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Methods for the direct detection of copy number variation (CNV) genome-wide have become effective instruments for
identifying genetic risk factors for disease. The application of next-generation sequencing platforms to genetic studies
promises to improve sensitivity to detect CNVs as well as inversions, indels, and SNPs. New computational approaches are
needed to systematically detect these variants from genome sequence data. Existing sequence-based approaches for CNV
detection are primarily based on paired-end read mapping (PEM) as reported previously by Tuzun et al. and Korbel et al.
Due to limitations of the PEM approach, some classes of CNVs are difficult to ascertain, including large insertions and
variants located within complex genomic regions. To overcome these limitations, we developed a method for CNV
detection using read depth of coverage. Event-wise testing (EWT) is a method based on significance testing. In contrast to
standard segmentation algorithms that typically operate by performing likelihood evaluation for every point in the
genome, EWT works on intervals of data points, rapidly searching for specific classes of events. Overall false-positive rate
is controlled by testing the significance of each possible event and adjusting for multiple testing. Deletions and dupli-
cations detected in an individual genome by EWT are examined across multiple genomes to identify polymorphism
between individuals. We estimated error rates using simulations based on real data, and we applied EWT to the analysis of
chromosome 1 from paired-end shotgun sequence data (303) on five individuals. Our results suggest that analysis of read
depth is an effective approach for the detection of CNVs, and it captures structural variants that are refractory to
established PEM-based methods.

[Supplemental material is available online at http://www.genome.org.]

Structural variants (SVs) in the human genome (Iafrate et al. 2004;

Sebat et al. 2004; Feuk et al. 2006a), including copy number var-

iants (CNVs) and balanced rearrangements such as inversions and

translocations, play an important role in the genetics of complex

disease. Analysis of CNV in diseases such as cancer (Lucito et al.

2000; Pollack et al. 2002; Albertson and Pinkel 2003), and in de-

velopmental and neuropsychiatric disorders (Feuk et al. 2006b;

Sebat et al. 2007; Kirov et al. 2008, 2009; Marshall et al. 2008;

Mefford et al. 2008; Rujescu et al. 2008; Stefansson et al. 2008; Stone

et al. 2008; Walsh et al. 2008; Zhang et al. 2008), has led to the

identification of novel disease-causing mutations, thus contribut-

ing important new insights into the genetics of these disorders.

Our current power to detect SVs in disease studies is limited

by the resolution of microarray analysis. Currently available array

platforms that consist of more than 1 million probes have a lower

limit of detection of ;10–25 kb (McCarroll et al. 2008; Cooper et al.

2008). More comprehensive studies of individual genomes using

sequencing-based approaches are capable of detecting CNVs <1 kb

in size (Tuzun et al. 2005; Korbel et al. 2007; Bentley et al. 2008;

Wang et al. 2008). Thus, new sequencing technologies promise to

enable more comprehensive detection of SVs as well as indels and

point mutations (Mardis 2008).

New computational methods are needed that can reliably

identify SVs using next-generation sequencing platforms. To date,

multiple approaches have been developed for the detection of SVs

that are based on paired-end read mapping (PEM), which detects

insertions and deletions by comparing the distance between map-

ped read pairs to the average insert size of the genomic library (Tuzun

et al. 2005; Korbel et al. 2007). Advantages of this approach include

the sensitivity for detecting deletions <1 kb in size, and localizing the

breakpoint within the region of a small fragment. This approach also

has certain limitations. In particular, PEM-based methods have poor

ascertainment of SVs in complex genomic regions rich in segmental

duplications and have limited ability to detect insertions larger than

the average insert size of the library (Tuzun et al. 2005).

We sought to develop an alternative approach to the de-

tection of SVs from sequence data that compliments existing

methods. Here we used the depth of coverage in sequence data

from the Illumina Genome Analyzer to look for genomic regions

that differ in copy number between individuals. This method is

based on the depth of single reads and, hence, is orthogonal to

methods that are based on the mapping of paired-end sequences.

To detect CNVs based on read depth (RD), we developed a

pipeline consisting of three steps, as illustrated in Figure 1: (1) First,

we estimated the coverage or RD in nonoverlapping intervals across

an individual genome, (2) we implemented a novel CNV-calling

algorithm to detect events, and (3) we compared data from multiple

individuals to distinguish events that are polymorphic (i.e., CNVs)

from those that show similarly increased or decreased copy number

in all individuals in this study (i.e., mononomorphic events). Here

we demonstrate the feasibility of this approach and its unique

advantages in comparison with other methods of SV detection.

Methods

Data sets included in this study

Genome sequence data from five individuals were analyzed in this

study. These include a CEU trio of European ancestry (NA12878,
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NA12891, and NA12892) sequenced as part of the pilot project

of the 1000 Genomes Project (http://www.1000genomes.org; L

Brooks, pers. comm.), and two additional published genomes, in-

cluding a Yoruban individual NA18507 (Bentley et al. 2008) and

a Chinese individual (Wang et al. 2008). For the CEU trio, we

obtained complete genome sequence data in the form of ‘‘.bam’’

alignment files from ftp://ftp-trace.ncbi.nih.gov/1000genomes/.

These mappings were generated with the MAQ alignment method

using the default settings (Li et al. 2008) as described in the docu-

mentation of the December 2008 data release (ftp://ftp.ncbi.nlm.

nih.gov/1000genomes/ftp/release/2008_12/). The complete se-

quence data (.fastq files) on two additional genomes (NA18507 and

YH) were obtained from ftp sites designated by Bentley et al. (2008)

and Wang et al. (2008), and reads were mapped to the human ref-

erence genome in HG18 using the same methods. Alignment (.bam)

files were parsed out using SAMtools (samtools.sourceforge.net),

and we then filtered out reads of low mapping quality (<Q30).

Estimation of coverage from genome sequence data

For each sample, RD was measured by counting the number of

mapped reads in 100-bp windows, assigning each read only once

by its start position. We chose a window size of 100 bp for multiple

reasons. A larger window size (e.g., of 1000 bp) would provide less

precision in defining the breakpoints of CNVs. A larger window

size could also make the detection of small (;1000 bp) CNVs

problematic, because in many cases these CNVs would only par-

tially span one or two windows. In addition, at 303 coverage, the

distribution of read counts of 100-bp windows are well approxi-

mated by a normal distribution, thus permitting us to assume

normality in our statistical calculations (see below), while read

counts in smaller window sizes are not (Supplemental Fig. 1).

Sequence coverage on the Illumina Genome Analyzer plat-

form is influenced by GC content, as first described by Bentley

et al. (2008). We have observed a similar effect in all of the data sets

from this study (see Results section). Therefore, we sought to adjust

the 100-bp window read counts based on the observed deviation in

coverage for a given G+C percentage. For G+C percentages of 0, 1,

2, 3,. . ., 100%, we determined the deviation of coverage from the

genome average. Then a simple adjustment was made according

to the equation ~ri = ri � m
mGC

; where ri are read counts of the ith

window, mGC is the median read counts of all windows that

have the same G+C percentage as the ith window, and m is the

overall median of all the windows. Our subsequent analysis was

carried out on such GC-corrected read counts.

The tasks of parsing alignment files and determining read

counts were implemented in the Java programming language on

a Linux cluster at Cold Spring Harbor Laboratory. Processing time

was ;20 h for the whole genomes of five individuals.

Event detection: Event-wise testing

We use the GC-adjusted RD within 100-bp windows as a quanti-

tative measurement of genome copy number. A deletion or du-

plication is evident as a decrease or increase in coverage across

multiple consecutive windows, as illustrated in Figures 2 and 3.

This is perfectly analogous to the detection of CNVs from mi-

croarray intensity data. Therefore, events such as these can be

detected using the same types of segmentation algorithms that are

used for microarray data (Colella et al. 2007; Wang et al. 2007,

2009; Cahan et al. 2008; Korn et al. 2008). However, RD data and

microarray CGH data differ in certain characteristics. Most nota-

bly, in microarray CGH data, variance in probe ratios is lowest for

the ‘‘normal’’ state (two copies) and probe variance increases for

copy number changes in both directions. By contrast, in RD data,

variance is lowest for ‘‘deletion’’ states (zero or one copy) and

variance increases proportionally with increasing copy number

(see Bentley et al. 2008 and results presented here in the following

sections). Therefore, modification to some of these methods is

necessary in order for them to work optimally on RD data.

We have developed a novel CNV-calling algorithm that is

designed for the analysis of RD. The event-wise testing (EWT)

method is based on significance testing. EWT rapidly searches the

entire genome for specific classes of small events that meet criteria

of statistical significance, and then clusters of small events are

grouped into larger events. Since the number of iterations in EWT

is far less than the number of windows (e.g., 19 iterations for all 2.4

million 100-bp windows on chromosome 1), we can perform an

exhaustive, fast, and robust search of very large data sets. We

evaluated the performance of EWT on simulations constructed

from real data and found that it has good statistical power and

controls the type-I error well.

The basic idea of our approach is to identify regions of con-

secutive 100-bp windows with significantly increased or reduced

Figure 1. Pipeline for the detection of CNVs based on analysis of read depth (RD). (A) RD was determined by counting the start position of reads in
nonoverlapping windows of 100 bp. (B) Events were detected using a custom CNV-calling algorithm, event-wise testing (EWT). (C ) Each event was
examined in multiple genomes in order to distinguish polymorphic events (CNVs) from the majority of events that were found to show a similar copy
number change in all five genomes in this study (i.e., monomorphic events).
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RD. To detect such an event, we first convert the read count of

a window into a Z-score zi by subtracting the mean of all windows

and dividing by the standard deviation. The Z-score is then con-

verted to its upper-tail probability pUpper
i = P(Z>zi), and its lower-tail

probability pLower
i = P(Z<zi). For an interval of consecutive windows

A with l windows, we call it an unusual event if maxfpU
iji 2 Ag<

FPR
L=l

� �1
l for duplications or maxfpL

iji 2 Ag< FPR
L=l

� �1
l for deletions, where

FPR is the nominal false-positive rate (FPR) desired for the entire

chromosome (deletion and duplications are treated separately), L is

the number of windows of a chromosome, and l is the size of the

interval A.

It can be easily seen that if all probes in A are from the

normal state, the probability of A being called an unusual event

is less than FPR
L=l . Note that instead of using Bonferroni correction

to divide the nominal FPR by the total number of intervals of

windows, L�1, we divide the FPR by the number of non-

overlapping intervals window of size l, which is L/l. The former

would be overconservative in controlling the type-I error since

the statistical tests of overlapping intervals of windows are not

independent. The search for deletion events and duplication

events are performed separately. For each one, we first search

with two-window events. Then iterate the procedure by in-

creasing the size of event by 1. Note that as l increases, the

cutoff ðFPRÞ
L=l

� �1
l increases as well. We stop the iteration at

N�1, when ðFPRÞ
L=N

� �1
N exceeds 0.5.

We applied the above procedure to chromosome 1 of five

individual genomes using FPR of 0.05.

As is typically the case, additional filtering criteria must be

applied to a set of calls made on real data. The additional criteria

included the following: First, clusters of small events (within 500

bp) with a copy number change in the same direction were

merged. Events with a low absolute difference from the average,

that is, a median RD of between 0.75 and 1.25 times the overall

mean, were filtered out. Then we tested the significance of each

merged event by performing a one-sided Z-test. Merged events

were filtered using a significance level at 10�6. This threshold

corresponds approximately to the signif-

icance level for detecting a size 2 event

by EWT using a FPR of 0.05. Finally,

a threshold of 10�6 was deemed to be

adequate based on manual inspection of

many events at all significance levels. The

additional filtering steps that we applied

to the merged events substantially in-

crease stringency and reduce sensitivity

as a consequence. Thus, we tested the FPRs

and false-negative rates of the EWT calls

before and after filtering using a set of

simulations that are presented below.

Pairwise comparison of RD among
five individuals

There is one feature of the MAQ align-

ment algorithm that is important to point

out here. When a single read has multiple

exact matches in the genome, it is as-

signed to a single location randomly. Con-

sequently, coverage across a repetitive or

segmentally duplicated region does not

differ from the mean if the copy number

of those regions in the sample is the same

as the copy number of the reference genome. Therefore, the ob-

served events in our data constitute regions of copy number dif-

ference between the sample and the reference genome. These

events may represent CNVs. They may also represent fixed seg-

mental duplications that are not correctly mapped in the genome,

or they may represent a region where the reference genome has

a rare allele. Therefore, we must compare the RD of the region in

multiple genomes in order to distinguish between events that are

clearly polymorphic and those that are not.

As a final step in our pipeline, we conducted a comparison of

events between multiple individuals. Many of the deleted or du-

plicated regions in our filtered call set clearly differed in copy

number among the five individuals we examined (see, e.g., Fig. 3).

Interestingly, however, the majority showed similarly increased

or decreased copy number in all five individuals (which we refer

to as ‘‘monomorphic’’ events). Therefore, we sought to distin-

guish events that were polymorphic from those events that were

monomorphic. For each region called by EWT in a given sample,

we compare the read counts of 100-bp windows in the region be-

tween that sample and each of the other four samples by t-tests.

CNVs were identified based on the t-test P-value and the absolute

difference between median read counts (D). Events where at least

one of four comparisons had P-value < 0.001 and D > 0.5 were

designated as polymorphic, the remainder, as monomorphic.

Lastly, the copy number of each event in the filtered call

set was inferred by rounding the average normalized read counts

in each individual to the nearest integer. The normalized read count

is defined as 2 3 (read count)/(mean read count over the genome).

Simulated data sets for evaluating performance of EWT

To evaluate the performance of EWT, we generated simulated

data from chromosomes 1 and X of the male individual NA18507.

First, we filtered out all gaps, segmental duplications, telomeres/

centromeres, and regions with known CNVs from five publicly

available sets of calls, that is, those from Kidd et al. (2008), the

Figure 2. Illustration of the event-wise testing (EWT) method for detecting CNVs based on depth of
coverage. Panel A illustrates the read depth by 100-bp window for a 15-kb (150 windows) genomic
region in sample NA12891, where a 4.9-kb (49 windows) deletion was detected (chr1:157,227,901–
157,232,800). The heatmap in B illustrates test results for all 100-bp windows of this region for each of
the 19 event types (i.e., size 2, 3, 4,. . ., up to size 20) for deletion. The y-axis is event size (l). An orange
dot represents a significant test result for an l-sized event, and a blue dot represents a nonsignificant test
result.
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Database of Genomic Variants (projects.tcag.ca/variation/), Iafrate

et al. (2004) and Bentley et al. (2008), the Genome Structural Vari-

ation Consortium (GSV), and McCarroll et al. (2008). After filtering,

we obtained 1,975,278 100-bp windows from chromosome 1 and

1,238,607 100-bp windows from chromosome X.

To evaluate type-I error, we generated 1000 simulations of

normal copy number by randomizing the positions of all windows

from chromosome 1, and we made CNV calls by EWT for each

replicate.

To evaluate type-II error, we generated deletions by sampling

100-bp windows from chromosome X and implanting them into

segments of normal copy number randomly sampled from chro-

mosome 1. For each of 1000 replicates, we selected 100,000 ‘‘nor-

mal’’ windows corresponding to 10 Mbp from chromosome 1 and

a set of nine ‘‘deletion’’ segments of size 200 bp, 300 bp, 400 bp, 500

bp, 700 bp, 1 kbp, 2.5 kbp, 5 kbp, and 10 kbp sampled from chro-

mosome X. Then we inserted ‘‘deletions’’ into nine fixed positions.

Results

Baseline distribution of read counts

The basic assumption for detecting CNVs using RD analysis is that

the reads are randomly sampled with equal probability from any

location on the test genome. Under this assumption and an ad-

ditional assumption that the reads are sampled independently, the

count of reads that are mapped into a window of the reference

genome follows a Poisson distribution. Note that by the central

limit theorem, the distribution should approach normality as

coverage of the genome increases, or as the window-size is in-

creased (thus giving larger counts). Bentley et al. (2008) has

reported previously that coverage by the Illumina Genome Ana-

lyzer platform follows a pattern of Poisson distribution with slight

overdispersion. We have observed a similar pattern in all individ-

uals from this study (see Supplemental materials). We confirmed

this behavior by directly examining several broad genomic regions

Figure 3. Examples of CNVs detected by analysis of RD. We present four examples of polymorphic gains and losses detected by EWT in five individuals.
The x-axis represents genomic coordinates (in Mbp) and the y-axis represents RD, which is median-normalized to copy number 2. In each panel, plots are
for NA12878, NA12891, NA12892, NA18507, and YH from top to bottom. The coordinates of A, B, C, and D are chr1:150,792,101–150,884,101,
chr1:103,930,401–104,053,201, chr1:205,319,001–205,399,701, and chr1:150,422,701–150,486,501, respectively.
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with means corresponding to copy numbers of 1, 2, and 3 (for il-

lustrative examples, see Fig. 3), and observed a linear relationship

between coverage and copy number. We also observed an over-

dispersion factor of ;4 (Supplemental Table 1). Furthermore, as

expected, counts in 100-bp windows from 303 coverage are suf-

ficiently high that the counts begin to approximate a normal dis-

tribution as shown in the Supplemental Figure 1.

We also investigated the relationship between RD and G+C

content and observed a nonlinear relationship, where RD is de-

creased at both extremes. This pattern was observed in all indi-

viduals in this study, and it is similar to what was described

previously by Bentley et al. (2008). Hence, we corrected for this

GC-related effect as described in the Methods.

Type-I and type-II error calculations of EWT on simulated data

We ran an analysis of RD on each replicate in the simulated data, as

described in the Methods. Then we evaluated the FPR and the false-

negative rate of EWT calls before and after the final merging and

filtering steps. In our simulations of type-II error, a deletion was

considered to be detected if there was any overlap between the

deletion and the segment detected by EWT. We summed the

number detected for each event size in 1000 replicates. These

results are described in Supplemental Table 1. Results indicate that

EWT has good sensitivity to detect CNVs of 1 kb and larger. In the

unfiltered call set, 3997/4000 (99.9%) of simulated deletions

$1000 bp were detected. In the stringently filtered call set, 2934/

4000 (73.3%) of deletions were detected in this size range. In our

simulations of type-I error, the estimated rate of false-positives

was low for CNVs of this size, less than one per individual per

chromosome. In the stringently filtered call set, the rate of false-

positives was even lower, 0.002 per individual per chromosome.

Simulations do not perfectly represent patterns of RD in real data;

therefore, a FPR of less than one per chromosome is most likely an

underestimate. We attempt to further address the sensitivity and

accuracy of our method by validating the EWT calls made in real

data, as described in the following section.

CNV detection in genome sequence data from five individuals

We applied the EWT calling method to RD data from five genomes

in order to identify regions of copy number difference relative to

the reference genome. Figure 2 provides an illustrative example of

a 4.9-kb deletion that was detected by EWT. We detected a total

of 826, 666, 414, 1151, and 1705 events (including polymorphic

and monomorphic events combined) in NA12878, NA12891,

NA12892, NA18507, and YH, respectively (Table 1).

Subsequently, we identified the subset of these regions that

vary in copy number among the five individual samples (as de-

scribed in the Methods). Of all events detected, 142 (17.19%), 132

(19.82%), 72 (17.39%), 500 (43.44%), and 304 (17.83%) varied in

copy number among five individuals and are referred to as CNVs

hereafter. Multiple examples of polymorphic events are shown in

Figure 3. Table 1 summarizes the CNV calls in chromosome 1 of

five samples by size and copy number. All CNVs detected in this

study are listed in Supplemental Table 3, and all monomorphic

events detected in this study are listed in Supplemental Table 4.

For validation of EWT calls, we compared these calls to an

independent call set consisting of common CNV regions pro-

visionally released by the GSV. The GSV call set consists of CNV

regions detected in 40 individuals (20 CEU Caucasian and 20

Yoruban samples) using a NimbleGen tiling array set of 42 million

probes (http://projects.tcag.ca/variation/ng42m_cnv.php), and

includes 748 CNV regions from chromosome 1. Our CNV calls on

each individual were compared to this validation set, allowing for

any overlap of 1 bp or greater, and we examined the validation rate

(i.e., the number of EWT calls that overlap with GSV/the total

number of EWT calls in each individual). A high rate of validation

was obtained for EWT calls on the 1000 Genomes Project samples,

which were 75%, 76%, and 89% for samples NA12878, NA12891,

and NA12892, respectively (Table 1). Validation rates for CNV calls

on the two published genomes were lower, which were 33% and

49% for samples NA18507 and YH, respectively. This is most likely

due to a higher rate of false-positives in the NA18507 and YH

genomes. Analysis of the RD data in these genomes shows a higher

level of variance relative to the mean, with variance/mean ratios of

6.1 and 4.6, respectively, compared with 3.5, 3.9, and 3.3 in the

CEU samples NA12878, NA12891, and NA12892, respectively

(Supplemental Table 1). Other factors that may contribute to the

difference in validation rate include the overlap of one CEU in-

dividual from our study (NA12878) with the GSV sample; in ad-

dition, because the development of the EWT method was done

using 1000 Genomes Project data, EWT may perform slightly

better in this data set.

As to be expected, the monomorphic events had substan-

tially lower validation rates (23%–40%). This result is consistent

with monomorphic events being variants in the reference genome

that have low frequencies in the population. Therefore we expect

fewer to be present in the GSV sample of 40 individuals. In total,

397/748 (53%) of the GSV calls were detected in the combined set

Table 1. Summary of CNVs detected in chromosome 1 in five genomes by analysis of read depth

NA12878 NA12891 NA12892 NA18507 YH

Polymorpic events (CNVs) 142 132 72 500 304
Deletions 76 75 24 400 180
Duplications 66 57 48 100 124
Combined length (bp) 2,048,700 1,753,300 1,594,200 2,411,100 2,045,300
Validation rate 106/142 (75%) 100/132 (76%) 64/72 (89%) 163/500 (33%) 149/304 (49%)

Monomorphic events 684 534 342 651 1401
Deletions 254 151 85 252 888
Duplications 430 383 257 399 513
Combined length (bp) 3,516,300 3,508,500 3,272,100 3,658,700 4,779,900
Validation rate 235/684 (34%) 209/534 (39%) 138/342 (40%) 236/651 (36%) 327/1401 (23%)

The number of gains and losses detected by EWT in each individual are listed separately for polymorphic events and for monomorphic events. We also list
the validation rate of EWT calls in each individual, which is the proportion of EWT calls that overlap (by at least 1 bp) with CNV regions in the GSV
validation call set.
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of EWT calls from five genomes, suggesting that a substantial

fraction of common CNVs that are detectable by microarray CGH

can be captured using the RD-based approach.

Comparison of CNVs detected using RD and PEM methods

In the initial publications describing the two published genomes

included in this study, each performed an analysis of SVs using

different PEM approaches (Bentley et al. 2008; Wang et al. 2008).

The availability of PEM call sets on these genomes allows us the

opportunity to compare the RD-based and PEM-based approaches

on the same data. We obtained the PEM call set from Bentley

et al. (2008), which was available from the Database of Genomic

Variants (projects.tcag.ca/variation/; Iafrate et al. 2004), and

we obtained the call set from Wang et al. (2008) from the Beijing

Genomic Institute (yh.genomics.org.cn). We sought to deter-

mine the proportion of known CNVs detected by the EWT

and PEM approaches and to understand the advantages of each

approach.

Using the validation data set as a set of true-positives (which

reported 748 CNV regions on chromosome 1), we examined the

proportion of common CNVs that were detected by each approach

in each sample. In samples NA18507 and YH, EWT detected 294

(39%) and 317 (42%) of the CNVs from the validation data set,

respectively, and the PEM-based approaches detected 109 (15%)

and 49 (7%). Both methods detected a minor fraction of common

CNVs, which is not surprising because analysis was limited to only

two genomes. In comparison to all PEM-based approaches, EWT

captured a greater fraction of regions from the GSV. This result

suggests that EWT has good sensitivity to detect CNVs that have

been identified previously by microarray CGH. However, this re-

sult does not necessarily indicate differential sensitivity of the two

methods for all CNVs. For example, there are many small (<1000

bp) CNVs that were detected by PEM and were not detected by

EWT or by the GSV 42 million-probe array.

We observed a striking amount of nonoverlap between the

PEM- and RD-based calls. For instance 1051/1151 (91%) of the

EWT calls and 810/942 (86%) of the PEM calls on sample NA18507

were unique to each set. Likewise, 1638/1705 (96%) of EWT calls

and 135/194 (70%) of PEM calls on the YH genome were unique.

In order to determine what factors account for this nonoverlap,

we examined the nonoverlapping calls in NA18507 in terms of

the size of events and their content of segmental duplications

and repeats. The median size of PEM-specific events and EWT-

specific events was 414 bp and 1100 bp, respectively (Table 2). By

examining the intersection of these call sets with annotated seg-

mental duplications, LINE elements, SINE elements, and simple

repeats, we found that a much greater fraction (40%) of EWT-

specific events overlapped with annotated segmental duplications

compared with 2% of PEM-specific events. Conversely, PEM-

specific events showed a greater enrichment of simple repeats,

which accounted for 12% of the total base pairs of PEM-specific

events compared with 6% of the total base pairs of EWT-specific

events. These results suggest that PEM-based and RD-based

approaches have unique advantages in detecting different classes

of SVs.

Discussion
Here we describe a novel computational approach for the detection

of CNVs from next-generation sequence data. We carried out

a systematic analysis of depth of coverage on chromosome 1 in five

individuals. Based on simulations our CNV calling algorithm,

EWT, is able to capture 99.9% of deletions >1000 bp in size. After

applying additional filtering criteria to CNV calls, our method is

able to capture 73% of deletions >1000 bp in size. We applied our

method to the detection of CNVs on chromosome 1 from 303

coverage data on five individuals. On one chromosome, we

detected an average of 952 events per individual, of which ;230

(24%) were copy number variable in the five individuals in this

study.

A majority of events detected in this study were mono-

morphic in five individuals, suggesting that the structural allele

represented in the reference genome differs from most chromo-

somes in the population. Similar results have been observed in

earlier studies that have looked at PEM calls in multiple genomes

(Kidd et al. 2008). Greater than 30% of the monomorphic events

overlapped with CNV regions identified by the GSV; therefore,

many of these events are simply CNVs with lower frequencies.

Other monomorphic events may correspond to fixed segmental

duplications in the genome that have not been previously iden-

tified or regions of the reference genome that have been mis-

assembled. Thus, in addition to CNVs that we identify by EWT, the

‘‘nonvariants’’ are also an important subject of interest. Additional

efforts are needed to map the genomic structure of the major alleles

at these loci.

A RD-based approach has distinct advantages over other

approaches in detecting certain classes of SVs. In comparing our

EWT calls and PEM calls made by others on a previously published

genome (Bentley et al. 2008), both methods identified a similar

number of events. However, only a minority of the calls over-

lapped between the two methods. Compared with the PEM-

specific events, the EWT-specific events were greatly enriched in

segmental duplications. This is to be expected. Complex regions

rich in segmental duplications are more difficult to ascertain using

PEM because many of the reads in these regions do not map to

unique locations in the genome (Tuzun et al. 2005). Segmental

duplications are less of a confounder for RD analysis because it is

not critical for reads to map uniquely to a region in order to esti-

mate the sequence coverage of that region.

Table 2. Comparison of nonoverlapping calls from RD-based and
PEM based analysis of NA18507

EWT-specific calls PEM-specific calls

No. of calls 1051 810
Size (bp)

Mean 4598 985
Median 1100 414

Segmental duplications
Count 416 (40%) 17 (2%)
Intersection (bp) 76% 21%

LINE/SINE elements
Count 493 (47%) 459 (57%)
Intersection (bp) 29% 31%

Simple repeats
Count 576 (55%) 611 (75%)
Intersection (bp) 6% 12%

The EWT- and PEM-specific calls are compared in terms of size. In addi-
tion, we compared them in terms of the content of segmental duplica-
tions, LINE elements, SINE elements, and simple repeats. For each
element that was tested, we list the total number of events that inter-
sect with at least one element (i.e., ‘‘count’’), and we list the total frac-
tion of base pairs of the events that intersect with the element (i.e.,
‘‘intersection’’).
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While RD analysis overcomes some of the limitations of other

methods, it has limitations of its own. RD analysis is not able to

ascertain balanced rearrangements. In addition, ascertainment of

SVs that involve highly repetitive sequences is limited. RD analysis

cannot determine the precise location of an insertion, nor can it

find novel insertions that are not already in the reference genome.

These classes of SVs are more easily detectable using a PEM-based

approach. Given the relative strengths of PEM and EWT, the two

methods are quite complementary. Using the two approaches in

combination will enhance the detection of a variety of SVs from

next-generation sequence data.

Knowledge of structural variation in the human genome will

improve rapidly as many more complete genome sequences be-

come available through the 1000 Genomes Project and related

efforts. The public availability of these data sets will further enable

the development of new bioinformatic tools. Ultimately, methods

for SV detection such as RD analysis and PEM will be combined

with methods for local de novo assembly in order to resolve the

structure of SVs at the nucleotide sequence level.
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