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Abstract

Background: The process of translation occurs at a nexus point downstream of a number of signal pathways and
developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Em-Myc mouse is a valuable tool to
study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an
inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of
standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic
agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential
synergy with standard of care agents.

Methodology/Principal Findings: Here, we chose four structurally different chemical inhibitors of translation elongation:
homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Em-
myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation
elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We
attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin
D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy
and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor.

Conclusion/Significance: Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis
could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations.
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Introduction

Recent large scale analysis of gene mutations, deletions, and

amplifications in human tumors have revealed that cancers exhibit

on average ,60–90 genetic alterations per tumor [1,2]. The

majority of these genetic alterations target players in a limited set

of signalling transduction pathways or processes [1,2]. These

analyses suggest that therapeutic targeting of specific altered

oncogenes may be too narrow an approach for drug development,

but rather targeting nodes that reside downstream of these

pathways may offer broader acting therapies [1,2]. Indeed, the

process of translation is a node for several signalling pathways and

has been shown to be a potential therapeutic target.

One approach to study genotype-drug response relationships

has been the use of mechanism-based mouse cancer models, such

as the Em-Myc lymphoma model [3]. In this model, activating

lesions in PI3K/AKT/mTOR signalling not only accelerate

tumorigenesis, but also modulate chemosensitivity [4,5,6]. Resis-

tance to doxorubicin (Dxr) or cyclophosphamide in myr-AKT

activated or PTEN+/2Em-Myc lymphomas has been linked to (a)

defective apoptotic program(s) dependent on increased mTOR

activity and linked to elevated translation initiation rates.

mTOR impinges on the translation process by regulating the

assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric

complex consisting of: eIF4E, a cap (m7GpppN, where N in any

nucleotide) binding protein; eIF4A, a DEAD-box RNA helicase;

and eIF4G, a large scaffolding protein involved in recruiting the

40S ribosome (and associated factors) [7]. Increased eIF4F activity

is thought to increase translation rates since eIF4E is the least

abundant translation factor and initiation is generally rate-limiting

for translation [8,9]. Increased eIF4F activity stimulates preferen-

tially the translation of mRNA with G+C rich, highly-structured

59UTRs (weak mRNAs) without significantly affecting translation

of mRNAs with short and unstructured 59UTRs (strong mRNAs)

[10,11,12]. Typically, strong mRNAs encode house keeping genes

like b-actin and GAPDH whereas weak mRNAs encode potent

growth and survival factors, such as the angiogenesis factors

VEGF and FGF-2, the proto-oncoproteins cyclin D1 and c-Myc,

and the pro-survival factors myeloid cell leukemia sequence 1

(Mcl-1) and survivin [13,14,15].

Preventing eIF4F assembly by inhibiting mTOR signalling with

rapamycin (Rap) [6,16] or blocking eIF4F activity with silvestrol,

an inhibitor of the ribosome-recruitment step of translation
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initiation [17], can sensitize Em-Myc lymphomas with elevated

mTOR signalling to the cytotoxic action of Dxr, though neither of

these treatments on their own is effective. eIF4E is oncogenic in

vivo and in Em-Myc lymphomas over-expressing this factor,

rapamycin is unable to modulate chemosensitivity whereas

silvestrol can [6,16,18,19]. The mechanism by which Rap and

silvestrol alter chemosensitivity is not clear but may involve

remodelling of the oncoproteome through differential mRNA

recruitment into initiation complexes [13], with preferred

inhibition of ‘‘weak’’ mRNAs encoding pro-survival signals, such

as Mcl-1 [4,17,20]

Interestingly, several inhibitors of translation elongation have

also been reported to exert significant anti-cancer activity. This

creates somewhat of a paradox as elongation inhibitors are not

expected to be selective in their mode of action and would be

expected to possess a narrow therapeutic window. Yet, homo-

harringtonine (HHT) (a cephalotaxus alkaloid) has demonstrated

activity in patients with chronic myeloid leukemia after imatinib

failure [21]. Aplidine [a didemnim (Did) family member] has

shown activity in phase I clinical trials for many cancer types but

especially in advanced medullar thyroid carcinoma [22]. Bru-

ceantin [(Bru); a quassinoid], showed efficacy in a RPMI 8226

human-SCID xenografts mouse model [23].

To address whether inhibitors of translation elongation could

also synergize with DNA damaging agents (e.g. Dxr), we tested the

potential of four elongation inhibitors to modulate chemosensitiv-

ity in the Em-myc model harboring lymphomas with loss of Pten or

Tsc2 or over-expressing Bcl-2 or eIF4E. We find that all inhibitors

tested can alter the chemosensitivity of tumors harboring activated

mTOR, but not in Bcl-2-driven tumors. We observe that these

compounds reduce Mcl-1 levels and postulate that they cause a

reduction in the levels of short-lived proteins, some of which are

pro-survival factors. We propose that this resets the apoptotic

program. These results provide a mechanism by which elongation

inhibitors sensitize cells to apoptotic triggers.

Materials and Methods

Ethics Statement
Animal studies were approved by the McGill University Faculty

of Medicine Animal Care Committee.

Compound preparation and storage
HHT (Sigma-Aldrich, St.-Louis, MO), cycloheximide (CHX)

(BioShop, Burlington, On), didemnin B (Did B) (NCI-DTP), Bru

(NCI-DTP) and MG132 (Sigma-Aldrich, St.-Louis, MO) were

resuspended in DMSO and stored at 270uC. Doxorubicin

(Sigma-Aldrich, St.-Louis, MO) was dissolved in water and stored

at 4uC. Rap (LC Laboratories, Woburn, MA) was resuspended in

100% ethanol and stored at 270uC.

Cell culture and in vitro synergy assays
Mice bearing palpable Tsc2+/2Em-myc lymphomas were sacri-

ficed, lymph nodes extracted, and tumor cells harvested by gently

crushing the lymph nodes between two microscope slides. Cells

were then put into culture in B-cell medium (BCM) (50%

DMEM/50% IMDM) (Invitrogen, Carlsbad, CA), supplemented

with 55 mM b-mercaptoethanol, Pen/Strep (Invitrogen, Carlsbad,

CA) and Glutamine (Invitrogen, Carlsbad, CA) over an irradiated

NIH3T3 feeder layer. For ex vivo synergy experiments, 105 Tsc2+/2

Em-myc cells were plated in 96-well plates in the presence of HHT

(0.625 nM to 160 nM), MG132 (0.039 mM to 20 mM), Dxr

(0.0975 mg/ml to 10 ug/ml) or various combinations thereof.

Sixteen hours later, cell viability was assessed with the CellTiter

96H Non-Radioactive Cell Proliferation Assay (MTT) according to

the manufacturer recommendations (Promega, Madison, WI).

Synergy between compound treatments was calculated using

compusyn software (ComboSyn Inc.).

Treatment studies
The generation of Pten+/2Em-Myc, Tsc2+/2Em-Myc, Em-Myc/

Bcl-2 and Em-Myc/eIF4E lymphomas has been previously

described [6,16]. A total of 106 secondary lymphoma cells were

injected into the tail vein of 6–8 week old female C57BL/6 mice.

When well-palpable tumors arose, mice were treated with Dxr

(once at 10 mg/kg), Rap (4 mg/kg daily for 5 days), HHT

(0.25 mg/kg daily for 5 days), Bru (0.5 mg/kg daily for 5 days),

Did B (0.05 mg/kg daily for 5 days), or CHX (12.5 mg/kg for 5

days). The compounds were diluted into 5.2% PEG400/5.2%

Tween 80 immediately prior to intraperitoneal (IP) injection. In

combination studies, Rap, HHT, Bru, Did B or CHX were

administered once daily for 5 consecutive days, with Dxr being

administered once on day two. The presence of the tumors was

monitored by daily palpation and blood smears (twice/week)

stained with Hema-3H stain (Fisher Scientific, Pittsburg, PA).

Tumor-free survival is defined as the time between tumor

disappearance and reappearance of a palpable lymphoma. Overall

survival is defined as the time after tumor disappearance required

for the mice to reach a terminal stage at which point the animals

were sacrificed. The data were analyzed in the Kaplan-Meier

format using the log-rank (Mantel-Cox) test for statistical

significance (SigmaStat software).

TUNEL (terminal deoxyribonucleotide transferase-
mediate nick-end labeling) assays and Western blotting

For TUNEL assays, 6–8 week old C57Bl/6 mice bearing well-

palpable tumors were treated once with Rap (4 mg/kg), HHT

(0.25 mg/kg), Bru (0.5 mg/kg), Did B (0.5 mg/kg), or CHX

(12.5 mg/kg) and the next day were treated again with or without

Dxr (10 mg/kg). Four hours later, tumors were removed and fixed

in 10% Neutral Buffered Formalin (NBF) overnight and

embedded in paraffin. Tumor sections (4 mm) were used in

TUNEL assays according to the manufacturer’s recommendations

(Roche Applied Science, Indianapolis, IN) and stained with

Hematoxylin to visualize cell boundaries. For Western blot

analysis, mice were treated for the indicated times, the tumors

harvested, total cell lysates prepared using RIPA buffer, and

proteins separated by SDS-PAGE. The antibodies used were: b-

actin (Sigma-Aldrich, St.-Louis, MI), cleaved PARP (Cell Signal-

ling, Beverly, MA), Mcl-1 (Rockland antibodies, Gilbertsville, PA),

cyclin D1 (Cell signalling, Beverly, MA), c-Myc (Santa cruz

biotechnology, Santa Cruz, CA), and a-tubulin (Sigma-Aldrich,

St.-Louis, MI). Total protein content of each extract was

determined using the DC protein assay (Biorad, Richmond, CA).

Ribosome binding and polysome analysis
Ribosome binding experiments were performed as previously

described [24]. In brief, 32P-labelled CAT mRNA was incubated

with rabbit reticulocyte lysate in the presence of 10 mM

HHT+600 mM CHX, 10 mM Bru+600 mM CHX, CHX alone

or no compounds for 10 min at 30uC. Translation initiation

complexes formed were resolved on 10–30% glycerol gradients by

centrifugation for 3.5 h at 39,000 rpm (187,0006g) in an SW41

rotor. The gradients were then fractionated using a UA-6 UV

detector (ISCO, Lincoln, NE) with a Brandel tube piercer and the

radioactivity in each fraction was determined by Cerenkov

counting.
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For polysome analysis, mice bearing well-palpable lymphomas

were injected IP with HHT (0.25 mg/kg) or Bru (0.5 mg/kg)

diluted into 5.2% PEG400/5.2% Tween 80. Two hours later, the

tumors were harvested, washed with PBS and lysed in hypotonic

lysis buffer (5 mM Tris7.5, 2.5 mM MgCl2, 1.5 mM KCl, 2 mM

DTT, 1% Triton X-100, 0.5% Sodium Deoxycholate) in the

presence of 100 mg/mL CHX. The extracts were centrifuged

through a 10–50% sucrose gradient at 35,000 rpm (150,0006g)

for 2 h in an SW40 rotor, followed by fractionation of the

gradients using a UA-6 UV detector (ISCO, Lincoln, NE) using a

Brandel tube piercer. Total RNA from every second fraction was

isolated using Trizol (Invitrogen Carlsbad, CA). The amount of

Mcl-1, Cyclin D1, c-Myc and b-actin mRNAs were detected by

qRT-PCR using the Roche Diagnostics LightCycler instrument

and LightCycler RNA master SYBR green I kit according to the

manufacturer’s instruction. The primers used for qRT-PCR were:

c-Myc: 59TGCGACTGACCCAACATCAG39 and 59CCTGTC-

CTGGCTCGCAGATT39; Cyclin D1: 59CAGGTTCCTGTT-

CACAATACCTCA39 and 59AGACCGCCCACCTGCC39, Mcl-1
59AGCACATTTCTGATGCCGCCT39 and 59GTGCCTTTGT-

GGCCAAACACT39; and b-actin: 59TCACTATTGGCAAC-

GAGCGGTT39 and 59TGTCAGCAATGCCTGGGTACAT39.

Results

Inhibition of translation elongation can alter
chemosensitivity

A large number of translation elongation inhibitors have been

tested in NIH’s Developmental Therapeutics Program to assess

the chemotherapeutic potential of small molecules in various

mouse cancer models as single agents (Fig. S1). A significant

fraction of these show activity, although in many cases, these

results are restricted to a single dose, delivery route, or cancer

model. In addition, a shortcoming of these assays is that they do

not assess for a compounds’ ability to modulate chemosensitivity.

We therefore chose to use the Em-Myc lymphoma model to assess

the anti-cancer and chemosensitization activity of translation

elongation inhibitors. In this study, we used four structurally

different elongation inhibitors: HHT, CHX, Bru, and Did B

(Fig. 1A). HHT and Bru inhibit the first steps of elongation

whereas Did B and CHX block translocation by interfering with

elongation factor and E site function, respectively ([25], and this

report).

Compounds were tested in combination with Dxr, using a

delivery regiment consisting of 5 daily injections of compound,

with delivery of one bolus of Dxr on the second day of treatment

[16]. For these studies, we used mice bearing Pten+/2Em-Myc

lymphomas since mTOR is activated in these tumors and they

respond to the combination of Dxr and Rap treatment [16], as

well as to combinations of Dxr and the translation initiation

inhibitor, silvestrol [17]. As single agents, none of the elongation

inhibitors tested induced remissions (Fig. 1B). Dxr and Rap as

single agents induced a slight remission that lasted on average 5

days, as previously reported [17]. In contrast, all four elongation

inhibitors and Rap synergized with Dxr to extend the tumor-free

period and overall survival 2–3 fold (Figs 1B and S2). Enhanced

drug sensitivity was associated with increased apoptosis for all drug

treatment combinations, compared to single agent treatments

(Fig. 1C). Consistent with this interpretation, the observed

enhanced sensitivity to Dxr/elongation inhibitor combination

was also associated with elevated PARP cleavage (Fig. 1D). As

single agents, none of the inhibitors significantly induced PARP

cleavage (Fig. 1D).

To assess the efficacy of translation elongation inhibitors on

Rap-resistant lymphomas, we examined the activity of these

compounds on Em-Myc/eIF4E lymphomas. These lymphomas

over-express eIF4E and are resistant to Dxr+Rap combination

treatment [6,16] (Fig. 2A), but sensitive to the combination of Dxr

and silvestrol, an eIF4A activity modulator [17]. As observed with

Pten+/2Em-Myc lymphomas, treatment of mice bearing Em-Myc/

eIF4E lymphomas with any of the elongation inhibitors alone was

not effective in inducing remissions (Fig. 2A). Treatment with Dxr,

Rap, or Rap+Dxr caused a short-lived remission (,5 days) in

,50% of the mice (Fig. 2A). However, combination therapy with

any one of the four translation inhibitors and Dxr produced

tumor-free remissions that lasted up to 25 days (Fig. 2A) and also

extended the survival of the mice (Fig. S3A). We do not believe

that an inherent feature of Em-Myc lymphomas make them

particularly sensitive to the effects of elongation inhibitor/Dxr

combination since Em-Myc/Bcl-2 lymphomas showed significant

resistance to these drug combinations (Fig. 2B). Bcl-2 was able to

protect against PARP cleavage by these treatments (Fig. 2C). All

treatments that extend the tumor-free period in mice bearing Em-

Myc/eIF-4E lymphomas had no effect on overall survival in mice

bearing Em-Myc/Bcl-2 tumors (Fig. S3B).

Degradation of short-lived proteins following exposure
to translation elongation inhibitors

Several of the proteins that play important regulatory roles in

cancer progression and apoptosis have short half-lives (e.g. cyclin

D1 (,25 min) [26]; c-Myc (,25 min) [27]; myeloid cell leukemia-

1 (Mcl-1) (,40 min) [28]. The level of these proteins is particularly

sensitive to ongoing protein synthesis rates and can be affected by

cellular stresses or treatment with translation inhibitors in cell

culture. For example, the anti-apoptotic factor Mcl-1, a short-lived

Bcl-2 family member essential for normal haematopoiesis and

constitutively targeted to the proteasome by the E3 Ligase MULE

[29], is rapidly degraded upon UV-irradiation [30] or HHT

treatment [31]. c-Myc protein levels have been shown to rapidly

decline upon CHX treatment [32]. Since the inhibitors we were

using are predicted to affect global translation, we rationalized that

one mechanism by which they could be affecting survival is

through allowing the rapid loss of short-lived pro-survival factors

from cells treated with translation inhibitors to facilitate pro-

apoptotic triggering.

We then sought to verify the levels of three short-lived proteins

in vivo in Pten+/2Em-Myc lymphomas treated in tumor-bearing mice

(Fig. 3). Following delivery of 2 doses of compound over a 24-hr

period, tumors were isolated 4 hrs after the 2nd injection. By

28 hrs post-drug delivery, there was a reduction in the amount of

Mcl-1, Cyclin D1, and c-Myc protein levels in Pten+/2Em-Myc

lymphomas relative to vehicle-treated controls (Fig. 3A, compare

lanes 2–6 to 1) whereas the levels of b-actin or Bcl-2 did not

appreciably change over this time period. Using the same

treatment schedule, no significant change in Mcl-1, cyclin D1,

and c-Myc mRNA level was observed in the tumors with the

elongation inhibitors (Fig 3B).

HHT and Bru block translation in Pten+/2Em-Myc
lymphomas

To provide direct evidence that the compounds being used

actually are targeting the translation process in tumor cells in vivo;

we analyzed the polyribosome content of Pten+/2Em-Myc tumors

from mice treated with the elongation inhibitors. We focussed on

HHT and Bru, since the polysomes from CHX or Did B treated

tumors would resemble untreated controls, as both of these
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compounds cause ribosome stalling on mRNA templates [25].

Although HHT and Bru are regarded as elongation inhibitors,

their mode of action has not been well defined. Both compounds

inhibit the peptidyl transferase reaction [33,34,35,36] and are

thought to bind tighter to free ribosomes than translating

ribosomes [33,34]. When added to actively translating reactions,

there is a 2–4 minute lag before onset of inhibition is observed

[33,37], suggesting that the compounds allow ribosome run-off.

To obtain more direct evidence that both these compounds block

elongation and do not affect ribosome loading, we tested their

ability to counter the formation of the CHX-induced stable 80S

complexes on mRNA templates in in vitro ribosome binding assays.

Sedimentation velocity centrifugation was used to separate 80S

complexes from unbound radiolabelled mRNA (Fig. S4). HHT

and Bru were thus tested in combination with CHX, to monitor

their effect on ribosome loading. The results indicate that, both

HHT and Bru do not significantly interfere with the trapping of

80S complexes by CHX when compared to the binding obtained

without CHX. Furthermore, when tested as single agents in this

assay, HHT and Bru induce a peak comparable in height to the

one obtained with CHX alone (data not shown). Taken together

with the fact that these compounds allow ribosome run-off, we

conclude that they do not affect ribosome loading but rather block

the first step of elongation. The polyribosomal content of Pten+/2

Em-Myc tumors that had been treated with vehicle, HHT, or Bru

indicates a drop in the polyribosomal content of the HHT2 and

Bru-treated tumors with a concomitant increase in amount of 80S

ribosomes (Fig. 4). We found that the polysome to monosome ratio

(P/M) in drug-treated tumors decreased ,4–6 fold compared to

vehicle-treated samples (Fig. 4).

Figure 1. Translation elongation inhibitors alter the chemosensitivity of Pten+/2Em-Myc lymphomas. A. Schematic diagram illustrating
the chemical structure of elongation inhibitors used in this study. B. Kaplan-Meier curves representing the time to relapse following treatment of
mice bearing Pten+2Em-Myc tumors. Ten animals were treated in each cohort. All mice were treated at the same time and in the same experiment, but
the data is presented as two curves for ease of visualization. P,0.001 for significance among all curves of combination treatments compared to single
agent treatments, as determined by the log rank test. C. Translation elongation inhibitors potentiate the apoptotic program induced by Dxr in
Pten+/2Em-Myc lymphomas in vivo. Representative micrographs of Pten+/2Em-Myc lymphomas following treatments (original magnification, 6200).
Mice were first treated with elongation inhibitors or Rap and injected again 24 hrs later with the same compounds with or without combination
treatment with Dxr. Four hours later, tumors were extracted and processed for TUNEL analysis. The percentage of cells that stained positive is
indicated at the top right and represents the average of three different fields where 500 cells were counted per field. This experiment was repeated
three times with similar results. D. Representative Western blot analysis of Pten+/2Em-Myc lymphomas treated as described in (C). Tumor cells were
extracted, lysed, and the levels of cleaved-PARP (c-PARP) and a-tubulin determined by Western blotting. This experiment was performed on three
independent tumor samples with similar results.
doi:10.1371/journal.pone.0005428.g001
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Decreased levels of Mcl-1, Cyclin D1, and c-Myc in Pten+/2

Em-Myc tumors treated with translation elongation
inhibitors

We next addressed whether the decrease in Mcl-1, Cyclin D1,

and c-Myc observed upon treatment of Pten+/2Em-Myc tumors

with elongation inhibitor was due to a reduction in their

translation. To this end, we isolated RNA from fractions that

spanned the polyribosomes of Pten+/2Em-Myc tumors taken 2 hr

after treatment with HHT2, Bru- or vehicle (Fig. 4). The relative

amount of mRNA in every second fraction was determined by

qRT-PCR and plotted as a percentage of total mRNA (Fig. 5).

Treatment of mice bearing Pten+/2Em-Myc tumors with either

HHT or Bru led to a shift in Mcl-1, cyclin D1, c-Myc, and b-actin

mRNAs from heavy polysomes (fractions 20–24) into lighter

polysomes (fractions 6–12), consistent with these compounds

partially inhibiting global protein synthesis in vivo. The reasons

for the partial inhibition of protein synthesis will be addressed in

the Discussion.

Figure 2. Translation elongation inhibitors alter the chemosensitivity of Em-Myc/eIF4E lymphomas. A. Kaplan-Meier curves representing
the time to relapse following treatment of mice bearing Em-Myc/eIF4E tumors. Ten animals were treated in each cohort. All mice were treated at the
same time and in the same experiment, but the data is presented as two curves for ease of visualization. P,0.001 for significance among all curves of
combination treatments involving Bru+Dxr, HHT+Dxr, Did+Dxr, and CHX+Dxr compared to single agent treatments, as determined by the log rank
test. B. Em-Myc/Bcl-2 tumors are highly resistant to the combination of translation elongation inhibition and Dxr in vivo. Kaplan-Meier plot showing
tumor-free survival of mice (n = 10 for each cohort) bearing Em-Myc/Bcl-2 tumors following treatment. Log rank analysis of the curves of combination
relative to single agent treatments shows a significant difference between Dxr and Rap+Dxr, HHT+Dxr, Did+Dxr and Bru+Dxr, but not CHX+Dxr with
P-values of 0.003, 0.002, 0.004, 0.003 and 0.120, respectively. C. Western blot analysis of Em-Myc/Bcl-2 lymphomas treated as indicated above the
panel. Tumor cells were extracted, lysed, and the levels of cleaved-PARP (c-PARP) and a-tubulin determined by Western blotting. The Western blots
were performed on two independent tumor samples with similar results.
doi:10.1371/journal.pone.0005428.g002
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If a reduction in levels of essential short-lived proteins is

associated with the synergistic effects observed between inhibitors

of elongation and Dxr, then one might expect that the presence of

a proteasome inhibitor in this system might antagonize the effects

of protein synthesis blockade. For this purpose, we used Tsc2+/2

Em-Myc lymphomas cultured ex vivo [20]. As documented for

Pten+/2Em-Myc lymphomas, inhibiting translation elongation in

Tsc2+/2Em-Myc lymphomas also synergizes with Dxr to induce

remissions in mice that lasted for up to 28 days (Fig. S5A). Rap

also synergized with Dxr in this setting as previously established

[4] and was able to inhibit mTOR activity as determined by p-S6

blotting (Fig. S5B). As well, HHT is able to block translation in

mice bearing Tsc2+/2Em-Myc lymphomas as revealed by polysome

analysis of tumors two hours following compound administration

(Fig. S5C). Tsc2+/2Em-Myc lymphomas were cultured ex vivo and

exposed for various times to a concentration of compound

sufficient to completely block global protein synthesis (Fig. S6).

Treatments also included a 30-min pre-exposure to the protea-

Figure 3. Inhibition of translation elongation in mice bearing Pten+/2Em-Myc lymphomas leads to reduced amounts of Mcl-1, Cyclin
D1, and c-Myc. Mice bearing Pten+/2Em-Myc tumors were treated for 28 hrs (two injections; 24 hrs apart) with either Rap (4 mg/kg), HHT (0.25 mg/
kg), Bru (0.5 mg/kg), Did B (0.05 mg/kg) or CHX (12.5 mg/kg). A. At 28 hrs (lanes 2–6) tumor cells were extracted, lysed, and proteins fractionated by
SDS-PAGE followed by Western blot analysis. The vehicle control mice were treated like the 28 hrs compound treatments except that compounds
were omitted. B. Assessment of mRNA levels in Pten+/2Em-Myc tumors by qRT-PCR. The change in mRNA amounts relative to vehicle-treated controls
(V) from three independent experiments is shown as a bar graph with standard deviation. Quantitation of the data from three independent
experiments performed as in A is also superimposed on these graphs.
doi:10.1371/journal.pone.0005428.g003
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some-inhibitor MG132 [38]. Following incubation, the levels of

Mcl-1, c-Myc, Cyclin D1 and b-actin were determined by Western

blotting (Fig. 6A–D). As predicted, exposure of cells to HHT, Did

B, Bru or CHX lead to a drastic reduction in Mcl-1, cyclin D1,

and c-Myc protein levels (compare lanes 2–4 to lane 1). Consistent

with this being a selective loss of proteins, b-actin levels did not

significantly change (Fig. 6A–D, compare lanes 2–4) nor was the

Coomassie-visible protein profile altered (data not shown) when

comparing pre- and post-drug exposure. Pre-exposure of cells to

MG132 followed by addition of elongation inhibitors strongly

blocked the reduction in Mcl-1, Cyclin D1, and c-Myc protein

levels (Fig. 6A–D, compare lanes 6–8 to 2–4). Given this result, we

sought to determine what effect MG132 would have on HHT2 or

Rap-induced cell death in Tsc2+/2Em-Myc lymphomas. Tumor

cells were exposed to HHT or Rap in the presence or absence of a

fixed concentration of MG132 (10 mM) and cell viability

determined (Fig 7A). The results indicate that inhibition of the

proteasome antagonizes the toxicity of HHT and Rap on these

cells with at least 2–3 fold more cells surviving at the highest dose

of translation inhibition tested. These results are in agreement with

previous work that showed that MG132 can protect against CHX-

induced apoptosis in U397 cells [39]. To assess if MG132 would

also antagonize the synergy we observed between elongation

inhibitors and Dxr, we exposed Tsc2+/2Em-myc lymphomas to

HHT or Rap with Dxr. Median effect analysis indicated a

combination index (CI) below 1 for Dxr+HHT and Rap+Dxr

indicative of synergy [40] (Fig 7B). The presence of MG132

antagonized both Dxr+HHT and Dxr+Rap combinations, with

CI values extending above 1 (Fig 7B). The ability of the

proteasome inhibitor MG132 to curtail the synergy between

HHT and Dxr is consistent with HHT modulating drug sensitivity

by causing loss of short-lived pro-survival factors.

Discussion

Inhibitors of elongation have been previously tested in murine

cancer models for their anti-cancer properties as single agents (Fig.

S1), as well as identified as genotype-selective antitumor agents in

synthetic lethal screens [41]. The potential synergy between

translation elongation inhibitors and DNA damaging agents has

only been tested in cell culture. CHX has been reported to

enhance the cytotoxicity of the anthracycline, epirubicin, against

P388 murine leukemic cells [42] and to potentiate Dxr toxicity in

RKO-E6 cells [43]. Sparsomycin, pretazettine, and HHT also

show synergy with antitumor agents against tumor cells ex vivo

[44,45,46,47]. Finally, translation elongation inhibitors have been

shown to sensitize PC3 cells to TRAIL-induced apoptosis [48] and

A549 lung cancer or K562 leukemia cells to cisplatin [49]. In other

settings however, CHX and anguidine have protected cells against

the cytotoxic effects of antitumor drugs [50,51,52]. Differences in

underlying genetic lesions among tumors could be responsible for

these different responses [53]. Despite the large amount of studies

documenting the behaviour of translation elongation inhibitors in

cell lines, testing the potential of elongation inhibitors to synergize

with standard-of-care agents in animal models has not been

systematically approached.

We demonstrate here that the elongation inhibitors HHT, Bru,

Did B and CHX modulate the chemosensitivity of Pten+/2Em-Myc,

Tsc2+/2Em-Myc and Em-Myc/eIF4E tumors to the effects of Dxr

whereas Em-Myc/Bcl2 tumors were largely refractory to combina-

tion therapy. These treatments in the Pten+/2Em-Myc induce an

apoptotic response in these chemoresistant tumors as determined

by TUNEL analysis and PARP cleavage (Fig. 1). The mechanism

by which inhibitors modulate chemoresponsiveness remains to be

clearly established, but at the doses tested we observed a

correlation between tumor disappearance and inhibition of

translation in the tumors (Fig 4A). However, we note that only

partial inhibition of protein synthesis was observed in vivo with

these compounds (Figs. 4A and 5). Pharmacological properties of

some of these compounds (serum binding, serum half-life,

clearance, or cell permeability) may be the underlying reason

why some inhibitors function better than others. The terminal

half-life of HHT has been determined to be 14.4 hrs in human

Figure 4. A. HHT and Bru inhibit polysome formation in Pten+/2Em-Myc tumors. Mice bearing well-palpable Pten+/2Em-Myc tumors were treated with
either vehicle (DMSO), HHT (0.25 mg/kg), or Bru (0.5 mg/kg). Two hours later, tumors were harvested and cell extracts prepared and fractionated
through 10%–50% sucrose gradients. Polyribosomes were monitored by measuring the OD260 using an ISCO UA-6 UV detector. The experiment was
repeated two more times with similar results.
doi:10.1371/journal.pone.0005428.g004
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[54] and 40.6 hrs in dogs [55]. The clearance of Did B from the

blood of human patients is biphasic with apparent half-lives of 0.12

and 4.8 hrs [56] and its observed terminal half-life in mice is

16.2 hrs [57]. The elimination half-life of Bru in mice has been

estimated to be greater than 12 hrs and in human serum it is

biphasic and progresses through an initial fast half-life of 15 min

followed by a second half-life of 0.7–13.8 hrs depending on the

patients [58]. Clearly, these compounds display a wide range of

pharmacokinetic and pharmacodynamic behaviour.

Our results suggest that a decrease in the levels of factors, like

Mcl-1, cyclin D1, and c-Myc might reorganize the onco-proteome

allowing transformed cells to become sensitive to Dxr through

mechanisms that include re-establishment of the apoptotic

program (Fig. 1C). The role of Mcl-1 in enhancing cell survival

by blocking activation of the pro-apoptotic factors Bak and Bax

has been well-established in culture [39,59,60] and c-Myc controls

the expression of genes involved in many aspects of cell growth

including cell cycle progression and survival [61]. Cyclin D1 has

been shown to bind to CDK4 and CDK6 leading to inactivation

of Rb1, thus facilitating the transition from G1 to S phase and

overcoming the transition inhibition by cyclin dependent kinase

inhibitors [62,63]. It is noteworthy that as single agents, none of

these compounds showed activity in the Em-myc model, compared

to other mouse models where activity was sometimes detected (Fig.

S1). Similar results have been documented for the mTOR

inhibitor, rapamycin [5,6], and the eIF4A modulator, silvestrol

[17], and suggests that the tumors derived from the Em-Myc model

require a DNA damage trigger to undergo apoptosis when

translation is inhibited.

Many possiblities could explain the resistance of the Em-Myc/

Bcl-2 tumors to Dxr/elongation inhibitor combination (Fig. 2B).

This could be due to the longer half-life of this anti-apoptotic

factor (,10 hrs) [64] combined to the only partial inhibition of

protein synthesis achieved in vivo by these compounds (Fig. 5).

Alternatively, reduced levels of short-lived proteins (e.g. Mcl-1,

cyclin D1, or c-Myc) could be better tolerated in the Em-Myc/Bcl-2

tumors than in the other models. Further work would be required

to formally demonstrate the mechanism of resistance by Bcl-2

overexpression in this mouse model. We cannot exclude the

possibility that the compounds tested herein modulate the

cytotoxicity of Dxr through other mechanisms, such as affecting

serum half-life of Dxr, increasing intracellular drug levels by

altering the expression of polypeptide(s) involved in transport, or

by affecting detoxification [49].

Why would inhibiting translation elongation achieve a thera-

peutic index, since it is expected that translation of all mRNAs

would be inhibited to the same extent by such inhibitors? It is

possible that, by having higher translation rates [4,65] transformed

cells are more sensitive to these compounds even when they exert

partial inhibitory activity. Alternatively, as the cells transform into

cancer cells, they are thought to select for higher oncogene activity

or expression and become ‘‘addicted’’ to these oncogenes [66].

Some of these oncogenic proteins possess short half-lives and are

likely to be selectively depleted by elongation inhibitors driving the

transformed cells towards apoptosis. Our work provides a rationale

for using elongation inhibitors to modulate chemosensitivity in

tumors.

Supporting Information

Figure S1 Results summarizing in vivo screening data from the

NIH Developmental Therapeutics Program for translation

inhibitors in various mouse cancer models. The data for each

compound was obtained from http://dtp.nci.nih.gov/dtpstandard/

dwindex/index.jsp and manually inspected. A positive response

in a given model was noted if the Treated/Control cohorts

showed a value greater than 125% for any of the given doses,

administration routes, or delivery vehicles. The height of the bar

graph denotes the total number of different cancer models

reported and the open portion of the bar denotes the number of

models in which the indicated compound showed activity at

least once.

Found at: doi:10.1371/journal.pone.0005428.s001 (2.07 MB TIF)

Figure S2 Translation elongation inhibitors potentiate the

activity of Dxr to extend overall survival of mice bearing Pten+/

Figure 5. Treatment of mice with HHT and Bru inhibits general
protein synthesis in vivo. Pten+/2Em-Myc tumors were isolated from
HHT2 or Bru- treated animals and their polyribosomes fractionated on
10–50% sucrose gradients. RNA was purified from the indicated
fractions and quantified using qRT-PCR for Mcl-1, cyclin D1, c-Myc
and b-actin levels. The amount of mRNA in each fraction was
determined relative to vehicle-treated mice. The values are averaged
from three independent experiments and the error bars denote the
error of mean (n = 3).
doi:10.1371/journal.pone.0005428.g005
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2Em-Myc lymphomas. Kaplan-Meier curves representing the

overall survival of mice bearing Pten+/2Em-Myc tumors following

treatment. Ten animals were treated in each cohort. All mice were

treated at the same time and in the same experiment, but the data

is presented as two curves for ease of visualization. P,0.001 for

significance among all curves of combination relative to single

agent treatments, as determined by the log rank test.

Found at: doi:10.1371/journal.pone.0005428.s002 (1.20 MB TIF)

Figure S3 Overall survival in mice bearing Em-Myc/eIF4E or

Em-Myc/BCL2 lymphomas treated with translation elongation

inhibitors. A. Kaplan-Meier curves representing the overall

survival of mice bearing Em-Myc/eIF4E tumors following treat-

ment. Ten animals were treated in each cohort. All mice were

treated at the same time and in the same experiment, but the data

Figure 6. MG132 antagonizes the effects of elongation inhibitors on the levels of Mcl-1, Cyclin D1, and c-Myc. Tsc2+/2Em-Myc
lymphomas were pre-treated with MG132 (lanes 5–8) or vehicle (lanes 1–4) for 30 min and exposed to HHT (100 nM) (A), Did B (100 nM) (B), Bru
(100 nM) (C) or CHX (1 mM) (D) for the indicated periods of time (lanes 1–8). At the end of each incubation, the cells were harvested, lysed and the
levels of Mcl-1, cyclin D1, c-Myc and b-actin determined by Western blotting. The right panel of each gel shows the intensities of each band relative to
the 0 hr control with standard deviation from three independent experiments.
doi:10.1371/journal.pone.0005428.g006
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is presented as two curves for ease of visualization. P,0.001 for

significance among all curves of combination relative to single

agent treatments, as determined by the log rank test. B. Kaplan-

Meier curves representing the overall survival of mice bearing

Em-Myc/BCL2 tumors following treatment. Ten animals were

treated in each cohort. All mice were treated at the same time

and in the same experiment, but the data is presented as two

curves for ease of visualization. Log rank analysis of the

treatment responses indicates a significant difference between

Dxr and Rap+Dxr having a P-value,0.001. The analysis also

indicates that the curve obtained with Dxr alone is not

significantly different than the ones obtained with HHT+Dxr,

Did+Dxr, Bru+Dxr or CHX+Dxr with respective P-values of

0.0149, 0.0241, 0.245 and 0.101.

Found at: doi:10.1371/journal.pone.0005428.s003 (1.83 MB TIF)

Figure S4 HHT and Bru trap 80S complexes on mRNA

templates. Rabbit reticulocyte lysates were preincubated without

compound, with 0.6 mM CHX, 10 mM HHT+0.6 mM CHX or

10 mM Bru+0.6 mM CHX at 30uC for 5 min. The reactions were

then supplemented with [32P]-radiolabeled CAT mRNA and

incubated for an additional 10 min at 30uC. 80S complexes were

resolved by centrifugation through 10–30% glycerol gradients.

The direction of the arrow indicates the orientation of the

gradient, from top to bottom. The total counts recovered from

each gradient and the percent mRNA bound in 80S complexes

were: CHX (left panel) [26,960 cpm, 20.0% binding],

HHT+CHX [28,383 cpm, 16.8% binding], no compound

[5744 cpm, 3.4% binding], CHX (right panel) [71,727 cpm,

17.4% binding], and Bru+CHX [50,392 cpm, 12.2% binding]

and no compound [11,542 cpm, 2.8% binding].

Figure 7. MG132 antagonizes the toxicity of HHT and Rap on Tsc2+/2Em-Myc lymphomas and interferes with their Dxr-associated
synergism. A. Cells were exposed to the indicated concentrations of HHT or Rap in the presence or absence of 10 mM MG132. Cell viability was
determined 16 hrs later. The results are presented as the fraction of viable cells relative to vehicle (0.02% DMSO) treated samples with the standard
deviation presented (n = 3). B. Lymphomas cells were treated with increasing concentrations and HHT and Dxr or Rap and Dxr at a fixed ratio in
presence or absence of a fixed MG132 concentration (10 mM) for 16 hrs and the cell viability was determined. A CI value below 1 indicates a
synergistic effect whereas a value above 1 represents antagonism. These experiments were performed three times with similar results.
doi:10.1371/journal.pone.0005428.g007
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Found at: doi:10.1371/journal.pone.0005428.s004 (1.29 MB TIF)

Figure S5 Translation elongation inhibitors potentiate the

activity of Dxr to extend overall survival of mice bearing Tsc2+/

2Em-Myc lymphomas. A. Kaplan-Meier curves representing the

tumor-free period in mice bearing Tsc2+/2Em-Myc tumors

following treatment. Ten animals were treated in each cohort.

P,0.001 for significance among all curves of combination relative

to single agent treatments, as determined by the log rank test. B.

Western blot analysis of Rap treatments of mice bearing Em-Myc

(lanes 1 to 2), Pten+/2Em-Myc (lanes 3 to 4) or Tsc2+/2Em-Myc

(lanes 5 to 6) tumors. Mice were treated for 4 hours with 4 mg/kg

of Rap, the tumors extracted and cell lysates prepared and

analysed for pan- and p-S6 levels. C. HHT blocks protein

synthesis in Tsc2+/2Em-Myc lymphomas in vivo. Mice bearing

Tsc2+/2Em-Myc lymphomas were treated and polysomes ana-

lyzed as described in the legend to Figure 4. These experiments

were performed for a total of three replicates with similar results.

Found at: doi:10.1371/journal.pone.0005428.s005 (1.64 MB TIF)

Figure S6 Potency of the elongation inhibitors at inhibiting

translation in Tsc2+/2Em-Myc lymphomas. Two hundred and

fifty thousand cells were plated in 24-well plates in BCM in

presence of increasing concentrations of HHT, Bru, Did B or

CHX and incubated for 3 hours followed by a 35S-methionine

labelling performed 20 minutes before the end of the incubation.

The results are expressed as cpm/ug of total protein relative to

DMSO control (n = 3).

Found at: doi:10.1371/journal.pone.0005428.s006 (1.55 MB TIF)
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