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Abstract
Plants have unique features that evolved in response to their environments and ecosystems. A full
account of the complex cellular networks that underlie plant-specific functions is still missing. We
describe a proteome-wide binary protein-protein interaction map for the interactome network of
the plant Arabidopsis thaliana containing ~6,200 highly reliable interactions between ~2,700
proteins. A global organization of plant biological processes emerges from community analyses of
the resulting network, together with large numbers of novel hypothetical functional links between
proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication
events, providing evidence for a model of evolution acting upon interactome networks. This and
future plant interactome maps should facilitate systems approaches to better understand plant
biology and improve crops.

Classical genetic and molecular approaches have provided fundamental understanding of
processes such as growth control or development, and molecular descriptions of genotype-
to-phenotype relationships for a variety of plant systems. Yet more than 60% of the protein-
coding genes of the model plant Arabidopsis thaliana (hereafter Arabidopsis) remain
functionally uncharacterized. Knowledge about the biological organization of
macromolecules in complex and dynamic “interactome” networks is lacking for Arabidopsis
(fig. S1, tables S1, S2), depriving us of an understanding of how genotype-to-phenotype
relationships are mediated at the systems level (1).

A high-quality binary protein-protein interactome map for Arabidopsis
To generate a map of the Arabidopsis interactome network, we used a collection of ~8,000
open reading frames representing ~30% of its predicted protein-coding genes (table S3) (2,
3). We tested all pair-wise combinations of proteins encoded by these constructs (space 1)
with an improved high-throughput binary interactome mapping pipeline based on the yeast
two-hybrid (Y2H) system (fig. S2) (3, 4). Confirmed pairs were assembled into a dataset of
5,664 binary interactions between 2,661 proteins, called Arabidopsis Interactome version 1
“main screen” (AI-1MAIN) (table S4).

The quality of AI-1MAIN was evaluated against a positive reference set (PRS) of 118 well-
documented, manually re-curated (5) Arabidopsis protein-protein interactions and a random
reference set (RRS) of 146 random protein pairs (fig. S3; table S5) (3, 5–9). We determined
the fraction of true biophysical interactions in AI-1MAIN, its “precision”, to be ~80%, by
comparing the validation rates of a random sample of 249 interactions from AI-1MAIN to
those of the PRS and RRS in a “well-Nucleic Acid Programmable Protein Array”
(wNAPPA) protein-protein interaction assay (Fig. 1A; fig. S4; table S5) (3, 8).
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To estimate the size of the complete Arabidopsis protein-protein interactome network and
the proportion covered by AI-1MAIN, its “coverage”, we calculated the screening
completeness, the percentage of all possible Arabidopsis pair-wise protein combinations
screened in space 1 (~10%) (fig. S2), and the overall sensitivity, a parameter that combines
both the assay sensitivity of our Y2H version (Fig. 1A) and the sampling sensitivity of our
screens (~16%) (fig. S5; table S5) (3, 6, 7, 9). Since AI-1MAIN contains 5,664 interactions,
we estimate that the complete Arabidopsis biophysical binary protein-protein interactome,
excluding isoforms, is 299,000 ± 79,000 binary interactions (mean ± standard deviation) (3),
of which AI-1MAIN represents ~2%. While the Arabidopsis interactome is estimated to be
larger than those of yeast, worm or human (6, 7, 9) the number of interactions per possible
protein pairs is similar in all four species (5–10 per 10,000). The overall topology of
AI-1MAIN is qualitatively similar to that observed for interactome maps of these other
species (fig. S6) (6, 7, 9, 10). While all global network analyses were performed with
AI-1MAIN, local network analyses were done with AI-1
(http://interactome.dfci.harvard.edu/A_thaliana/index.php?page=2010anm_download and
http://interactome/A_thaliana/index.php?page=display; table S4), a dataset combining
AI-1MAIN and interactions identified in repeated screens on the subspace indicated in fig.
S2, performed to estimate sampling sensitivity (tables S4, S6, S7) (3).

Comparing AI-1MAIN to a network of Arabidopsis literature-curated
interactions

We assembled 4,252 literature-curated binary interactions between 2,160 Arabidopsis
proteins (LCIBINARY) (fig. S1; tables S1, S4) (3). The observed overlap with AI-1MAIN lies
within the range expected given the AI-1MAIN coverage (Fig. 1B) (3). With similar numbers
of proteins (nodes) and interactions (edges), AI-1MAIN and LCIBINARY are both small-world
networks (fig. S6). However, LCIBINARY shows longer distances between nodes and a
higher tendency to form clusters of highly interacting nodes (Fig. 1B) (fig. S6). This is likely
due to biases inherent to literature-curated datasets, as hypothesis-driven research focuses on
few proteins designated to be important (5–7, 9–11). AI-1MAIN and LCIBINARY contain
similar fractions of plant-specific proteins (19% and 14%, respectively; fig. S6; table S8)
(3), but the presence of several highly connected plant-specific hubs in AI-1MAIN results in
twice as many plant-specific interactions (40% and 20%; fig. S6; table S9).

Overlap of AI-1 with other biological relationships
To estimate the overall biological relevance of AI-1 interactions, we used statistical
correlations with genome-wide functional information available for Arabidopsis (7, 9). We
observed a significantly higher co-expression correlation for pairs of transcripts encoding
interacting proteins than for control pairs (fig. S7) (3). Interacting proteins are also enriched
in common Gene Ontology (GO) annotations, particularly those describing specific
biological functions and thus assigned to only a few proteins, which we refer to as “precise”
(fig. S7) (3). This enrichment holds true for GO annotations based strictly on genetic
experiments (fig. S7) (3). Protein pairs that do not directly interact but share interactors are
also enriched in common precise GO annotations (fig. S7) (3). Similar to the whole
Arabidopsis proteome, but in contrast to proteins involved in literature-curated interactions,
two-thirds of proteins in AI-1 lack any or precise GO annotations; for these AI-1 provides
starting points for hypothesis development (fig. S7; tables S8, S9).

Plant signaling networks in AI-1
Integration of biophysical interactions with orthogonal functional data can uncover novel
biological relationships at the scale of individual proteins, pathways, and networks (1). We
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examined ubiquitination enzymes and their substrates, an expanded system in plants relative
to other species (12). The specific targets of most ubiquitination enzymes remain elusive and
a systems level understanding of ubiquitin signaling is missing. We identified 32
interactions between E3 proteins and potential target proteins shown to be ubiquitinated in
biochemical experiments (tables S8, S9) (3). Many E3 proteins showed interactions with the
same putative target, and conversely, several putative targets interacted with a single
common E3 (Fig. 2A) (3). Thus, our data support a high combinatorial complexity within
the ubiquitination system and, with similar analyses of phosphorylation signaling cascades
(fig. S8; tables S8, S9) (3), provide starting points for analysis of directional information
flow through protein-protein interactome networks.

Plant hormones regulate developmental processes and mediate responses to environmental
stimuli. In the auxin signaling pathway, auxin/indole-3-acetic acid (AUX/IAA) proteins
mediate transcriptional repression of response genes via physical interactions between their
ethylene-response-factor-associated amphiphilic repression (EAR) motifs and the co-
repressor TOPLESS (TPL) (13). Twelve interactions between AUX/IAA and TPL or TPL-
related3 (TPR3) were observed in AI-1, including six novel ones (fig. S8). While two non-
AUX/IAA interactors of TPL have been reported so far (14, 15), there are 21 such
interactors in AI-1, of which 15 contain a predicted EAR motif (16) (P < 10−24,
hypergeometric test). TPL interactors include ZIM-domain transcriptional repressors (JAZ5,
JAZ8), regulators of salicylic acid signaling (NIMIN2, NIMIN3), and a transcriptional
regulator of ethylene response (ERF9) (Fig. 2B, fig. S8). AI-1 also reveals direct interactions
among co-repressors, similar to the recently described crosstalk between JAZ proteins and
gibberellin-related DELLA proteins (17), as well as shared transcription factor targets of
JAZ and jasmonic acid insensitive ZIM related family members (Fig. 2B; fig. S8). These
observations suggest that transcriptional co-repressors and adaptors assemble in a modular
way to integrate simultaneous inputs from several hormone pathways and that TPL plays a
central role in this process.

Communities in AI-1MAIN

In many networks, communities can be identified with densely interconnected components
that function together (18). We applied an edge clustering approach (19) to identify
communities in AI-1MAIN and investigated their biological relevance. We identified 26
communities containing more than five proteins in AI-1MAIN (Fig. 3; fig. S9) (3).
Approximately 25% of AI-1MAIN proteins (661/2,661) could be assigned to one community,
while ~1% (23/2,661) belong to more than one community. We found that ~90% of these
communities are enriched in at least one GO annotation (Fig. 3; table S10) (3), whereas
negative control networks randomized by degree-preserving edge shuffling showed fewer
communities and little GO annotation enrichment (P < 0.01; Fig. 3). Detailed inspection of
AI-1MAIN communities (figs. S10–35) both recapitulated available biological information
and suggested new hypotheses. For example, the “brassinosteroid signaling/phosphoprotein-
binding” community contains several 14-3-3 proteins known to regulate brassinosteroid
signaling (fig. S10). Consistent with the tendency of 14-3-3 proteins to interact with
phosphorylated partners (20), this community is enriched in experimentally identified
phosphoproteins (P = 0.005, Fisher’s exact test). The interactions between the 14-3-3
proteins and the abscisic acid-responsive element binding transcription factor AREB3 are
corroborated by previous findings in barley (21), and suggest that plant 14-3-3 proteins
mediate multiple hormone signaling pathways.

Several communities, such as “transcription” and “nucleosome assembly”, share proteins
indicating linked biological processes (fig. S36). Particularly striking is the large
“transmembrane transport” community sharing 13 proteins with the “vesicle mediated
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transport” community and six with the “water transport” community (fig. S36). These
shared proteins are bridged via four well-connected proteins within the “transmembrane
transport” community, including two membrane-tethered NAC-type transcription factors,
ANAC089 and NTL9 (fig. S36). Transcription factors in this plant-specific protein family
are activated by release from the cellular membrane by endopeptidase- or ubiquitin-
mediated cleavage (22). Interactions corresponding to both mechanisms are found in the
“transmembrane transport” community (fig. S37).

Four distinct communities correspond to “ubiquitination”. The largest is predominantly
composed of interactions between 36 F-box proteins and two Skp proteins, known to form
degradative SCF (Skp1, Cullin, F-box) ubiquitin ligase complexes (fig. S27). Two others are
composed of shared E2 ubiquitin conjugating enzymes and distinct RING-finger family E3
ligases (figs. S12, S16). The “ubiquitination and DNA repair” community includes the
UBC13 and MMS2/UEV E2 ubiquitin conjugating enzymes, which participate in non-
proteolytic polyubiquitination (fig. S13) (23). Distinct types of ubiquitin-related processes
were thus identified in AI-1.

Our analyses support the relevance of communities identified in AI-1MAIN and we anticipate
that with increasing coverage interactome network maps will improve our understanding of
the systems-level molecular organization of plants.

Evidence for network evolution
Whether or not natural selection shapes the evolution of interactome networks remains
unclear. Gene duplication, a major driving force of evolutionary novelty, has been studied in
yeast providing a framework for understanding subsequent protein-protein interaction
rewiring (Fig. 4A) (24). However, the difficulty to date ancient gene duplication events and
the low coverage of available protein-protein interaction datasets limit the interpretation of
these studies (3, 24–27). The high fraction of duplicated genes in the Arabidopsis genome
compared to non-plant species, combined with the relatively large size of AI-1MAIN,
provides interactome data for 1,882 paralogous pairs (fig. S38). These pairs span a wide
range of apparent interaction rewiring, as measured by the fraction of shared interactors for
each pair (fig. S38).

To verify that the apparent interaction rewiring in AI-1MAIN reflects functional divergence,
we focused on paralogous pairs classified as having “no”, “low”, or “high” functional
divergence on the basis of morphological consequences observed in functionally null
mutants of single or pairs of paralogous genes (28). For the 17 pairs in AI-1MAIN for which
comparative phenotypic data is available, the fraction of shared interactors accurately
predicted this functional divergence classification (Fig. 4B).

To study the dynamics of interaction rewiring, we dated gene duplication events using a
comparative genomics approach that brackets these events on the basis of multi-taxonomic
phylogenetic trees (3). This allowed us to divide AI-1MAIN paralogous pairs into four “time-
since-duplication” age groups covering up to ~700 million years (fig. S39). To account for
the illusion of divergence induced by low experimental coverage, we empirically determined
the average fraction of common interactors detected for a set of proteins screened twice as
performed for AI-1MAIN (fig. S40) (3). We used this expected upper bound to calibrate the
fraction of observed shared interactors between paralogous proteins, assuming that
duplicates are identical at the time of duplication (Fig. 4C) (3). Our observations are not
driven by the existence of certain large protein families in AI-1MAIN (fig. S41). As reported
for yeast (24, 26, 27), the average fraction of common interactors decreases over
evolutionary time, showing substantial and rapid divergence, even after correcting for the
coverage of AI-1MAIN. Yet, in Arabidopsis, paralogous pairs that have been diverging for
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~700 million years still share more interactors than random proteins pairs (P < 2.2 × 10−16,
Mann-Whitney U-test), indicating that the long-term fate of paralogous proteins is not
necessarily a complete divergence of their interaction profiles.

The proportion of shared interactors does not decay exponentially with time-since-
duplication, as expected when assuming neutral evolution (3, 29, 30), i.e. random interaction
rewiring, with no impact on fitness (31). Instead, the rate of rewiring appears “rapid-then-
slow”, as suggested by a better fit to a power-law decay (Fig. 4C; fig. S42) (3). This trend
mirrors that of protein sequence divergence for these paralogous pairs (Fig. 4C), which
reflects the variation of selective pressure at different times after the duplication event. After
an initial transient relaxation leading to rapid protein sequence divergence, selective
pressure tightens on retained paralogs and their divergence decelerates (3, 25) (fig. S39).
The fact that interactions diverge in a time-dependent manner similar to protein sequences
supports the hypothesis that protein-protein interactions drive the evolution of duplicated
genes.

To investigate the interplay between duplication mechanism and the fate of duplicates (32),
we compared duplicates originating from whole-genome duplications (WGDs) to those from
other types of gene duplications. In our most recent age group containing paralogs specific
to the Arabidopsis genus, 109 paralogous pairs arose during the two most recent WGDs in
the Arabidopsis lineage (α and β WGDs) (3, 33). As previously observed for yeast (34),
these pairs share more interactors than other paralogous pairs in the same age group (Fig.
4D; fig. S43), but this effect could simply reflect the younger age of WGD pairs as revealed
by more precise time estimates (fig. S43). While gene dosage balance has been proposed to
determine loss or retention of duplicates following WGDs (33), the observed extensive
rewiring reinforces previous observations pointing to functional divergence as a major
feature of the long-term evolution of polyploid plants (35).

Expression profile divergence is rapid, non-random and substantial in Arabidopsis (36, 37)
(fig. S44), yet appears to play a limited role in the functional divergence of paralogs (28).
We tested whether the evolutionary forces acting on expression profiles and protein
interaction divergence are complementary or correlated. For each duplication age group, the
most co-expressed paralogous pairs tend to share more interactors than the least co-
expressed ones (Fig. 4E). This suggests that selective pressures driving functional
divergence concurrently act on both aspects of protein function.

With >65% sequence identity and strongly correlated expression profiles, the most recent
paralogous pairs share less than half of their interactors (41%) (Fig. 4C; figs. S44, S45). This
contrast is consistent with the common understanding that protein-protein interactions are
only one of many constraints limiting sequence changes during evolution, allowing for small
sequence changes to induce fate-determining network rewiring (38, 39). One example of
interaction rewiring despite sequence conservation is observed in the actin family. Each
actin protein pair shares >90% sequence identity, yet collectively the actin family exhibits
time-dependent interaction rewiring (fig. S45).

Modeling interaction rewiring with non-constant rates should provide insight into the
evolution of interactome networks and their topology (40). Whether this rewiring is merely a
consequence of sequence divergence or is a primary driver remains an open question.
Together with observations of fast rewiring of other types of biological networks (41, 42),
our data invite speculation that edge-specific rewiring is faster than node evolution in
biological networks.
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Conclusion
Our empirically determined high-quality protein-protein interaction map for a plant
interactome network should not only hasten the functional characterization of unknown
proteins, including those with potential biotechnological utility, but also enable systems
level investigations of genotype-to-phenotype relationships in the plant kingdom. One
example is how AI-1 illuminates mechanisms and strategies by which plants cope with
pathogenic challenges (Mukhtar et al., co-submitted).

The paradigms established here are compatible with models in which the interactome
network constrains and shapes sequence evolution. Studying sequence variation,
conservation, mutation, and evolution rate has shed light on how natural selection drives
evolution. Explorations of interaction variation will similarly broaden the understanding of
network evolution whether in the context of duplication or trans-kingdom comparative
interactomics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Quality of AI-1MAIN. (A) Fraction of PRS, RRS or AI-1MAIN sample pairs positive in Y2H
or in wNAPPA at a scoring threshold of 1.5. Error bars: standard error of the proportion. P-
values: one-sided two-sample t-tests (3). PRS pairs are more often detected than RRS pairs
in wNAPPA (P = 2 × 10−8, one-sided two-sample t-test) and Y2H (P < 2.2 × 10−16, one-
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sided Fisher’s exact test). (B) The number of literature-curated interactions recovered
reflects AI-1MAIN framework parameters (6). Top: network representations of LCIBINARY
and AI-1MAIN. Bottom left: data sets are represented by squared Venn diagrams; size is
proportional to the number of interactions (3). Bottom right: observed and expected overlap
given sensitivity and completeness of AI-1MAIN (see main text and (3)). PRS pairs were
removed from LCIBINARY multiple evidence for this analysis. Error bars: two standard
deviations from the expected counts.
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Fig. 2.
Plant signaling networks in AI-1. (A) Putative ubiquitination subnetwork extracted from
LCIBINARY and AI-1. Bar plot: number of protein-protein interactions between proteins in
the ubiquitination cascade in LCIBINARY and AI-1 (outside and within space 1). (B) Protein-
protein interactions in AI-1 suggest a modular assembly of transcriptional hormone-response
regulators and support a global regulatory role for TPL.
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Fig. 3.
Communities in AI-1MAIN (bottom) and in a typical randomized network (top left; fig. S9).
Only largest connected component of networks are shown. Colored regions indicate
communities enriched in GO annotations summarized by the indicated terms (table S10).
Upper right: distribution of randomized networks as a function of the total and GO
annotation enriched number of communities they contain; white arrow: position of the
shown randomized network, red dot and arrow: position of AI-1MAIN. GA: gibberellic acid,
JA: jasmonic acid, TCA: tricarboxylic acid.
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Fig. 4.
Evidence for network evolution in AI-1MAIN. (A) Interaction rewiring over time according
to the duplication-divergence model (24). (B) Average fraction of interactors shared
between pairs of paralogous proteins with no (n=4), low (n=10), and high (n=3) functional
divergence (28). Error bars: standard error of the mean. P-value: one-sided Kendall ranking
correlation test (τ= association) (3). (C) Average fraction of shared interactors, corrected for
low experimental coverage (3), and average protein sequence identity between pairs of
paralogous proteins as a function of the estimated Δ time-since-duplication. Error bars:
standard error of the mean (3). Dashed black line: corrected average fraction of shared
interactors of non-paralogous pairs. myrs: million years. (D) Corrected average fraction of
shared interactors (3), for pairs of paralogous proteins originating from polyploidy events
(n=109) as compared to other paralogous protein pairs of similar age (n=147). Error bars:
standard error of the mean (3). P-values: Mann-Whitney U-test. (E) Corrected average
fraction of shared interactors (3), for pairs of paralogous proteins encoded by gene pairs with
high or low co-expression correlation (top and bottom tertile, respectively) as a function of
phylogeny-based age group. Error bars: standard error of the mean (3). P < 0.05 (*), < 0.01
(**), < 0.001 (***).
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