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Abstract

Many previous studies have shown that by using variants of ‘‘guilt-by-association’’, gene function predictions can be made
with very high statistical confidence. In these studies, it is assumed that the ‘‘associations’’ in the data (e.g., protein
interaction partners) of a gene are necessary in establishing ‘‘guilt’’. In this paper we show that multifunctionality, rather
than association, is a primary driver of gene function prediction. We first show that knowledge of the degree of
multifunctionality alone can produce astonishingly strong performance when used as a predictor of gene function. We then
demonstrate how multifunctionality is encoded in gene interaction data (such as protein interactions and coexpression
networks) and how this can feed forward into gene function prediction algorithms. We find that high-quality gene function
predictions can be made using data that possesses no information on which gene interacts with which. By examining a
wide range of networks from mouse, human and yeast, as well as multiple prediction methods and evaluation metrics, we
provide evidence that this problem is pervasive and does not reflect the failings of any particular algorithm or data type. We
propose computational controls that can be used to provide more meaningful control when estimating gene function
prediction performance. We suggest that this source of bias due to multifunctionality is important to control for, with
widespread implications for the interpretation of genomics studies.
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Introduction

Understanding the function of genes is one of the central

challenges of biology [1,2,3]. Characterizing gene function is

complex, in part because biological functions involve the

integrated activities of many genes. The same gene may have

different functions depending on context, which is in turn be

defined partly by the presence of other gene products. For

example, the tumor suppressor TP53 has different functions

depending on its interaction partners (e.g. [4,5,6,7]). In this paper

we are concerned with issues surrounding ‘‘multifunctionality’’ at

the molecular level. While we define ‘‘multifunctionality’’ precisely

below, we intend the term to mean approximately ‘‘the number of

functions a gene is involved in’’. We are interested in how

multifunctionality impacts the interpretation of experiments,

especially from the standpoint of computational analyses that are

applied to large high-throughput data sets such as expression

profiling and proteomics surveys. In particular, we take a close

look at how the degree of multifunctionality (whether it is known

or not) interacts with the computational assignment of functions

to genes. This seemingly esoteric issue turns out to have

surprisingly deep implications in how high-throughput data sets

are interpreted.

Despite the obvious importance of understanding gene function,

multifunctionality has received surprisingly little attention in the

functional genomics literature. There appears to be little consensus

on the definition of ‘‘multifunctionality’’. Previous work has

considered attributes of genes which, intuitively, might be related

to multifunctionality: pleiotropy, promiscuity, and hub-ness, but

these are rarely discussed in the context of multifunctionality.

While closest to multifunctionality in definition, pleiotropy (the

ability of a gene to influence multiple phenotypic traits) is not

typically used to refer exclusively to molecular traits and is usually

defined with reference to the effect of mutation on phenotype. In

contrast, we will use ‘‘multifunctional’’ to refer to genes possessing

multiple molecular functions, each of which can be characterized

by the set of genes (or their products) inferred to be interacting in a

particular biological context. Thus, pleiotropy is both usually

further downstream phenotypically than multifunctionality and

defined with reference to the effects of allelic variation as opposed

to observed or inferred molecular interaction. Pleiotropic genes

are suggested to tend to be conserved [8], modular [9], involved in

more biological processes [10], and more commonly interacting

[11]. However, many of these characterizations have been

theoretical [12], with experimental evidence being mixed

[13,14,15]. Pleiotropy can be formally assessed by the effect of

mutation on phenotypic profile [13], but the determination of a

pleiotropic gene will depend on the functional categories chosen

(or the contexts over which phenotypic profile is measured).

Similarly, hub genes and promiscuous genes may be defined as

genes which possess many interactions (e.g., [16,17]), though there

is no principled basis for choosing the threshold as to how many
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interactions is ‘‘many’’. Hubs tend to be essential ([18,19]),

conserved ([20,21]) (or, alternatively, intrinsically disordered and

non-conserved [22], and abundant[23]. The high connectivity of

hubs (along with conservation) is generally taken to reflect

biological ‘‘importance’’, although this is not fully resolved [24].

In contrast, the term ‘‘promiscuous proteins’’ is usually used to

refer to ‘‘sticky’’ interactors whose interactions are ‘‘non-specific’’

and due to analysis artifacts [16]. Recently promiscuity has been

considered as potentially functional [25], but this appears to be a

minority view. One question embodied in the terminological

distinction between promiscuous proteins (non-specific) and hub

genes (functional) is the specificity of function itself. A distinction

between promiscuity and ‘‘hub-ness’’, for example, may be that

(some) hubs are strongly/specifically involved in many functions

whereas promiscuous proteins are only weakly/uncertainly

involved in many functions [26].We propose that the cloudiness

surrounding these issues (e.g., [27]) can be in part resolved by

carefully considering what is meant by ‘‘multifunctionality’’, and

using the resulting precise definition to analyze gene networks.

An important aspect of the work we present is the general

method used for describing and assessing function using

computational techniques. Three things are required. First, genes

must be classified into functions using some scheme; the most

popular such repository of functional information is the Gene

Ontology [28]. Second, an algorithm is needed to assign functions.

Gene function prediction algorithms attempt to determine

candidate genes for a functional group (e.g., GO group) using

the properties of the existing genes in the set. These properties

form the third requirement for function prediction. Typically, the

properties of genes used in gene function prediction are

represented as a network (graph) of gene associations defined by

any of a number of methods, including protein interactions

[29,30,31,32], RNA coexpression [3,33,34] and genetic interac-

tions [35,36,37]. More broadly, these networks encode either

interactions (e.g., protein interaction, genetic interaction) or

similar profiles across functional contexts (e.g., coexpression,

phylogenetic profile), both of which imply shared function. This

is partly expressed in the principle of ‘‘guilt by association’’ which

states that genes which are associated (i.e., interaction or profile)

are more likely to share function [38]. Thus one chooses a target

gene group of interest and uses ‘‘guilt by association’’ of one form

or another to decide which other genes in the network should be

assigned the same ‘‘function’’. Such approaches have been shown

to be broadly applicable, with a high degree of success in predicting

gene function in cross-validation settings [39,40,41,42,43]. In one

study [43], essentially all GO categories were at least somewhat

learnable from expression data.

A main point of the current paper is that contrary to

assumptions inherent in previous studies, most computational

predictions of function are driven by the presence of multi-

functionality. This leads us to a very different interpretation of

guilt-by-association than that which is usually offered. It is

therefore of interest to us that since the guilt-by-association

approach was first articulated, there have been a variety of efforts

to characterize difficulties with it. In particular, it is recognized

that false positive predictions are a problem. One issue is false

positives in the original network [31,44,45] – in other words,

promiscuity that leads to false associations among genes and thus

among genes and functions. A tactic that has been applied to

coexpression analysis is to retain an edge in the network only if the

given edge is among the highest scoring candidate edges for both

genes. We referred to this as the ‘‘top overlap’’ method.

[39,45,46,47] use variations on this approach. Another class of

problem has to do with the choice of the ‘‘negative’’ control group

of genes used in the algorithm for prediction, leading to inflated

performance measures [48,49,50,51]. We show that approaches to

remedy these problems have other effects on prediction of function

which can be understood by how the methods interact with

multifunctionality.

Another key concept for our work is node degree (the number of

connections per gene in a network) and how it relates to function.

Node degree is a central property of gene networks [52] and in fact

can be used to help predict the interactions of genes[53]. Because

genes function in a large part by interacting with other genes, one

might expect multifunctional genes to exhibit higher node degree

[54]. The possibility of a correlation between multifunctionality

and node degree has been previously examined as part of the

general interest in characterizing properties associated with node

degree, although these results have been mixed [10,11,14,22]. In

this paper we show that node degree is unambiguously linked to

multifunctionality even in cases where the two properties are

uncorrelated – and further that this has strong implications in how

functions get associated with genes.

Using a range of data, algorithms, and analytical tools, in this

paper we provide strong evidence that multifunctionality a key

factor in explaining the results of gene function prediction

analyses. This is important because there is an unstated

assumption in the literature that gene function predictions are

‘‘specific’’ to the function in question. The truth is that most gene

function predictions are driven by the tendency of algorithms to

simply assign more functions to genes which are already

multifunctional. Indeed, we believe that there are no computa-

tional gene function assignments that can be shown to preclude the

possibility they reflect only underlying multifunctionality. This is in

spite of the fact that some predictions go on to be confirmed by

laboratory methods: a correct prediction does not mean the

predictive method is working the way one thinks it does. We

propose that these concepts are important not just to computa-

tional gene function prediction, but highly relevant to the

interpretation of all biological studies that try to probe gene

function.

Results

Defining multifunctionality and predicting without data
Using GO as our source of functional annotations, we define the

multifunctionality of a single gene as

Score(GeneA)~
X

iDGeneA[GOi

1

Numini
�Numouti

where Num_ini is the number of genes within GO group i, and

Num_outi is the number of genes outside GO group i. If we ignore

the weighting by the size of the groups, this score is simply the

number of GO terms a gene has. The weighting has the effect of

counting membership in a GO group by how much the gene

contributes to that GO group. Weighting by Num_in has the effect

of giving a gene which, e.g., is one out of five in a GO group a

contribution of 1/5. Weighting by Num_out provides a corre-

sponding weighting to genes not within the GO group; that is,

being the only gene outside a large GO group subtracts as much

from that one gene’s score as being the only gene within a GO

group would add to another gene’s score. The particular form of

this definition was not chosen arbitrarily, as we now explain.

We arrived at our definition of multifunctionality by considering

that the greater the multifunctionality of a gene, the greater the

degree to which it should be a good candidate for having any
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function (averaged over all functions). Thus, a single ranked list of

genes which best captures candidacy across all functions is

equivalent to a list of genes ranked by multifunctionality.

Intuitively, if one is forced to choose a single ranking, the gene

with the most GO annotations could be predicted as being in all

GO categories. This is because if one gene is in 100 GO categories

(high multifunctionality), and another is in only one (low

multifunctionality), by placing the former gene ahead of the latter

gene in a fixed ranking, we make a correct prediction more often

across all GO categories. Because the ranking of genes is optimized

in this way, we expect that when we use it as a ‘‘predictor’’ of GO

category membership, we should get values of the AUC of over 0.5

for many GO terms. We were nonetheless surprised that this single

ranking of genes gives a mean AUC of 0.90 across all GO terms

tested (Figure 1A). By itself, this is clearly not a meaningful result

for ‘‘gene function prediction’’ since the ranking is obtained in a

‘‘circular’’ way by optimizing for GO. A main point of this paper is

that there are properties of real data that are correlated with this

optimal ranking, and this fact can explain much of the apparent

learnability of gene function by ‘‘guilt-by-association’’.

The definition above is the optimal list (see Data S1, Section 1)

when the optimization is for the area under the curve (AUC) of the

receiver-operator curve (ROC).

Small differences in AUC can hide larger differences in other

measures such as positive predictive value (PPV). Maximizing

AUC provides a particularly intuitive form for the multifunction-

ality scores (number of functions weighted by involvement) as well

as simple analytic calculation of the optimal list, but the same

principle can be applied to other metrics. The AUC has the added

benefit of being widely used and not dependent on choosing a

specific threshold. Using a different metric would suggest using a

different optimal list. In later sections we show that our conclusions

are not sensitive to the choice of performance measure.

It is naturally of interest to know which genes are most

multifunctional. As ranked by our definition, the most multifunc-

tional human genes include a mixture of genes that most biologists

would recognize immediately as "centrally important" (e.g. tumor

necrosis factor (TNF), transforming growth factor beta 1 (TGFB1))

and others that might seem more unexpected (e.g. forkhead box J1

(FOXJ1), ATPase, Cu++ transporting, alpha polypeptide (ATP7A);

the full lists are available as Data S1). We leave as a topic for future

work the question of whether these top-ranked genes really are

especially multifunctional, or whether they merely appear to be,

due to biases in research into gene function or of patterns of

annotation. In addition to providing a single ranking of genes by

multifunctionality, we also obtain a ranking of GO groups by how

well they are predicted by this ranking (Data S1). Highly-ranked

GO groups are the ‘‘most multifunctional’’ – the genes they

contain tend to be highly multifunctional.

Thus far we have merely provided a novel definition of

multifunctionality and shown how it can yield surprisingly strong

performance when used for functional prediction. As mentioned

above, while this exposes some important features about the

distribution of GO annotations amongst genes and gives insight

into which genes are most ‘‘multifunctional’’, by itself it has no

implication for gene function prediction because it uses GO in its

construction (it is obviously ‘‘overfit’’; we are not proposing this

ranking is of any utility for gene function prediction). We now

show that the ranking of genes by multifunctionality is consistently

reflected in real data. The basic implication is that gene function

predictions based on such data can be attributed to multi-

functionality.

The relationship between multifunctionality and network
node degree

We hypothesized that multifunctionality plays a role in the

prediction of gene function from genomics data. In particular, we

wished to examine whether multifunctionality is reflected in other

properties of genes which are used in data interpretation. This is

potentially important because it is usually assumed that when

genes are assigned a function, it is due to either a valid prediction

or a false positive due to ‘‘promiscuity’’ or other issues with the

data. We suspected that in fact multifunctionality can explain a

substantial amount of the way functions are assigned. How could

this happen? As we showed in Figure 1A, ranking genes by

multifunctionality would be a good way to get good performance

from a gene function prediction algorithm. Thus, if the data used

for prediction is in some way a proxy for (or correlated with)

multifunctionality, and the algorithm used for classification can

exploit this, very good prediction performance can result. Put

another way, algorithms which assign new functions to genes

which are already highly multifunctional will, on average, be

rewarded by appearing to yield good performance. This is true no

matter what measure of performance is used, though as mentioned

above the optimal ranking will be somewhat different for different

performance measures.

Figure 1. A single ranking of genes can predict GO group membership. A) The distribution of AUCs yielded by the ‘‘optimal gene ranking’’
for 10127 GO groups of size 20–1000. This list is similar to ordering genes by the number of GO categories to which they belong. B) The number of
GO groups per gene is correlated with node degree. The number of coexpression partners (in those genes with at least one coexpression partner) is
plotted as a function of the number of GO categories (binned) to which a gene belongs. Values were ranked and the bin size was set to 500 genes (to
capture the consistent trend in the weak rank correlation of 0.28). C) Node degree alone can predict GO group membership. The histogram of AUCs
across all GO groups which can be obtained using a single list constructed from number of coexpression partners. The median is well above 0.5.
doi:10.1371/journal.pone.0017258.g001
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Because gene function prediction uses the structure of gene

networks (or association matrices), it is natural to consider how

those networks are generated and how this relates to multi-

functionality. A key statistic about networks is the node degree of

each gene – how many connections each gene has. Because we

define each function at the molecular level by the set of genes

interacting in a particular context, it might be expected that a

greater number of interaction partners overall (higher node

degree) would reflect membership in a greater number of sets of

genes (higher multifunctionality); this is the hub view of high node

degree. Alternatively, functional studies might not translate well to

interaction studies, or a higher node degree could represent only a

less specifically defined functional role for the gene for no greater

number of functions; this is the promiscuous protein view of high

node degree.

In the following we consider a model to assess the specificity of

functional information in protein interaction networks (and find

that node degree ranks genes by their probability of random

interaction). Previous workers have noted that in protein

interaction networks, the probability of two genes being associated

in a network is strongly correlated with the product of their

individual node degrees (the number of connections they have)

[53]. It has further been shown that protein interaction networks

can be surprisingly accurately reconstructed by a model in which

each gene i has an inherent and fixed probability pi of being an

interactor, without any specificity in the interactions; in our model

the probability of an interaction is determined only by the product

of these probabilities.

An ‘‘interaction’’ matrix generated from this model takes the

form pipj for each pair of genes i and j – the independent product of

probabilities representing the probability of both proteins

appearing in the test and thereby their being labeled as associated.

If we treat a real interaction matrix as if it were generated from the

model, we can reconstruct the ranking of the original values for the

p’s by noting that the sums across the columns of the matrix are

Ai~pi

Xn

j~1

pj

Because the sum forming the multiplicand is a constant, this

product is proportional to the value of pi, so the result is the desired

ranking. With a real interaction matrix, we compute A simply as

the (weighted) sum of each row of the matrix. If the original

network is unweighted, A is essentially equivalent to the node

degree. Under this null model, node degree is more than just an

interesting statistic about a gene; it explains the structure of

networks.

Our interest in node degree is spurred by the idea that node

degree might be strongly related to multifunctionality. As

mentioned in the introduction, this seems intuitive and has some

support in the literature. Here we show that there is an

unequivocal relationship between node degree and multifunction-

ality, in a wide range of networks.

We first computed node degree for a human gene coexpression

network and compared it to the ranking provided by the degree of

annotations (number of GO terms) (Figure 1B). The rank

correlation is modest (0.28) but statistically significant (p,0.001).

Importantly, the effect is distributed across the entire range of

node degrees – it is not just a property of genes with higher node

degrees. This general relationship held for a variety of other

networks we examined (Table 1), to varying degrees. Thus there is

a relationship between multifunctionality and node degree, but by

this measure the effect appears modest.

As hinted above, the results shown in Figures 1A and 1B

suggest that simply ranking genes by how much coexpression

they have (regardless of with which other gene) would yield good

results in classification tasks because it would approximately rank

genes by their multifunctionality. In this approach, the gene with

the highest node degree (most widely coexpressed) is predicted as

the best candidate for membership in all GO categories, and the

gene with the second-highest node degree is the next best

candidate, and so on. The results of doing this for coexpression

data are shown in Figure 1C. The mean ROC is 0.58, which is

significantly different from 0.5 (p,0.01, permutation test), and

there are many GO terms for which performance is quite good

(over 0.70). We performed a similar analysis on several other

networks (Table 1), and the performance is consistently

significant (p,0.01). The performance is particularly strong in

the case of the human protein-protein interaction network

(Table 1). Clearly these prediction performance results are an

artifact, and are due to interactions between the input data and

multifunctionality.

The results in Figure 1B and Table 1 show that while there is a

detectable relationship between node degree and multifunction-

ality, the actual correlation between the rankings is modest and

varies from data set to data set. However, when we look at the

impact on the ability to predict gene function from node degree

alone, the variance is almost entirely explainable by multi-

functionality. To help show this, we assessed the performance of

node degree at predicting gene function in forty-seven human

Table 1. Gene function prediction performance.

Matrix Gene sets Algorithm Score (AUC or CCR) Node degree score Correlation

PPIN GO GeneMANIA 0.70 0.63 0.95

PPIN GO SVM 0.60 0.64 0.65

PPIN KEGG GeneMANIA 0.73 0.65 0.97

PPIN KEGG SVM 0.66 0.66 0.85

Coexpression GO GeneMANIA 0.59 0.54 0.83

Coexpression GO SVM 0.53 0.55 0.36

Coexpression KEGG GeneMANIA 0.63 0.56 0.81

Threshold Coexpression GO GeneMANIA 0.55 0.52 0.96

Table 1: Each combination of data, method, and gene set is shown along with its performance. The scores are ROC areas for GeneMANIA and correct classification rates
for SVM. The performance of the node degree vector for each set is also shown, along with the correlation between the two sets of scores.
doi:10.1371/journal.pone.0017258.t001
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coexpression networks. As expected, performance varies from data

set to data set; these values essentially expand the data in Table 1.

Overall, the mean AUC we obtain with a given network using

node degree alone to rank genes is highly predicted by the degree

to which the network’s node degree ranking correlates with

multifunctionality (Spearman correlation = 0.96). Thus node

degree performance is a proxy for multifunctionality in determin-

ing gene interactions. In subsequent sections, we will see more

clearly that node degree performance is central to determining

overall performance in gene function prediction from networks, so

the high correlation between node degree performance and the

degree to which node degree reflects multifunctionality is critical.

Thus far we have measured multifunctionality using the Gene

Ontology, which is arguably the best single source of gene

annotations. One could ask whether the same ranking generalizes

for other groupings of genes one might want to predict. As shown

in Table 2, the GO-based multifunctionality ranking provides very

good predictions for sets of candidate disease genes identified in

genetics studies, including Alzheimer’s disease [55], schizophrenia

[56], Parkinson’s disease [57] and autism [58]. Indeed, across

4069 sets of disease genes from OMIM [59], the average ROC is

0.76 (Figure S1). To give a point of reference, the multi-

functionality ranking performs better than a sophisticated

algorithm, GeneMANIA [39], using protein interaction data to

make predictions on these same groups (Table 2). This finding

suggests biases in how these candidate gene groups are established,

how association with disease indirectly influences the GO

annotations a gene receives, and/or the degree to which

multifunctional genes contribute to disease.

In this section we have shown that using node degree alone to

predict gene function works strikingly well and that numerous real-

life rankings of genes seem to reflect multifunctionality more than

any more specific biological principle. But because node degree is

not actually what is used by biologists to predict function, one

might still ask whether ‘‘real’’ analyses are independent of these

effects. We address this issue in the next section.

Do gene networks provide new information?
While the above results show that simply ranking genes by node

degree (and thus by multifunctionality) provides some predictabil-

ity of gene function, it is still possible that a ‘‘real’’ analysis of the

original network with a sophisticated machine learning algorithm

does much better and that multifunctionality plays only a small

role in real studies. Unfortunately we find this is not the case.

Earlier we mentioned the finding that node degree has been shown

to explain much of the structure of protein interaction networks.

We now show that node degree (and thus multifunctionality)

underlies a large fraction of the performance of gene function

prediction methods. In fact is it impossible to say for certain that

any gene function prediction is not simply due to the influence of

multifunctionality.

As a first indication of this problem, we found that the ability to

predict a gene function group based on node degree performance

is strongly predictive of how well that group will be predicted in

the ‘‘real’’ analysis (Table 1, Figure 2A and 2C). That is, node

degree generates its best prediction performance in the same gene

groups as a real analysis. In fact, the correlation understates this

trend, since scatter around an AUC of 0.5 is expected. Second,

predictions from node degree are surprisingly good compared to

the ‘‘real’’ analysis (Figure 2B and D). For example, while average

‘‘real’’ prediction performance of GO groups is high when using

protein interactions (mean AUC 0.7), the node degree ranking

mean AUC is 0.63 – far above the 0.5 expected by chance.

Coexpression yielded very similar results (Table 1). Thus,

association matrices reflecting strong multifunctionality produce

better performance, and particularly the performance that could

be predicted by multifunctionality alone (without knowledge of

specific gene-gene associations).

The histograms in Figure 2B and D show another important

feature of node degree performance. Not only is node degree only

slightly worse than real performance, the distributions have similar

variances. This suggests that if the statistical significance of the

predictions made from the real data were calibrated by the

performance from node degree, the results would be drastically

different from the more usual approach of using a permuted

matrix. In other words, not only is ‘‘real’’ performance largely

similar to multifunctionality performance, multifunctionality

explains much of the variation for one group compared to others.

While node degree ranking is surprisingly powerful for

predicting gene function, it is still not clear from the above

analysis the extent to which node degree underlies the perfor-

mance obtained when network structure is used. To quantify how

much is actually gained by using the network and show the

manner in which multifunctionality can affect network structure

through node degree, we constructed networks entirely according

to the model proposed earlier (in which a gene’s appearance in a

given test is taken to be due to a higher prevalence, pi). As earlier,

our interaction matrix takes the form of a self-outer product, and

as shown in the supplement (Data S1, Section 2), the vector which

provides the best approximation (in the least-squares sense) of the

original association matrix under this constraint is the node degree

vector. This means that the best approximation (under these

conditions) is a network constructed from our proxy for multi-

functionality. We call the network formed from the self outer

product of the node degree vector an ‘‘individual property

network’’ or IPN, since it uses only information about individual

genes (i.e., node degree), not relationships between genes. This

network lacks any meaningful association information but can be

analyzed using the same algorithms as the original network (see

Figure S2 for a schematic of IPN construction). Thus, IPNs reflect

associations predicted from multifunctionality alone, that genes

with many functions are more likely to interact, and if these

Table 2. Disease candidate gene prediction.

Alzheimer’s Schizophrenia Parkinson’s Autism OMIM

Optimum List from GO (ROC AUC) 0.78 0.73 0.73 0.71 0.76+/20.22

Machine Learning (ROC AUC) 0.74 0.69 0.71 0.67 –

Table 2: We predicted disease genes using the optimal gene ranking based on GO and then validated using disease gene candidate sets (top). These ROC results
compare favorably to predicting candidate genes using a strongly performing protein interaction network and a powerful gene function prediction algorithm (bottom).
OMIM disease gene sets are too small for cross-validation using a gene function prediction algorithm.
doi:10.1371/journal.pone.0017258.t002
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interactions show gene function prediction performance, it can be

ascribed to multifunctionality alone.

As with the simple node degree ranking, we found that IPNs

perform very well in gene function prediction tasks compared to

results from the original association matrix. Groups that perform

well in the ‘‘real’’ analysis can be largely explained by variation in

the performance of the IPN. Two examples are given in Figure 3.

Prediction of KEGG pathways from protein interactions using

GeneMANIA yields the highest average performances of all tests

(Table 1), but only slightly better than the IPN (Figure 3A, B). In

contrast, predicting GO from coexpression using the SVM

(evaluated using corrected classification rate, CCR; see Methods)

does substantially better than the IPN, but ‘‘real’’ performance is

not as good and there are many groups which are not learnable

from either network (Figure 3C, cluster of points around 0.5,

Figure 3D). To confirm that these results are not influenced by the

use of any specific algorithm, we performed a similar analysis using

only the semantic similarity of gene pairs in the original data and

the corresponding IPN to show that functional overlap in

prediction is primarily due to multifunctionality bias (Figure S3).

One prediction of the model we propose is that if performance is

due to the node degree, varying the data will have a much more

Figure 2. Node degree performance is highly correlated with prediction from the original data. A) The performance of a single list of
genes ranked by node degree of a protein interaction network is compared to the performance using GeneMANIA for the interaction network across
all GO groups of size 20–1000. B) The protein interaction node degree vector gives comparable performance to the true network performance. C) The
performance of node degree using coexpression data. D) The coexpression node degree vector gives comparable performance to the true network
performance. Only data in which some interaction is present within a given GO group – the learnable groups - is shown.
doi:10.1371/journal.pone.0017258.g002
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significant effect than varying the method, performance metric, or

even the exact learning task. In Figure 4A, the same task is

performed with two different high- performing association

matrices, and there is little similarity in performance across all

groups. However, the top performing groups are the ones in which

the average node degree is high in both data sets (measured as the

product of the average node degrees; black points in Figure 4A). In

contrast, two different methods yield very similar results even on

rather different tasks, so long as the same underlying data is used

(Figure 4C), and again the best performance is for the groups with

the highest node degree.

To further address variability across data sets, we analyzed

coexpression in the 47 microarray studies underlying our human

gene coexpression network. We also examined 77 mouse

microarray studies on the Affymetrix MOE430A platform,

analyzing genes intersecting with the mouse Golden Path list

(mm9) and the genes analyzed by Su et al. [60]. The Su dataset is

of interest as it was used in a large evaluation of gene function

Figure 3. Individual property network (IPN) performance. Individual property networks are constructed by thresholding the self-outer
product of the node degree for a given association matrix. A) The performance of an IPN protein interaction network is compared to the performance
using GeneMANIA for the interaction network across all KEGG groups. B) The true protein interaction network performance is high but comparable to
its IPN performance. C) The performance of an IPN using coexpression data across GO groups. D) The coexpression matrix gives low performance
across GO groups but it is IPN performance is considerably worse. Only data in which some interaction is present within a given GO group – the
learnable groups - is shown.
doi:10.1371/journal.pone.0017258.g003
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prediction methods [40]. For computational efficiency, we only

used the GO-slim categories in this analysis, which may also

forestall concerns that our estimates of performance of node

degree are enhanced by redundancy in GO (Figure S4). We found

that overall, human dataset performance is strongly predicted by

node degree (correlation of 0.94) with a variable fraction

(approximately half to two-thirds) of the performance accountable

by node degree performance (including in the meta-analysis

dataset and protein-interaction dataset) (Figure 5A). A similar

effect is present for mouse, with the Su dataset being an apparent

outlier (Figure 5C).

Since node degree predicts gene function using multifunction-

ality without association information, its prediction performance

could be used as the null distribution in computing p-values for the

true association matrix, instead of using a permuted matrix as the

null distribution. When we do this, it drastically reduces the

Figure 4. Controlling for node degree. A) True prediction performance is compared for the same method (GeneMANIA) using entirely different
strongly predictive data sets (Protein interaction vs. coexpression) across GO groups. The performance is quite different, but when average node
degree is higher in both datasets (top 5% by product, dark circles), then common performance is high. B) The statistical significance of the protein
interaction results are computed using the usual permutation test (black) and using the distribution generated by the node degree scores (grey). C)
True prediction performance is compared using the same underlying data (coexpression), processed differently (threshold vs. top overlap) and
analyzed differently (SVM vs. GeneMANIA). Performance is strongly similar. D) The statistical significance of the weakly performing threshold
coexpression results are computed using the permutation test (black) and the node degree vector (grey). Only data in which some interaction is
present within a given GO group – the learnable groups – was used.
doi:10.1371/journal.pone.0017258.g004
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number of significantly predictable GO groups in even the best of

cases (Figure 4B and 4D). However, we have seen that different

gene groups perform differently depending on the node degree of

the genes within them (and that node degree of genes predicts

performance). Thus, the null distribution must more properly be

specific to the gene group, depending on the node degrees of the

genes within the group. We developed a simple algorithm to

generate random association matrices where the node degree for

each gene is maintained (in contrast to usual permutation methods

where the node degree distribution and network structure are

maintained, but node degree for any given gene is allowed to

change). Generating 1000 such matrices and testing prediction

Figure 5. Performance across experiments. A) Coexpression performance in GO slim assessed as a function of using node degree ranking in
human microarray datasets. Each point represents a single experimental set, with the open circle representing the aggregated association matrix. The
identity line – representing no improvement beyond performance using node degree alone – is shown. B) Coexpression performance assessed as a
function of node degree ranking in mouse microarray datasets. The open circle is the Su et al dataset. C) Random association matrices of fixed node
degree were generated to generate a distribution of performances for two GO groups. Performance predicting membership using the original
interaction matrix network is shown by arrowheads below the X axis (black: GO:001985; grey: GO:0044419). D) Performance of each GO slim group in
the human data is plotted as a function of performance of the group using the node degree ranking.
doi:10.1371/journal.pone.0017258.g005
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performance for the gene group on each gives a distribution of

AUCs that is an estimate of performance under the null hypothesis

of performance solely from multifunctionality effects. As can be

seen in Figure 5C for two GO groups, some groups can have

nearly all of their performance due to true guilt-by-association,

though performance is not very good (GO:0019825, AUC = 0.67,

p,0.001), whereas high-performing groups may simply have high

average node degree (GO:0044419, AUC = 0.78, p,0.035).

Finally, in Figure 5D, we plotted average performance across all

human datasets for each GO-slim category to show that each gene

function prediction category has a unique degree of learnability

from multifunctionality. Most groups lie slightly above the identity

line, indicating some information gained from using the original

network, but deviation from the line is low.

In this section we showed that much of the performance of guilt-

by-association methods can be explained by multifunctionality.

Data sets which perform well in gene function prediction are the

ones most strongly influenced by multifunctionality. Isolating those

predictions which are not explained by multifunctionality leaves a

gloomier picture of the feasibility of gene function prediction from

networks. In the next section we consider the generality of our

findings.

Assessing the generality of multifunctionality effects
A potential criticism of our results thus far is that we rely on the

AUC or the CCR for evaluation. Focusing on the AUC, a

common complaint is that the AUC takes into account true

positives that are not near the top of the ranking, but low-ranking

predictions are of no interest from a biological validation

standpoint. Thus is it reasonable to ask whether the genes with

the highest rankings in our predictions are multifunctional.

Because the trend in which multifunctionality is predicted by

node degree appears to be true not just for "hubs" but across all

node degrees (Figure 1), we would expect that predictions based on

node degree would still account for a significant fraction of

performance when focusing on the top of the list.

We re-assessed node degree effects in the human protein

interaction by three alternative methods. First, we employed the

ROC50, a variant of the ROC that examines only the rankings up

to the 50th false positive example [61]. ROC50 performance

averaged across GO groups was 0.64, while ROC50 using only

node degree was 0.58 (significantly different from 0.5), confirming

the prediction. ROC50 is not very widely used and emphasizes

details of the order of the genes in the top of the rankings, which

might not be of much interest. An alternative measure is positive

predictive value (PPV), the fraction of true positives above a

chosen threshold. To give a point of reference, using a threshold of

50 genes, GeneMANIA gave a mean PPV across GO groups of

3.8%, a 14-fold improvement over that expected by chance. We

then generated a ranking of genes based on multifunctionality,

using PPV instead of AUC as the optimization criterion (see

Methods). This single ranking gives an average PPV of 4.7%

averaged across GO groups. The final measure we examined is the

area under the precision-recall curve (AUP). The multifunction-

ality-ranked gene list gives a mean AUP of 0.037, considerably

lower than GeneMANIA’s mean performance of 0.10. The

difference between this result and the PPV result suggests that

GeneMANIA tends to rank true positives higher than the

multifunctionality ranking, though clearly both tend to rank

positives more highly than expected by chance. However, this does

not mean that using AUP gets around the problem of multi-

functionality. Because AUP strongly rewards a single true positive

at the top of the ranking, overall performance across GO

categories is highly sensitive to the impact of a correct prediction

for a highly multifunctional gene. To demonstrate this we

constructed a gene network that contains only 100 edges (among

188 genes), with edges chosen based on the number of shared

functions between the nodes. This yields a mean AUP of 0.07 (at

10 fold cross-validation). It turns out that 21 of these edges are in

the real network. A closer examination of these results suggests

that most of the GO categories that have high AUPs with

GeneMANIA can be accounted for by the effects of just a handful

of highly multifunctional genes. A full exposition of this effect is

beyond the scope of this paper, but we also note that AUP suffers

from having different expected values for each size of GO group

and, unlike AUC, is also sensitive to the evaluation setup in sparse

networks, improving at higher numbers of cross-validation splits

(i.e., 10-fold vs. 3-fold), complicating its interpretation when

attempting to detect trends. Altogether,these results strongly argue

that the effects we report reflect a real tendency of multifunctional

genes to account for predictions made, regardless of evaluation

metric.

As a further test of generality, we examined another ‘‘gold

standard’’ set of seven yeast gene interaction networks, some of

which are aggregated from other (potentially overlapping) network

studies data [22,29,30,32,62,63,64,65]. Importantly, these are

networks built using a variety of methods including genetic

interactions, coexpression, protein interactions and other ap-

proaches. Cumulatively, these interaction networks and the data

underlying them have been cited over 6000 times (based on

Google Scholar). We used yet another measure of ‘‘performance’’,

the Dice-Jaccard semantic similarity (e.g., [66]) to directly assess

the quality of the network connections without performing

machine learning. The links within the real networks are highly

significant individually or in aggregate, possessing much higher

semantic similarity than random links (Table 3). However, as

predicted by our previous results, a large fraction of this

performance may be explained purely by multifunctionality biases.

This is true even in the case of YeastNet [65] which, unlike the

other networks we tested, was tuned using information from GO

to improve functional relevance. The aggregate network node

degree predicts all Gene Ontology categories in yeast with an

Table 3. Yeast network performance.

Yeastnet MPACT DIP MINT BIOGRID Costanzo Fields Aggregate

True network 0.46 0.42 0.40 0.45 0.65 0.30 0.43 0.41

IPN 0.41 0.32 0.31 0.33 0.40 0.29 0.31 0.37

Table 3: Seven yeast networks were assessed according to the Dice-Jaccard coefficient of the links they select. All exhibit strongly functionally significant links compared
to random data which possesses a Dice-Jaccard coefficient of 0.23. However, a large fraction of this performance is present in the individual property networks (IPN)
which also exhibit strongly significant links. The network from aggregating the true networks and IPN networks is shown. Aggregation is accomplished by including all
links present in the original networks; thus, the aggregate of the true networks includes all network links present in the true networks.
doi:10.1371/journal.pone.0017258.t003
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average ROC of 0.63, comparable to what we observe with the

human data. Moreover, the aggregate network IPN accounts for

roughly three-quarters of the performance of the true yeast

network connections (61% higher in the IPN than random). In the

individual networks (e.g.,Figure S5), the distribution of scores for

individual links can be seen to be strongly shifted to higher values

both for the real and IPN networks; using the IPN to estimate false

discovery rates would substantially increase false discovery

estimates. There is no gold standard method to assess network

performance, but the Dice-Jaccard index attempts to correct for

prevalence/multifunctionality (it is normalized to number of

terms), and thus it tends to reduce IPN contribution over other

methods, such as GO term overlap. These results show that the

structure of these networks strongly reflects multifunctionality, and

that gene function predictions stemming from them are heavily

influenced by this fact. They furthermore show that our findings

extend to all networks we have examined, and are again not

merely a function of assessing the networks using machine learning

and predictive performance as outcome measures.

Can the impact of multifunctionality be reduced?
Node degree has been previously recognized as potentially

influencing functional predictions. Indeed, it is important to note

that the first step in GeneMANIA’s operation is to attempt to

correct for node degree (downweighting each edge by node

degree). As discussed in the introduction, a variety of methods

have been suggested to minimize the importance of node degree.

Above (i.e., Figure 4), we’ve considered one of the most general

approaches, which is constraining node degree to take a much

more restricted range of values by top overlap. However, this has

little effect because it is the AUC produced by the node degree

rank that matters (which reflects the influence of multifunction-

ality), and top overlap tends to preserve node degree ranks (r.0.76

in coexpression). Here we consider other possible corrections for

node degree biases and show that their interpretation is still

enhanced by consideration of the effects of multifunctionality.

We first considered the role of sparsification. Sparsification is a

necessary step for methods like GeneMANIA, and protein

interaction networks are inherently sparse, but coexpression

networks begin as a complete distance matrix. We hypothesized

that that sparsification induces network structures that affects node

degree/multifunctionality issues. In particular, sparsification is

likely to result in high node degree for genes with higher variability

(even with similar means). In un-sparsified data, variation in mean

interactions across many genes may dominate over the heaviness

of the tails. Therefore we assessed the impact of multifunctionality

on non-sparsified coexpression data. We used a simple nearest-

neighbor gene function prediction algorithm which could work

rapidly with unsparse data.

The unsparse coexpression data exhibits low node degree bias

(the mean AUC based on node degree ranking is 0.52) but very

good performance using the prediction algorithm (mean AUC of

0.71, Figure 6A). Thus this method might appear to remove the

influence of node degree, and thus multifunctionality. However,

there is still a very strong dependence on node degree (Figure 6B).

The more extreme the performance of a GO group is based on

node degree, the better the performance in the nearest-neighbor

analysis. Thus we can see that GO groups are predicted if their

multifunctionality is either very high or very low (that is, the genes

in the group are largely mono-functional).

In Figure 6C we show results for another correction for node

degree, using sparse data made up by aggregating multiple

coexpression networks. Each coexpression matrix in the aggregat-

ed coexpression matrix was first normalized so that edges are

retained only if the nodes exhibit a correlation above that

predicted by their node degree alone (e.g., as in [67]). After

aggregation, this matrix exhibits high performance (mean

AUC = 0.70) and modest node degree bias (mean AUC = 0.55).

However, it again exhibits the triangular dependence on multi-

functionality – highly predictable groups tend to either contain

unusually multifunctional genes or unusually mono-functional

genes.

As a final test for the influence of node degree, we examined in

more detail the highest performing individual data set (excluding

protein interaction aggregate data) across all methods and data-

types. This was an unsparsified coexpression network from a large

multi-tissue coexpression experiment (GSE7307). It yields a mean

AUC of 0.68 across all GO groups and no node degree bias in

favor of multifunctionality (mean AUC = 0.48). However, even in

this case, the same triangular distribution of node degree AUCs is

apparent (Figure 6D). Thus, the set of high performing functional

groups generally consist of two quite different classes, both

understandable with the consideration of multifunctionality.

Taken together, the results in this section demonstrate that

attempt to reduce the effect of node degree bias do not have the

desired effect, nor are data sets which appear to have no node

degree bias actually free of its effects.

Discussion

Multifunctionality has arisen previously in discussions of gene

function as both an important biological principle (i.e., pleiotropy)

and central factor in network structure (i.e., hubs), and as a

potential source of spurious results (i.e., promiscuous proteins). In

this work we have suggested that most functional assignment is

driven by multifunctionality or must be considered in the context

of the degree of multifunctionality.

Multifunctionality and promiscuity
Our results strongly suggest that there is a general problem in

the interpretation of guilt-by-association analyses. The effects of

multifunctionality trickle down into association networks resulting

in learnability that has nothing to do with the specifics associations.

Even at very stringent ROC thresholds, just because a set is

learnable, we can not be confident that we have gained

information regarding which genes are specifically associated with

the set, and new predictions will mostly be based on the effect of

multifunctionality. This does not mean the predictions are

necessarily biologically wrong, and on the positive side, the gene

learning algorithms can still do better than the node degree list,

meaning they extract useful association information. However,

where possible the results of the analysis should be interpreted with

reference to the node degree property, not the network property,

essentially because we should disfavor a complex model when a

simpler model will suffice [68]. Learning from the IPN or the node

degree ranking is like relief of symptoms from a placebo –

significant and interesting, but potentially misleading with respect

to causality. We stress that our results do not depend on whether

one believes that multifunctionality is a true property of genes

reflected in the patterns of annotation, or some kind of artifact of

how genes are studied and annotated. The question of what is the

‘‘true’’ multifunctionality of genes separated from possible biases in

patterns of research or annotation is a topic for future research.

Multifunctionality as hubs
The practical importance of the bias is illustrated by our ability

to predict associations of genes with genetic conditions from

OMIM using nothing but the number of Gene Ontology terms a
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gene has. Because we take the OMIM set to be less likely to suffer

annotation biases than GO, the strength of this effect comes closer

to reflecting the degree to which multifunctionality is a necessary

biological consideration. The causes of this effect are likely to be

complex and require further study to understand completely. For

some genes, their presence on candidate lists might be influenced

by biases in interpretation of genetic mapping studies, in which

well-known genes are chosen for follow-up genotyping. For genes

which have unequivocal roles in disease, they might become well

studied and thus accumulate more GO terms. On the other hand,

biases could take the form of false negatives – there may be

additional genes which are not yet implicated in a given disease

because they are difficult to study. Finally, genes which are

important for disease processes might in fact be ‘‘hubs’’ (a notion

with support in the literature [69,70]) and tend to be important for

multiple diseases. Whatever the source of bias, it poses a problem

for tasks like ‘‘gene prioritization’’ in genome-wide association

studies, for which there are a growing number of algorithms and

tools. Our results suggest that without correction for the

prevalence bias induced by multifunctionality, these methods will

tend to prioritize genes which have the best existing characteriza-

tion, and be insufficiently sensitive to the choice of target disease.

Indeed we expect that all gene function prediction methods that

rely on some form of ‘‘guilt-by-association’’ will have similar

difficulties. The implications also reach beyond analyses that use

networks. A preliminary analysis of differential expression studies

(not shown) suggests that the probability that a gene is identified as

differentially expressed is in part accounted for by multifunction-

Figure 6. Potential node degree corrections do not remove node degree influence. A) The unsparse coexpression data exhibits low node
degree bias and very good performance using a nearest neighbor voting algorithm (mean AUC of 0.71). B) A very strong dependency on node degree
is retained in the nearest neighbor analysis. The more extreme the performance of a GO group is based on node degree, the better the performance
in the nearest-neighbor analysis. C) After a correction to remove the influence of node degree – links included only if performance is above that
predicted by node degree alone – and aggregation, this matrix exhibits high performance (mean AUC = 0.70) and modest node degree bias (mean
AUC = 0.55), but it again exhibits the triangular dependence on multifunctionality. D) An unsparsified coexpression network from a large multi-tissue
coexpression experiment (GSE7307) yields a mean AUC of 0.68 across all GO groups and no node degree bias in favor of multifunctionality (mean
AUC = 0.48), but exhibits the same triangular distribution of node degree AUCs.
doi:10.1371/journal.pone.0017258.g006
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ality. This further suggests that the popular approach of gene set

enrichment analysis [71] will also tend to produce rankings

affected by the degree of multifunctionality.

Correcting for multifunctionality
Could this source of bias be removed? As we observed, the

problem is worse for some data sets than others (Figure 5A and B,

Table 3), but the underlying reason for this is not yet clear. It is

possible that alterations to study designs or data preprocessing

might improve matters. However, it is unlikely that attempts to

filter the final network itself will be fruitful. The appearance of the

bias generated by multifunctionality could be completely removed

by artificially forcing all genes to have the same node degree.

While this successfully shoves the problem under the rug, it will

almost certain degrade predictive performance and destroy any

real information there is in variability in the number of

associations a gene has. Less drastic schemes might result in less

loss of information, but will inevitably be less effective at removing

the bias. Due to the current difficulty of simply correcting for

multifunctionality, our focus has been on how to control for it.

Using the node degree vector or IPN to determine an average

performance across many gene groups is useful for validating gene

function prediction algorithm performance, but how would a

biologist using a prediction method for a specific function evaluate

the results? In this case, we recommend comparing the ranking the

algorithm gave them to the optimal gene ranking from GO

(Figure 1A). If there is similarity between the rankings, the

algorithm-derived predictions cannot be assumed to be meaning-

ful. In general our results will hold over any set of genes exhibiting

heterogeneity with respect to prevalence and will be much

stronger where prevalence varies more (e.g., if we retain

hypothetical proteins in our analysis, it strongly increases control

performance).

While we focused on problematic aspects of prevalence biases,

the most multifunctional genes are clearly worthy of study.

Although we have recommended rejecting them from gene

function results as unlikely to be specifically relevant to the question

at hand, that is only because they may play an role in a many

contexts/pathways (e.g., hub proteins [18]).

To assist others in addressing the issues we raise, we have

provided the rankings of genes by multifunctionality and other

information including MatlabTM implementations of the algo-

rithms as Supplementary Information and at http://www.chibi.

ubc.ca/Prevalence.

Methods

Evaluation of prediction performance: We used the AUC ROC

as our main measure of performance in prediction. An AUC of 0.5

represents classification at chance levels while and AUC of 1.0 is

obtained for a perfect classifier. In the gene function prediction

literature, values .0.7 are considered good and values .0.9 are

atypical. Additional measurements considered included ROC50

[61], correct classification rate (CCR), positive predictive value

(PPV), and area under the precision-recall curve (AUP). The top

100 network for AUP evaluation was constructed by adding

connections between genes with many overlapping GO groups.

For each connection added, GO groups were weighted by the

inverse of the number of times they had already been used in the

network.

Gene lists: We analyzed the list of human or mouse genes from

the UCSC GoldenPath database "known gene" table intersected

with the microarray platforms used (independently in human and

mouse analysis). Thus, we analyzed 15439 of the 18534 known

human genes and 12513 of the 18592 known mouse genes.

Alternatives such using the full microarray gene list or full known

gene set generally yielded even stronger prevalence biases (stronger

prevalence list performance and stronger correlations between

prevalence and true performance). The 6200 known yeast genes

were obtained from NCBI.

Gene Sets: Human Gene Ontology annotations consisted of

10127 gene sets with 1838 sets having between 20 and 1000 genes

within them; following Figure S6, it was this subset used in

analysis. All analysis used only the GO groups with 20–1000

genes, except where specified otherwise (e.g., Data S1 Section 4).

558 genes were downloaded from the Alzheimer’s database,

ALZgene database [55]; 769 genes from the Schizophrenia

database, SZgene database [56]; and 191 genes from the autism

database, AutDB [58]. The 217 KEGG human gene sets were

obtained from the KEGG webservices [72]. The complete OMIM

human disease table was downloaded with 4069 diseases having

genes in the known gene table [59]. The GO slim set was obtained

from the GO website, consisting of 127 GO categories [28].

Performance with GO slim was confirmed to be nearly identical to

full GO performance.

Gene Prediction Algorithms: GeneMANIA was used without a

negative training set across each training gene set with three-fold

cross-validation to determine a ranked list scoring genes as to how

well they belonged within the known gene set. Eight-fold and n-

fold cross-validation was also performed on the GO categories

using the top-overlap coexpression data to confirm that higher fold

number did not alter results. For support vector machine (SVM)

classification, the default Matlab implementation was used with

default settings. For the SVM, the correct classification rate (CCR)

was used as the performance metric. Due to computational

constraints, SVM was implemented across the complete gene set

piecewise, in sets the same size as the training set, so that the CCR

almost parallels the ROC AUC in meaning. Thus, a set of 100

genes would have added to it 100 random non-set genes and SVM

performed on the association matrix among these genes and CCR

measured using a full hold-out validation. This was performed

using multiple sets of non-set genes until all genes were tested, and

the CCR averaged across runs. This produces more confident

estimates (heavily averaged), but also reduces the information

available to the algorithm in making each classification. For

nearest neighbor analysis, an implementation was written in

matlab which ranked genes by a voting scheme within the training

set (by ranked coexpression) relative to genes outside the training

set. The sum of coexpression ranks between the training set and

the candidate gene was divided by the sum of coexpression ranks

between the genes outside the training set and the candidate gene

to determine degree of candidacy.

Semantic Similarity: Semantic Similarity was assessed using

Gene Ontology term overlap (in Data S1) and by the Dice-Jaccard

index (Gene Ontology overlap normalized by the number of terms

attached to gene A plus the number of terms in gene B). Methods

of semantic similarity are broadly correlated [66], and Dice-

Jaccard index tends to be conservative with respect to estimating

prevalence bias; that is, underestimating its effect. If one wished to

be conservative in reporting novel results with respect to biases

induced by multifunctionality, the less stringent GO overlap

measure may be more appropriate.

Gene networks: Our human protein-protein interaction net-

work was obtained from InnateDB [73] and contained 74932

interactions among 9180 genes. Individual yeast networks were

downloaded from their respective websites [22,29,30,32,62,

63,64,65]. In each case, the network was treated as a set of

interactions across the gene set used; however, intersecting again
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to only genes with interactions in the network left the proportional

effect of prevalence bias approximately the same. Our coexpres-

sion matrices were obtained from publicly available microarray

expression experiments analyzed in a microarray meta-analysis

system (Gemma, http://www.chibi.ubc.ca/Gemma). In coexpres-

sion networks, correlation values are typically thresholded to select

the edges that make up the final network; this is the ‘‘thresholded’’

matrix. A commonly-used alternative is to choose only overlapping

nearest neighbors; we call this the ‘‘top overlap’’ matrix. Available

as Data S1 are the list of 232 individual human experiments used

to construct the full Gemma matrix, the 47 GPL570 experiments

used to construct the thresholded and top-overlap matrices, and

the 78 mouse experiments used for individual analysis. Briefly,

Gemma uses a threshold of 0.5% on the correlation between

expression profiles of genes to determine coexpression, or a p-

value from the Fisher transformed correlations, whichever is more

stringent [34]. The full Gemma matrix is the sum of the individual

coexpression matrices. In keeping with the Gemma threshold and

close to that used in the GeneMANIA paper [39], our default

sparsity was 0.5% when combining the 47 GPL570 experiments.

In the threshold association matrix, this is obtained by using a

fixed number of experiments coexpression must be present in (the

sum across experiments). In the top-overlap association matrix, a

threshold is chosen for each gene to provide 0.5% sparsity for it,

and then only common associations included. Alternatively, one

could choose a per-gene sparsity that when required to be top-

overlap, matched the overall 0.5% sparsity; however, variations in

sparsity were not a significant factor in our results in this range.

The data displayed in the figures were filtered to remove function

categories in which there was no coexpression within the group (to

remove artifacts such as a line of points at 0.5 using SVM for

which there were no significant predictions) – however, all

numerical values given in the text and the tables use the full set

of results. This filtering typically altered results by in the range of

0.01 (e.g., correlation between node degrees and true results

changed from 0.95 to 0.96 when filtered or AUC went from 0.59

to 0.60). Only in the case of threshold coexpression performance

was there a substantial shift in performance (from 0.55 to an AUC

of 0.67).

Individual Property Networks: Given an association matrix, the

fixed ranking was constructed by summing across one dimension

of the association matrix and ordering the genes by this associated

node degree. The IPN was constructed by taking the self-outer-

product of the vector sum across an association matrix

representing node degree. A fixed threshold that generates the

same sparsity as the original (after the addition of identity

relationships) was then applied. Note that even for an association

matrix generated by top-overlap, its IPN should be generated by

threshold (the default assumption, as in Data S1, Section 2, is that

the scores provide rank across the entire matrix). Our Supple-

mentary Methods cover the construction of random matrices of

matching node degree as well as other details.

Supporting Information

Data S1 Sections 1-7. Section 1: Construction of the optimal

single gene ranking; Section; 2: Construction of the Individual

Property Network (IPN) Section 3: Effect of microarray platform

gene representation on coexpression; Section 4: Effect of GO

group size and network sparsity; Section 5: Mean, variance, and

statistical significance of AUCs; Section 6: Absolute Performance;

Section 7: Supplementary Methods

(DOC)

Figure S1 Predicting OMIM condition using the optimal
gene ranking derived from GO. The distribution of AUC

values is shown when predicted using the same optimal vector used

in Figure 1A.

(TIF)

Figure S2 Schematic of construction of the Individual
property network (IPN). Top: an original sparsified associa-

tion matrix (black = association). Middle: Outer product of the

Associability vector. Bottom: After processing the outer product to

yield an ‘‘association matrix’’ of equivalent sparsity to the original

data.

(TIF)

Figure S3 Semantic similarity. Semantic similarity allows us

to assess common gene function in an association matrix without

the use of a prediction algorithm. Using common GO term

overlap, IPN performance is superior to original network

performance.

(TIF)

Figure S4 Performance of the optimal list is insensitive
to using subsets of genes. Genes were randomly selected and

the optimal list for those genes was generated. Top: The

performance of the optimal list is strong even for very small

groups of genes, with standard deviation shown by the grey region.

Bottom: The error generated by using the optimal list over all

genes is shown as a function of the number of genes included in

analysis. Even for small groups, using the original optimal list is a

reasonable approximation of constructing a specific list represent-

ing the subset of genes used.

(TIF)

Figure S5 Performance as a function of number of
genes. Gene function performance is plotted along with standard

deviation with increasing GO size.

(TIF)

Figure S6 Yeastnet distribution of semantic similari-
ties. The semantic similarity distribution over all links in the

dataset is shown, as well as the similar distributions for random

data and the Individual Property Network.

(TIF)
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