Arun BK, Brown PH, Hortobagyi GN. 2012. Aromatase inhibitors and breast 
cancer prevention. Expert Opin Pharmacother 13: 325-331. 

Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, 
Troge J et al. 2003. Representational oligonucleotide microarray analysis: a high-
resolution method to detect genome copy number variation. Genome Res 13: 2291-
2305. 

MacDonald IC, Chambers AF. 2006. Breast cancer metastasis progression as revealed by 
intravital videomicroscopy. Expert Rev Anticancer Ther 6: 1271-1279. 



 151 

Maehama T, Dixon JE. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the 
lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 
13375-13378. 

Maeshima AM, Omatsu M, Tsuta K, Asamura H, Matsuno Y. 2008. Immunohistochemical 
expression of TTF-1 in various cytological subtypes of primary lung 
adenocarcinoma, with special reference to intratumoral heterogeneity. Pathol Int 58: 
31-37. 

Mardis ER. 2008. The impact of next-generation sequencing technology on genetics. Trends 
Genet 24: 133-141. 

Martins CP, Brown-Swigart L, Evan GI. 2006. Modeling the therapeutic efficacy of p53 
restoration in tumors. Cell 127: 1323-1334. 

McCurrach ME, Lowe SW. 2001. Methods for studying pro- and antiapoptotic genes in 
nonimmortal cells. Methods Cell Biol 66: 197-227. 

McJunkin K, Mazurek A, Premsrirut PK, Zuber J, Dow LE, Simon J, Stillman B, Lowe SW. 
2011. Reversible suppression of an essential gene in adult mice using transgenic 
RNA interference. Proc Natl Acad Sci U S A 108: 7113-7118. 

McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, 
Mikkelsen T, Lehman N, Aldape K Y et al. 2008. Comprehensive genomic 
characterization defines human glioblastoma genes and core pathways. Nature 455: 
1061-1068. 

Medina D, Oborn CJ, Kittrell FS, Ullrich RL. 1986. Properties of mouse mammary epithelial 
cell lines characterized by in vivo transplantation and in vitro immunocytochemical 
methods. J Natl Cancer Inst 76: 1143-1156. 

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, 
Massague J. 2005. Genes that mediate breast cancer metastasis to lung. Nature 436: 
518-524. 

Miron A, Varadi M, Carrasco D, Li H, Luongo L, Kim HJ, Park SY, Cho EY, Lewis G, Kehoe 
S et al. 2010. PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res 
70: 5674-5678. 

Moasser MM. 2007. The oncogene HER2: its signaling and transforming functions and its 
role in human cancer pathogenesis. Oncogene 26: 6469-6487. 

Moldvay J, Jackel M, Bogos K, Soltesz I, Agocs L, Kovacs G, Schaff Z. 2004. The role of TTF-1 
in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res 10: 
85-88. 

Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. 2001. Trastuzumab 
(herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and 
activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61: 4744-4749. 



 152 

Montel V, Huang TY, Mose E, Pestonjamasp K, Tarin D. 2005. Expression profiling of 
primary tumors and matched lymphatic and lung metastases in a xenogeneic breast 
cancer model. Am J Pathol 166: 1565-1579. 

Montemurro F, Rossi V, Geuna E, Valabrega G, Martinello R, Milani A, Aglietta M. 2012. 
Current status and future perspectives in the endocrine treatment of 
postmenopausal, hormone receptor-positive metastatic breast cancer. Expert Opin 
Pharmacother 13: 2143-2156. 

Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, 
Cardiff RD, Chodosh LA. 2005. The transcriptional repressor Snail promotes 
mammary tumor recurrence. Cancer Cell 8: 197-209. 

Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff 
RD, Schnall MD, Chodosh LA. 2002. Conditional activation of Neu in the mammary 
epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 
2: 451-461. 

Moser AR, Pitot HC, Dove WF. 1990. A dominant mutation that predisposes to multiple 
intestinal neoplasia in the mouse. Science 247: 322-324. 

Mullally A, Ebert BL. 2010. NF1 inactivation revs up Ras in adult acute myelogenous 
leukemia. Clin Cancer Res 16: 4074-4076. 

Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. 1988. Single-step induction of 
mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. 
Cell 54: 105-115. 

Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen 
NT et al. 2004. PTEN activation contributes to tumor inhibition by trastuzumab, and 
loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117-127. 

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy 
D, Esposito D et al. 2011. Tumour evolution inferred by single-cell sequencing. 
Nature 472: 90-94. 

Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, 
Grubor V et al. 2010. Inferring tumor progression from genomic heterogeneity. 
Genome Res 20: 68-80. 

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong 
F et al. 2006. A collection of breast cancer cell lines for the study of functionally 
distinct cancer subtypes. Cancer Cell 10: 515-527. 

O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, 
Ludwig DL et al. 2006. mTOR inhibition induces upstream receptor tyrosine kinase 
signaling and activates Akt. Cancer Res 66: 1500-1508. 



 153 

Ogata H, Sato H, Takatsuka J, De Luca LM. 2001. Human breast cancer MDA-MB-231 cells 
fail to express the neurofibromin protein, lack its type I mRNA isoform and show 
accumulation of P-MAPK and activated Ras. Cancer Lett 172: 159-164. 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, 
Richardson AL, Weinberg RA. 2005. Stromal fibroblasts present in invasive human 
breast carcinomas promote tumor growth and angiogenesis through elevated SDF-
1/CXCL12 secretion. Cell 121: 335-348. 

Owens RB. 1974. Glandular epithelial cells from mice: a method for selective cultivation. J 
Natl Cancer Inst 52: 1375-1378. 

Oxnard GR. 2012. Strategies for overcoming acquired resistance to epidermal growth factor 
receptor: targeted therapies in lung cancer. Arch Pathol Lab Med 136: 1205-1209. 

Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. 2002. Short hairpin RNAs 
(shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16: 948-
958. 

Pauletti G, Godolphin W, Press MF, Slamon DJ. 1996. Detection and quantitation of HER-
2/neu gene amplification in human breast cancer archival material using 
fluorescence in situ hybridization. Oncogene 13: 63-72. 

Perez EA, Spano JP. 2012. Current and emerging targeted therapies for metastatic breast 
cancer. Cancer 118: 3014-3025. 

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, 
Johnsen H, Akslen LA et al. 2000. Molecular portraits of human breast tumours. 
Nature 406: 747-752. 

Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL, Komminoth P, Lees JA, 
Mulligan LM, Mutter GL et al. 1999. Immunohistochemical evidence of loss of PTEN 
expression in primary ductal adenocarcinomas of the breast. Am J Pathol 155: 1253-
1260. 

Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS. 1997. 
Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor 
tyrosine kinases down-regulate vascular endothelial growth factor production by 
tumor cells in vitro and in vivo: angiogenic implications for signal transduction 
therapy of solid tumors. Am J Pathol 151: 1523-1530. 

Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. 1999. TGF-(beta) type I 
receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal 
transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112 ( Pt 24): 4557-
4568. 

Podsypanina K, Politi K, Beverly LJ, Varmus HE. 2008. Oncogene cooperation in tumor 
maintenance and tumor recurrence in mouse mammary tumors induced by Myc and 
mutant Kras. Proc Natl Acad Sci U S A 105: 5242-5247. 



 154 

Polyak K, Kalluri R. 2010. The role of the microenvironment in mammary gland 
development and cancer. Cold Spring Harb Perspect Biol 2: a003244. 

Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, 
Dickins RA, Kogan SC et al. 2011. A rapid and scalable system for studying gene 
function in mice using conditional RNA interference. Cell 145: 145-158. 

Proia DA, Kuperwasser C. 2006. Reconstruction of human mammary tissues in a mouse 
model. Nat Protoc 1: 206-214. 

Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. 2011. RAS oncogenes: weaving a tumorigenic 
web. Nat Rev Cancer 11: 761-774. 

Reis-Filho JS, Carrilho C, Valenti C, Leitao D, Ribeiro CA, Ribeiro SG, Schmitt FC. 2000. Is 
TTF1 a good immunohistochemical marker to distinguish primary from metastatic 
lung adenocarcinomas? Pathol Res Pract 196: 835-840. 

Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. 2000. An atlas of mouse mammary 
gland development. J Mammary Gland Biol Neoplasia 5: 227-241. 

Riond JL, Riviere JE. 1988. Pharmacology and toxicology of doxycycline. Vet Hum Toxicol 30: 
431-443. 

Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. 2009. Breast cancer susceptibility: 
current knowledge and implications for genetic counselling. Eur J Hum Genet 17: 722-
731. 

Robertson D. 1998. Genentech's anticancer Mab expected by November. Nat Biotechnol 16: 
615. 

Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. 2009. The 
HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and 
personalized medicine. Oncologist 14: 320-368. 

Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani 
M, Enoksson J et al. 2005. PIK3CA mutations correlate with hormone receptors, node 
metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast 
carcinoma. Cancer Res 65: 2554-2559. 

Sakamoto K, Schmidt JW, Wagner KU. 2012. Generation of a novel MMTV-tTA transgenic 
mouse strain for the targeted expression of genes in the embryonic and postnatal 
mammary gland. PLoS One 7: e43778. 

Salemis NS, Nakos G, Sambaziotis D, Gourgiotis S. 2010. Breast cancer associated with type 
1 neurofibromatosis. Breast Cancer 17: 306-309. 

Sangha N, Wu R, Kuick R, Powers S, Mu D, Fiander D, Yuen K, Katabuchi H, Tashiro H, 
Fearon ER et al. 2008. Neurofibromin 1 (NF1) defects are common in human ovarian 
serous carcinomas and co-occur with TP53 mutations. Neoplasia 10: 1362-1372, 
following 1372. 



 155 

Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, Zhao A, Busuttil RW, Yee H, Stein 
L et al. 2011. Identification of a therapeutic strategy targeting amplified FGF19 in 
liver cancer by Oncogenomic screening. Cancer Cell 19: 347-358. 

Sawicki JA, Morris RJ, Monks B, Sakai K, Miyazaki J. 1998. A composite CMV-IE 
enhancer/beta-actin promoter is ubiquitously expressed in mouse cutaneous 
epithelium. Exp Cell Res 244: 367-369. 

Schade B, Rao T, Dourdin N, Lesurf R, Hallett M, Cardiff RD, Muller WJ. 2009. PTEN 
deficiency in a luminal ErbB-2 mouse model results in dramatic acceleration of 
mammary tumorigenesis and metastasis. J Biol Chem 284: 19018-19026. 

Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA. 
1984. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour 
antigen. Nature 312: 513-516. 

Schwertfeger KL, Rosen JM, Cohen DA. 2006. Mammary gland macrophages: pleiotropic 
functions in mammary development. J Mammary Gland Biol Neoplasia 11: 229-238. 

Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I, Yoon S, Krasnitz A, 
Teruya-Feldstein J, Pappin D et al. 2012. A tumour suppressor network relying on 
the polyamine-hypusine axis. Nature 487: 244-248. 

See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. 2012. Sensitivity of glioblastomas to 
clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer 
Res 72: 3350-3359. 

Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panageas KS, Arroyo C, 
Valero V, Currie V et al. 2001. Weekly trastuzumab and paclitaxel therapy for 
metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and 
gene amplification. J Clin Oncol 19: 2587-2595. 

Selbert S, Bentley DJ, Melton DW, Rannie D, Lourenco P, Watson CJ, Clarke AR. 1998. 
Efficient BLG-Cre mediated gene deletion in the mammary gland. Transgenic Res 7: 
387-396. 

Serpi R, Klein-Rodewald T, Calzada-Wack J, Neff F, Schuster T, Gailus-Durner V, Fuchs H, 
Poutanen M, Hrabre de Angelis M, Esposito I. 2013. Inbred wild type mouse strains 
have distinct spontaneous morphological phenotypes. Histol Histopathol 28: 79-88. 

Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, 
Lindeman GJ, Visvader JE. 2006. Generation of a functional mammary gland from a 
single stem cell. Nature 439: 84-88. 

Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, 
Guliany R, Senz J et al. 2009. Mutational evolution in a lobular breast tumour 
profiled at single nucleotide resolution. Nature 461: 809-813. 



 156 

Sharif S, Moran A, Huson SM, Iddenden R, Shenton A, Howard E, Evans DG. 2007. Women 
with neurofibromatosis 1 are at a moderately increased risk of developing breast 
cancer and should be considered for early screening. J Med Genet 44: 481-484. 

Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, 
Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM et al. 2009. Far-red 
fluorescent tags for protein imaging in living tissues. Biochem J 418: 567-574. 

Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, 
Brogi E, Joyce JA. 2011. Macrophages and cathepsin proteases blunt 
chemotherapeutic response in breast cancer. Genes Dev 25: 2465-2479. 

Siegel PM, Dankort DL, Hardy WR, Muller WJ. 1994. Novel activating mutations in the neu 
proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 14: 7068-
7077. 

Siegel PM, Ryan ED, Cardiff RD, Muller WJ. 1999. Elevated expression of activated forms of 
Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in 
transgenic mice: implications for human breast cancer. EMBO J 18: 2149-2164. 

Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, 
Schlabach MR et al. 2005. Second-generation shRNA libraries covering the mouse 
and human genomes. Nat Genet 37: 1281-1288. 

Singh B, Ittmann MM, Krolewski JJ. 1998. Sporadic breast cancers exhibit loss of 
heterozygosity on chromosome segment 10q23 close to the Cowden disease locus. 
Genes Chromosomes Cancer 21: 166-171. 

Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. 1987. Coexpression of 
MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of 
oncogenes in vivo. Cell 49: 465-475. 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. 1987. Human breast 
cancer: correlation of relapse and survival with amplification of the HER-2/neu 
oncogene. Science 235: 177-182. 

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, 
Udove J, Ullrich A et al. 1989. Studies of the HER-2/neu proto-oncogene in human 
breast and ovarian cancer. Science 244: 707-712. 

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann 
W, Wolter J, Pegram M et al. 2001. Use of chemotherapy plus a monoclonal antibody 
against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 
344: 783-792. 

Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. 1999. Nonclinical 
studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 
26: 60-70. 



 157 

Song MS, Salmena L, Pandolfi PP. 2012. The functions and regulation of the PTEN tumour 
suppressor. Nat Rev Mol Cell Biol 13: 283-296. 

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de 
Rijn M, Jeffrey SS et al. 2001. Gene expression patterns of breast carcinomas 
distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 
10869-10874. 

Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, 
Penninger JM, Siderovski DP, Mak TW. 1998. Negative regulation of PKB/Akt-
dependent cell survival by the tumor suppressor PTEN. Cell 95: 29-39. 

Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard 
ML, Hattier T, Davis T et al. 1997. Identification of a candidate tumour suppressor 
gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced 
cancers. Nat Genet 15: 356-362. 

Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. 2005. A lentiviral microRNA-based 
system for single-copy polymerase II-regulated RNA interference in mammalian 
cells. Proc Natl Acad Sci U S A 102: 13212-13217. 

Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, 
Hu Z, Guan Y, Sahin A et al. 2008. An integrative genomic and proteomic analysis of 
PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68: 6084-6091. 

Stewart TA, Pattengale PK, Leder P. 1984. Spontaneous mammary adenocarcinomas in 
transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627-637. 

Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ. 2006. 
Purification and unique properties of mammary epithelial stem cells. Nature 439: 
993-997. 

Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458: 719-724. 

Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon y Cajal S, 
Jones S, Vidal L et al. 2008. Dose- and schedule-dependent inhibition of the 
mammalian target of rapamycin pathway with everolimus: a phase I tumor 
pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26: 
1603-1610. 

Tanic N, Milovanovic Z, Dzodic R, Juranic Z, Susnjar S, Plesinac-Karapandzic V, Tatic S, 
Dramicanin T, Davidovic R, Dimitrijevic B. 2012. The impact of PTEN tumor 
suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer 
patients. Cancer Biol Ther 13: 1165-1174. 

Tennis M, Singh B, Hjerpe A, Prochazka M, Czene K, Hall P, Shields PG. 2010. Pathological 
confirmation of primary lung cancer following breast cancer. Lung Cancer 69: 40-45. 



 158 

Troy T, Jekic-McMullen D, Sambucetti L, Rice B. 2004. Quantitative comparison of the 
sensitivity of detection of fluorescent and bioluminescent reporters in animal 
models. Mol Imaging 3: 9-23. 

Tsang RY, Finn RS. 2012. Beyond trastuzumab: novel therapeutic strategies in HER2-
positive metastatic breast cancer. Br J Cancer 106: 6-13. 

Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD, Pawson T, 
Muller WJ. 2008. ShcA signalling is essential for tumour progression in mouse 
models of human breast cancer. EMBO J 27: 910-920. 

Vargo-Gogola T, Rosen JM. 2007. Modelling breast cancer: one size does not fit all. Nat Rev 
Cancer 7: 659-672. 

Varticovski L, Hollingshead MG, Robles AI, Wu X, Cherry J, Munroe DJ, Lukes L, Anver 
MR, Carter JP, Borgel SD et al. 2007. Accelerated preclinical testing using 
transplanted tumors from genetically engineered mouse breast cancer models. Clin 
Cancer Res 13: 2168-2177. 

Velculescu VE. 2008. Defining the blueprint of the cancer genome. Carcinogenesis 29: 1087-
1091. 

Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, 
Reczek EE, Weissleder R, Jacks T. 2007. Restoration of p53 function leads to tumour 
regression in vivo. Nature 445: 661-665. 

Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, 
Murphy M, Novotny WF, Burchmore M et al. 2002. Efficacy and safety of 
trastuzumab as a single agent in first-line treatment of HER2-overexpressing 
metastatic breast cancer. J Clin Oncol 20: 719-726. 

Vonderhaar BK, Ginsburg E. 2000. Intramammary delivery of hormones, growth factors, 
and cytokines. in Methods in Mammary Gland Biology and Breast Cancer Research (eds. 
MIP Margot, BB Asch), pp. 97-99. Kluwer Academic/Plenum Publishers, Buffalo. 

Voskoglou-Nomikos T, Pater JL, Seymour L. 2003. Clinical predictive value of the in vitro 
cell line, human xenograft, and mouse allograft preclinical cancer models. Clin 
Cancer Res 9: 4227-4239. 

Wagner KU, McAllister K, Ward T, Davis B, Wiseman R, Hennighausen L. 2001. Spatial and 
temporal expression of the Cre gene under the control of the MMTV-LTR in different 
lines of transgenic mice. Transgenic Res 10: 545-553. 

Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, 
Hennighausen L. 1997. Cre-mediated gene deletion in the mammary gland. Nucleic 
Acids Res 25: 4323-4330. 

Wallace JA, Li F, Leone G, Ostrowski MC. 2011. Pten in the breast tumor microenvironment: 
modeling tumor-stroma coevolution. Cancer Res 71: 1203-1207. 



 159 

Wallace MD, Pfefferle AD, Shen L, McNairn AJ, Cerami EG, Fallon BL, Rinaldi VD, 
Southard TL, Perou CM, Schimenti JC. 2012. Comparative oncogenomics implicates 
the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 192: 385-396. 

Watring WG, Byfield JE, Lagasse LD, Lee YD, Juillard G, Jacobs M, Smith ML. 1974. 
Combination Adriamycin and radiation therapy in gynecologic cancers. Gynecol 
Oncol 2: 518-526. 

Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS, Schadendorf D, 
Root DE, Garraway LA. 2013. A genome-scale RNA interference screen implicates 
NF1 loss in resistance to RAF inhibition. Cancer Discov. 

Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene 
lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862. 

Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak 
J et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science 
318: 1108-1113. 

Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis 
J. 2007. Direct visualization of macrophage-assisted tumor cell intravasation in 
mammary tumors. Cancer Res 67: 2649-2656. 

Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, 
Lowe SW. 2007. Senescence and tumour clearance is triggered by p53 restoration in 
murine liver carcinomas. Nature 445: 656-660. 

Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. 2002. Herceptin-
induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for 
antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: 
4132-4141. 

Yang M, Nonaka D. 2010. A study of immunohistochemical differential expression in 
pulmonary and mammary carcinomas. Mod Pathol 23: 654-661. 

Yarden Y. 2001. Biology of HER2 and its importance in breast cancer. Oncology 61 Suppl 2: 
1-13. 

Yarden Y, Sliwkowski MX. 2001. Untangling the ErbB signalling network. Nat Rev Mol Cell 
Biol 2: 127-137. 

Yin Y, Shen WH. 2008. PTEN: a new guardian of the genome. Oncogene 27: 5443-5453. 

Yu D, Hung MC. 2000. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. 
Oncogene 19: 6115-6121. 

Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, 
Schirmacher P et al. 2008. An oncogenomics-based in vivo RNAi screen identifies 
tumor suppressors in liver cancer. Cell 135: 852-864. 



 160 

Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J. 
2009. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. 
Cancer Cell 16: 67-78. 

Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Karesen R, 
Botstein D, Borresen-Dale AL et al. 2004. Different gene expression patterns in 
invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15: 2523-2536. 

Zhu W, Michael CW. 2007. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the 
differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous 
effusions. Diagn Cytopathol 35: 370-375. 

Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ, Lowe SW. 2011a. Toolkit 
for evaluating genes required for proliferation and survival using tetracycline-
regulated RNAi. Nat Biotechnol 29: 79-83. 

Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W, McCurrach ME, Yang MM, 
Dolan ME, Kogan SC et al. 2009. Mouse models of human AML accurately predict 
chemotherapy response. Genes Dev 23: 877-889. 

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, 
Wunderlich M et al. 2011b. RNAi screen identifies Brd4 as a therapeutic target in 
acute myeloid leukaemia. Nature 478: 524-528. 

 

  



 161 

Appendix. Differential expression of TRE and TREtight promoters 

 

In order to assess differences in the promoter expression patterns and levels between 

TRE and TREtight, a number of age-matched mice were treated with doxycycline and 

harvested side-by-side. GFP reporter expression as observed by gross examination using 

fluorescence microscopy. The spleen, kidney, liver, small intestine, colon, skin, pancreas, 

stomach, lung, heart and thymus were examined and GFP expression levels were 

documented. Brightfield and GFP images are shown for each organ type in the Appendix 

figures. 

 

The first cohort of mice was designed to compare single vs. double copy of the 

Rosa26-rtTA2 allele using TREtight-GFP-shRLuc.713 and TREtight-GFP-shNF1.8594 

littermate female mice. Dox treatment was started at 4 weeks of age for 18 days. An age-

matched wild type control mouse was included (no dox treatment).  

 

The second cohort sought to compare both single-copy R26-rtTA2 with CAGs-rtTA3 

(“4288”), as well as TRE-GFP-miR30 vs. TREtight-GFP-miR30. The following mice were dox 

treated starting at 6 weeks of age for 16 days:  

• CAGs-rtTA3 ; TtG-shRLuc (2 mice) and TtG-shRLuc only (1 mouse) littermates 
• R26-rtTA2+/- ; TtG-shNF1.6074 (2 mice) and TtG-shNF1.6074 only (1 mouse) littermates 
• CAGs-rtTA3 ; TG-shAPC.9365 (1 mouse) 
 
The following mice were dox treated starting at 11 weeks of age for 2.5 months: 

• R26-rtTA2 ; R26-Luciferase ; TG-shLuci.1309 on dox (two mice) 
• R26-rtTA2 ; R26-Luciferase ; TG-shLuci.1309 off dox control (one mouse) 
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