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Abstract

Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses
remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose
neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate
nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-
consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the
wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such
as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal
propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve
as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial
stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously
described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since
several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found
in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can
help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving
genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.
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Introduction

Determining and examining base sequences in genomes [1,2]

has revolutionized molecular biology. Similarly, decoding and

analyzing connectivity patterns among neurons in nervous

systems, the aim of the emerging field of connectomics [3–6],

may make a major impact on neurobiology. Knowledge of

connectivity wiring diagrams alone may not be sufficient to

understand the function of nervous systems, but it is likely

necessary. Yet because of the scarcity of reconstructed con-

nectomes, their significance remains uncertain.

The neuronal network of the nematode Caenorhabditis elegans is a

logical model system for advancing the connectomics program. It

is sufficiently small that it can be reconstructed and analyzed as a

whole. The 302 neurons in the hermaphrodite worm are

identifiable and consistent across individuals [7]. Moreover the

connections between neurons, consisting of chemical synapses and

gap junctions, are stereotypical from animal to animal with more

than 75% reproducibility [7–10].

Despite a century of investigation [11,12], knowledge of

nematode neuronal networks is incomplete. The basic structure

of the C. elegans nervous system had been reconstructed using

electron micrographs [7], but a major gap in the connectivity of

ventral cord neurons remained. Previous attempts to assemble the

whole wiring diagram made unjustified assumptions that several

reconstructed neurons were representative of others [13]. Much

previous work analyzed the properties of the neuronal network (see

e.g. [14–20] and references therein and thereto) based on these

incomplete or inconsistent wiring diagrams [7,13].

In this paper, we advance the experimental phase of the

connectomics program [6,21] by reporting a near-complete wiring

diagram of C. elegans based on original data from White et al. [7]

but also including new serial section electron microscopy

reconstructions and updates. Although this new wiring diagram

has not been published definitively before now, it has already been

freely shared with the community through the WormAtlas [22]

and has also been used in previous studies such as [23]. See

Methods section for further details on the wiring diagram and on

freely obtaining it in electronic form.

We advance the theoretical phase of connectomics [24,25], by

characterizing signal propagation through the reported neuronal

network and its relation to behavior. We compute for the first

time, local properties that may play a computational purpose, such

as the distribution of multiplicity and the number of terminals, as

well as global network properties associated with the speed of

signal propagation. Unlike the conventional ‘‘hypothesis-driven’’
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mode of biological research, our work is primarily ‘‘hypothesis-

generating’’ in the tradition of systems biology.

Our results should help investigate the function of the C. elegans

neuronal network in several ways. A full wiring diagram, especially

when conveniently visualized using a method proposed here, helps

in designing maximally informative optical ablation [26] or genetic

inactivation [27] experiments. Our eigenspectrum analysis char-

acterizes the dynamics of neuronal activity in the network, which

should help predict and interpret the results of experiments using

sensory and artificial stimulation and imaging of neuronal activity.

Organization of the Results section reflects the duality of

contribution and follows the tradition laid down by genome

sequencing [1,2]. We start by describing and visualizing the wiring

diagram. Next, we analyze the non-directional gap junction

network and the directional chemical synapse network separately.

We perform these analyses separately because understanding the

parts before the whole provides didactic benefits and because this

delays making assumptions about the relative weight of gap

junctions and chemical synapses. Finally, we analyze the combined

network of gap junctions and chemical synapses.

Results

Reconstruction
An updated wiring diagram. The C. elegans nervous system

contains 302 neurons and is divided into the pharyngeal nervous

system containing 20 neurons and the somatic nervous system

containing 282 neurons. We updated the wiring diagram (see

Methods) of the larger somatic nervous system. Since neurons

CANL/R and VC06 do not make synapses with other neurons,

we restrict our attention to the remaining 279 somatic neurons.

The wiring diagram consists of 6393 chemical synapses, 890 gap

junctions, and 1410 neuromuscular junctions.

The new version of the wiring diagram incorporates original

data from White et al. [7], Hall and Russell [10], updates based

upon later work [8], [Hobert O and Hall DH, unpublished], as

well as new reconstructions; see Methods for details. In total, over

3000 synaptic contacts, including chemical synapses, gap junc-

tions, and neuromuscular junctions were either added or updated

from the previous version of the C. elegans wiring diagram.

The current wiring diagram is considered self-consistent under

the following criteria:

1. A record of Neuron A sending a chemical synapse to Neuron B
must be paired with a record of Neuron B receiving a chemical

synapse from Neuron A.

2. A record of gap junction between Neuron C and Neuron D
must be paired with a separate record of gap junction between

Neuron D and Neuron C.

Although the updated wiring diagram represents a significant

advance, it is only about 90% complete because of missing data

and technical difficulties. Due to sparse sampling along lengths of

the sublateral, canal-associated lateral, and midbody dorsal cords,

about 5% of the total chemical synapses are missing, as concluded

from antibody staining for synapses [Duerr JS, Hall DH, and

Rand JB, unpublished]. Many gap junctions are likely missing due

to the difficulty in identifying them in electron micrographs using

conventional fixation and imaging methods. Hopefully, applica-

tion of high-pressure freezing techniques and electron tomography

will help identify missing gap junctions [28]. Finally, it should be

noted that this reconstruction combined partial imaging of three

worms, with images for the posterior midbody being from the male

N2Y.

The basic qualitative properties of the updated C. elegans nervous

system remain as reported previously [7–9]. Neurons are divided

into 118 classes, based on morphology, dendritic specialization,

and connectivity. Based on neuronal structural and functional

properties, the classes can be divided into three categories: sensory

neurons, interneurons, and motor neurons. Neurons known to

respond to specific environmental conditions, either anatomically,

by sensory ending location, or functionally, are classified as sensory

neurons. They constitute about a third of neuron classes. Motor

neurons are recognized by the presence of neuromuscular

junctions. Interneurons are the remainder of the neuron classes

and constitute about half of all classes. A few of the neurons could

have dual classification, such as sensory/motor neurons. Some

interneurons are much more important for developmental

function than for function in the final neuronal network [28].

The majority of sensory neuron and interneuron categories

contain pairs of bilaterally symmetric neurons. Motor neurons

along the body are organized in repeating groups whereas motor

neurons in the head have four- or six-fold symmetry. A large

fraction of neurons send long processes to the nerve ring in the

circumpharyngeal region to make synapses with other neurons [7].

The neurons in C. elegans are structurally simple: most neurons

have one or two unbranched processes and form en passant

synapses along them. Dendrites are recognized by being strictly

‘‘postsynaptic’’ or by containing a specialized sensory apparatus,

such as amphid and phasmid sensory neurons. Interneurons lack

clear dendritic specialization. It is interesting to note that a given

worm neuron has connections with only about 15% of neurons

with which it has physical contact [7,8], a similar number to the

connectivity fraction in other nervous systems [29,30].

Wiring diagram as adjacency matrices. In the remainder

of the paper, we describe and analyze the connectivity of gap

junction and chemical synapse networks of C. elegans neurons. Gap

junctions are channels that provide electrical coupling between

neurons, whereas chemical synapses use neurotransmitters to link

neurons. The network of gap junctions and the network of

chemical synapses are initially treated separately, with each

represented by its own adjacency matrix, Figure 1. In an

adjacency matrix A, the element in the ith row and jth column,

aij , represents the total number of synaptic contacts from the ith
neuron to the jth. If neurons are unconnected, the corresponding

element of the adjacency matrix is zero. An adjacency matrix may

be used due to self-consistency in the gathered data.

Author Summary

Connectomics, the generation and analysis of neuronal
connectivity data, stands to revolutionize neurobiology
just as genomics has revolutionized molecular biology.
Indeed, since neuronal networks are the physical sub-
strates upon which neural functions are carried out, their
structural properties are intertwined with the organization
and logic of function. In this paper, we report a near-
complete wiring diagram of the nematode Caenorhabditis
elegans and present several analyses of its properties,
finding many nonrandom features. We give novel visual-
izations and compute network statistics to enhance
understanding of the reported data. We also use principled
systems-theoretic methods to generate hypotheses on
how biological function may arise from the reported
neuronal network structure. The wiring diagram reported
here can further be used to generate predictions about
signal propagation in future perturbation, ablation, or
artificial stimulation experiments.

Caenorhabditis elegans Neuronal Network
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Although gap junctions may have directionality, i.e. conduct

current in only one direction, this has not been demonstrated in C.

elegans. Even if directionality existed, such information cannot be

extracted from electron micrographs. Thus we treat the gap

junction network as an undirected network with a symmetric

adjacency matrix, as depicted in Figure 1. Weights in both aij and

aji represent the total number of gap junctions between neurons i
and j.

Since chemical synapses possess clear directionality that can be

extracted from electron micrographs, we represent the chemical

network as a directed network with an asymmetric adjacency

matrix, Figure 1. The elements of the adjacency matrix take

nonnegative values, which reflect the number of synaptic contacts

between corresponding neurons. Contacts are given equal weight,

regardless of the apparent size of the synaptic apposition. We use

nonnegative values for most of the paper because we cannot

determine whether a synapse is excitatory, inhibitory, or

modulatory from electron micrographs of C. elegans. For the linear

systems analysis, we do however make a rough guess of the signs of

synapses based on neurotransmitter gene expression data.

Figure 1. Adjacency matrices for the gap junction network (blue circles) and the chemical synapse network (red points) with
neurons grouped by category (sensory neurons, interneurons, motor neurons). Within each category, neurons are in anteroposterior
order. Among chemical synapse connections, small points indicate less than 5 synaptic contacts, whereas large points indicate 5 or more synaptic
contacts. All gap junction connections are depicted in the same way, irrespective of number of gap junction contacts.
doi:10.1371/journal.pcbi.1001066.g001

Caenorhabditis elegans Neuronal Network
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Electron micrographs for C. elegans have a further limitation that

causes some synaptic ambiguity. When a presynaptic terminal

makes contact with two adjacent processes of different neurons

(send_joint in Durbin’s notation [8]), it is not known which of these

processes acts as a postsynaptic terminal; both might be involved.

We count all polyadic synaptic connections. Polyadic connections

are briefly revisited in the Discussion.

Visualization. Although statistical measures that we

investigate later in this paper provide significant insights, they are

no substitute to exploring detailed connectivity in the neuronal

network. As the number of connections between neurons is large

even for relatively simple networks, such analysis requires a

convenient way to visualize the wiring diagram. Previously,

various fragments of the wiring diagram were drawn to illustrate

specific pathways [8,31,32]. Here, we propose a method to visualize

the whole wiring diagram in a way that reflects signal flow through

the network as well as the closeness of neurons in the network,

Figure 2. To this end, we use spectral network drawing techniques

because they have certain optimality properties [33] and aesthetic

appeal. Next, we give an intuitive description of our visualization

method; mathematical details can be found in Text S1.

The vertical axis in Figure 2(a), represents the position of

neurons in the signal flow hierarchy [34,35] of the chemical

synapse network with sensory neurons at the top and motor

neurons at the bottom, with interneurons in between. We want the

vertical coordinate of pre- and post-synaptic neurons to differ by

one, however due to ‘‘frustration’’ this is not always possible.

Frustration happens when distances measured along network

connections cannot be made to correspond to the hierarchy

distances: there are two different hierarchical paths that require a

particular neuron to appear in two different places. We look for

the layout that has smallest deviation from this condition and find

a closed form solution [34,36].

The distance along the vertical coordinate corresponds roughly

to the number of synapses from sensory to motor neurons—the

signal flow depth of the network. Depending on the specific

neurons considered, the distance from a sensory neuron to a motor

neuron is 1–4. At the same time, the minimum number of

chemical synapses crossed from sensory to motor neuron averaged

over all such pairs is 3, see also [8].

Neuronal position on the horizontal plane, Figure 2(b),

represents the connectivity closeness of neurons in the combined

chemical and electrical synapse network. Neuronal coordinates are

given by the second and third eigenmodes of the symmetrized

network’s graph Laplacian (see below). In this representation, pairs

of synaptically coupled neurons with larger number of connections

in parallel tend to be positioned closer in space.

Thus, Figure 2 represents not the physical placement of neurons

in the worm but signal flow and closeness in the network. Such

visualization reveals that motorneurons and some interneurons

segregate into two lobes along the first horizontal axis: the right

lobe contains motorneurons in the ventral cord and the left lobe

consists of neck neurons. The bi-lobe structure suggests partial

autonomy of motorneurons in the ventral cord and neck.

Interneurons that could coordinate the function of the two lobes

can be easily identified by their central location.

Gap Junction Network
For quantitative characterization, we first consider the gap

junction network.

Basic structure and connectivity. The gap junction

network that we analyze consists of 279 neurons and 514 gap

junction connections, consisting of one or more junctions. The

network is not fully connected, but is divided into a giant

component containing 248 neurons, two smaller components of 2
and 3 neurons, and 26 isolated neurons with no gap junctions

(Table 1 in Text S4). The giant component has 511 connections.

Using connectivity data from [13], Majewska and Yuste had

previously pointed out that most neurons in C. elegans belong to the

giant component [37]. Our results agree roughly with [37],

although our dataset excludes non-neuronal cells and places

certain neurons in different connected components.

To evaluate the significance of the number of neurons in the

giant component, we compare it with those expected in random

networks. We start with the Erdös-Rényi random network because

its construction requires a single parameter, the probability of a

connection between two neurons. An Erdös-Rényi random

network with 279 neurons and connection probability 0:0133
(thus with 514 expected connections) would be expected to have

271 neurons in the giant component. The true gap junction giant

component is much smaller; the probability of finding such a small

giant component in a random network is on the order of 10{14

(see Methods).

A better comparison, however, can be made to random

networks with degree distributions that match the degree

distribution of the gap junction network [38]. Here, the degree

of a neuron is the number of neurons with which it makes a gap

junction. The giant component in a degree-matched random

network would be expected to be 251 neurons (see Methods),

about the same size as the measured giant component.

We may explore the utility of representing the wiring diagram

as a three-layer network by grouping neurons by category (sensory

neurons, interneurons, motor neurons). As shown in Tables 2A

and 2B in Text S4, each category has many recurrent connections

within and between categories (with the exception of connections

between sensory and motor neurons). In particular, Table 2B in

Text S4 indicates that motor neurons send back to interneurons

roughly the same number of connections as they recurrently sent

back to motor neurons. These observations suggest that when

considering only gap junctions, a three-layer network abstraction

may not be particularly useful.

Distributions of degree, multiplicity and the number of

terminals. In this section, we analyze statistical properties of

individual neurons and synaptic connections. To characterize the

ability of individual neurons to propagate or collect signals, we

compute the degree di of neuron i, which is the number of neurons

that are coupled to i by at least one gap junction. The mean

degree is 3:68, however this value is not representative as the

degree varies in a wide range, from 0 to 40. Thus, it is important to

look at the degree distribution, which has been used to

characterize and classify other networks previously [39–42].

To visualize the discrete degree distribution, p(d), we use the

survival function:

P(d)~
X?
k~d

p(k), ð1Þ

which is the complement of the cumulative distribution function,

Figure 3(a). The advantages of looking at the survival function

rather than the degree distribution directly are that histogram

binning is not required and that noise in the tail is reduced [43].

The survival function is also later applied to visualize other

statistics. Various commonly encountered distributions and their

corresponding survival functions are given in Text S2.

We perform a fitting procedure for the tail of the gap junction

degree distribution [42] (see Methods). We find that the tail (d§4)

can be fit by the power law with exponent c~3:14+0:13),

Caenorhabditis elegans Neuronal Network
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Figure 3(a), but not by the exponential decay (p-valuev0:1). This

result is consistent with the view that the gap junction network is

scale-free [40].

To characterize the direct impact that one neuron can have on

another, we quantify the strength of connections by the

multiplicity, mij , between neurons i and j, which is the number

Figure 2. The C. elegans wiring diagram is a network of identifiable, labeled neurons connected by chemical and electrical synapses.
Red, sensory neurons; blue, interneurons; green, motorneurons. (a). Signal flow view shows neurons arranged so that the direction of signal flow is
mostly downward. (b). Affinity view shows structure in the horizontal plane reflecting weighted non-directional adjacency of neurons in the network.
doi:10.1371/journal.pcbi.1001066.g002

Caenorhabditis elegans Neuronal Network
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of synaptic contacts (here gap junctions) connecting i to j. The

degree treats synaptic connections as binary, whereas the

multiplicity, also called edge weight, quantifies the number of

contacts. The multiplicity distribution for the gap junction network

is shown in Figure 3(b). We find that the multiplicity distribution

for m§2 obeys a power law with exponent c~2:76+0:06).

Although the exponential decay fit to the tail passes the p-value

test, the log-likelihood is significantly lower than for the power law.

Finally, the sum of the multiplicities of all gap junction

connections of a given neuron is called the number of terminals,

or the nodal strength. The tail of the distribution of the number of

synaptic terminals, Figure 3(c), is adequately fit by a power law

with exponent c~2:53+0:16).

Identifying neurons that play a central or special role in the

transmission or processing of information may also prove useful

[44–48]. To rank neurons according to their roles, we introduce

several centrality indices. Perhaps the simplest centrality index is

degree centrality cd (i). Degree centrality is simply the degree of a

neuron, cd (i)~di, and is motivated by the idea that a neuron with

connections to many other neurons has a more important or more

central role in the network than a neuron connected to only a few

other neurons. Neurons that have unusually high degree centrality

include AVAL/R and AVBL/R. The same neurons lie in the tail

of the distribution of the number of synaptic terminals, Figure 3(c),

suggesting strong electrical coupling to the network. These neuron

pairs are command interneurons responsible for coordinating

backward and forward locomotion, respectively [22,32,49]. The

high degree centralities of RIBL/R suggest a similarly central

function for those neurons, though they each only have 19 gap

junction terminals, in the middle of the distribution of number of

terminals, suggesting weaker electrical coupling to the network.

Small world properties. Having described statistical

properties of individual neurons and connections, such as the

degree and multiplicity distributions, we now investigate properties

that may describe the efficiency of signal transmission across the

gap junction network. Traditionally [14], this analysis does not

consider multiplicity of gap junctions but treats them as binary.

We analyze signal propagation when including multiplicities in the

next subsection.

The geodesic distance, dij , between two neurons in the network

is the length of the shortest network path between them. The

network path is measured by the number of connections that are

crossed rather than by physical distance. The average geodesic

distance over all pairs of neurons is the characteristic path length

[14]:

L~
1

N(N{1)

X
i,j:i=j

dij , ð2Þ

where N is the number of neurons. This global measure describes

how readily or rapidly a signal can travel from one neuron to

another since it is simply the average distance between all neurons.

Clearly, the measure L requires the network to be connected

(otherwise L diverges), so we restrict attention to the giant

component.

A signal originating in one neuron in the giant component must

cross L~4:52 gap junction connections on average to reach

another neuron of the giant component. For an Erdös-Rényi

random network with 248 neurons and 511 connections we

computed the characteristic path length to be 4:00+0:11 (Monte

Carlo with N~1000). When the actual degree distribution of the

gap junction network is taken into account, a random network from

that ensemble would be expected to have characteristic path length

L(r)~3:05 (see Methods). The distribution of geodesic distances dij

in the giant component is shown in Figure 1(a) in Text S4.

A second measure for signal propagation is the clustering

coefficient C, which measures the density of connections among

an average neuron’s neighbors. It is defined as [14]:

C~
1

N

X
i

Ci Ci~
2E(N i)

ki(ki{1)
, ð3Þ

where E(N i) is the number of connections between neighbors of i,
ki is the number of neighbors of i, and Ci measures the density of

connections in the neighborhood of neuron i (we set Ci~1 when

ki~1). We find the clustering coefficient C~0:21. We computed

the clustering coefficient for an Erdös-Rényi random network with

248 neurons and 511 connections to be 0:015+0:0054 (Monte

Carlo with N~1000). For a degree-matched random network, we

computed the clustering coefficient C(r)~0:05+0:009 (Monte

Carlo with N~1000). Thus, the giant component of the gap

junction network is strongly clustered relative to random networks,

both Erdös-Rényi and degree-matched.

Small world networks have much higher clustering coefficient

relative to random networks without sacrificing the mean path

length. For the giant component of the gap junction network, the

corresponding ratios are C=C(r)~4:2 and L=L(r)~1:5, indicating

that the network is small world. Quantitatively, small-world-ness of

a network may be defined relative to a degree-matched Erdös-

Figure 3. Survival functions for the distributions of degree, multiplicity, and number of synaptic terminals in the gap junction
network. Neurons or connections with exceptionally high statistics are labeled. The tails of the distributions can be fit by a power law with the
exponent 3:14 for the degrees (a); 2:76 for the multiplicity distribution (b); 2:53 for the number of synaptic terminals (c). The exponents for the power
law fits of the corresponding survival functions are obtained by subtracting one.
doi:10.1371/journal.pcbi.1001066.g003

Caenorhabditis elegans Neuronal Network

PLoS Computational Biology | www.ploscompbiol.org 6 February 2011 | Volume 7 | Issue 2 | e1001066



Rényi random network as follows [50]:

S~
C

C(r)
:L

(r)

L
:

In the case of the giant component of the gap junction network,

small-world-ness S~2:83.

Next we consider how quickly individual neurons reach all other

neurons in the network. The normalized closeness of a neuron i is

the average geodesic distance dij across all neurons j that are

reachable from i [45]:

davg(i)~
1

N{1

X
j:j=i

dij : ð4Þ

The normalized closeness centrality, which takes higher values for

more central neurons, is defined as the inverse, cc(i)~1=davg(i).

Restricting to the gap junction giant component, the six most

central neurons are AVAL, AVBR, RIGL, AVBL, RIBL, and

AVKL. In addition to command interneuron classes AVA and AVB,

these include RIBL and RIGL, both ring interneurons, and AVKL,

an interneuron in the ventral ganglion of the head. The set of

closeness central neurons mostly overlaps with the set of degree

central neurons. The correlation between the two centrality

measures does not extend to peripheral neurons, as the Spearman

rank correlation coefficient [51] between degree centrality cd (i) and

closeness centrality cc(i) for the entire giant component is only 0:036.

Spectral properties. Global network properties discussed in

the previous section characterize signal transmission while ignoring

connection weights. As weights affect the effectiveness of signal

transmission and vary among connections, we now analyze the

weighted network by using linear systems theory. Although

neuronal dynamics can be nonlinear, spectral properties

nevertheless provide important insights into function. For

example, the initial success of the Google search engine is largely

attributed to linear spectral analysis of the World Wide Web [52].

We characterize the dynamics of the gap junction network by

the following system of linear differential equations, which follow

from charge conservation [53,54].

Ci

dVi

dt
~
X

j

(Vj{Vi)gij{gm
i Vi, ð5Þ

where Vi is the membrane potential of neuron i, Ci is the

membrane capacitance of neuron i, gij is the conductance of gap

junctions between neurons i and j, and gm
i is the membrane

conductance of neuron i. Assuming that each neuron has the same

capacitance C and each gap junction has the same conductance g,

i.e. gij~gAij , we can rewrite this equation in terms of the time

constant t~C=g as:

t
dVi

dt
~
X

j

(Vj{Vi)Aij{
gm

i

g
Vi: ð6Þ

Assuming that gap junction conductance is greater than the

membrane conductance, we temporarily neglect the last term and

rewrite this equation in matrix form:

t
dV

dt
~{LV , ð7Þ

where L~D{A is the Laplacian matrix of the weighted network,

D contains the number of neuron gap junctions on the diagonal

and zeros elsewhere, and V is a column vector of the membrane

potentials.

The system of coupled linear differential equations (6) can be

solved by performing a coordinate transformation to the Laplacian

eigenmodes. Since the Laplacian eigenmodes are decoupled and

evolve independently in time, performing an eigendecomposition

of initial conditions leads to a full description of the system

dynamics. The survival function of the Laplacian eigenspectrum is

shown in Figure 4(a).

What insight can be gained from inspection of the Laplacian

eigenmodes? The gap junction network is equivalent to a network

of resistors, where each gap junction acts as a resistor. The

eigenmodes give intuition about experiments where a charge is

distributed among neurons of the network and the spreading

charge among the neurons is monitored in time. If the charge is

distributed among neurons according to an eigenmode, the

relative shape of the distribution does not change in time. The

charge magnitude decays with a time constant specified by the

eigenvalue. The smallest eigenvalue of the Laplacian is always

zero, corresponding to the infinite relaxation time. In the

corresponding eigenmode each neuron is charged equally.

If the charge is distributed according to eigenmodes corre-

sponding to small eigenvalues, the decay is rather slow. Thus,

these eigenmodes correspond to long-lived excitation. The

existence of slowly decaying modes often indicates that the

network contains weakly coupled subnetworks, in which neurons

are strongly coupled among themselves. The corresponding

charge distribution usually has negative values on one subnetwork

and positive values on the other subnetwork. Because of the

relatively slow equilibration of charge between the subnetworks,

such an eigenmode decays slowly.

As an example of slow equilibration implying a subnetwork that

is strongly internally coupled, one might speculate that the

eigenmode associated with l3 (Figure 4(c)) on the ‘black’ side

reflects a coupling of chemosensory neurons in the tail (PHBL/R)

along with interneurons (AVHL/R, AVFL/R) and motor neurons

(VC01–05) involved in egg-laying behavior. At the level of gap

junctions, these neurons are weakly coupled with chemosensory

neurons in the head (ADFR, ASIL/R, AWAL/R) and related

interneurons (AIAL/R) on the ‘red’ side.

Another interesting example is the eigenmode associated with

l13 (Figure 4(d)). Neurons on the ‘red’ side overlap significantly

with those identified previously in a hub-and-spoke circuit

mediating pheromone attraction, oxygen sensing, and social

behavior [55]. Such overlap is consistent with the view [55] that

this network of neurons solves a consensus problem [56].

These two examples demonstrate that spectral analysis can

uncover circuits that have been described using experimental studies.

The probability of a known functional circuit appearing in an

eigenmode by chance is small (see Methods). It would be interesting

to see whether other eigenmodes have a biological interpretation and

therefore generate predictions for future experiments.

To prioritize further analysis of eigenmodes for biological

significance, it may be advantageous to focus on the slow and

sparse modes, where few neurons exhibit significant activity. We

can quantify sparseness of normalized eigenmodes by the sum of

absolute values of the eigenmode components, also known as the

‘1 norm or Manhattan distance. Sparser eigenmodes have smaller

‘1 norms [57]. Figure 4(b) is a scatterplot of eigenmodes showing

both their decay constant and their ‘1 norms.

The full set of eigenmodes of the connected component is shown

in Figure 2 in Text S4. The eigenmodes corresponding to large
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eigenvalues decay fast, suggesting that corresponding neurons

have the same membrane potential on relevant time scales and act

effectively as a single unit. Many such eigenmodes peak (with

opposite signs) for left-right neuronal pairs (Figure 3 in Text S4),

often known to be functionally identical, which therefore act as a

single unit.

To understand timescales, one might wonder what the absolute

values of decay constants for various eigenmodes are. Current

knowledge of electrical parameters for C. elegans neurons allows us to

estimate the decay times only approximately. Assuming neuron

capacitance of 2pF [58] and gap junction conductance of 200pS, we

find a time constant t~10ms. This implies that the slowest non-

trivial mode corresponding to the second lowest eigenvalue,

l2~0:12 has decay time of about 83ms, Figure 4(a). This eigenvalue,

l2, is known as the algebraic connectivity of a network [59].

What is the effect of the dropped term corresponding to the

membrane current in (6)? As this term would correspond to adding

a scaled identity matrix to the Laplacian, the spectrum should

uniformly shift to higher values by the corresponding amount.

Thus, even the eigenmode corresponding to the zero eigenvalue

would now have a finite decay time. Assuming the membrane

conductance of about 100pS [58], we find 20ms decay time. This

leads to a 0:5 increase in the values of l. Now, the slowest non-

trivial mode corresponds to a decay time of about 16ms.

In addition to highlighting groups of neurons that could be

functionally related, spectral analysis allows us to predict, under linear

approximation, the outcome of experiments that study the spread of

an arbitrarily generated excitation in the neuronal network. Such

excitation can be generated in sensory neurons by presenting a

sensory stimulus [60] or in any neuron by expressing a light-gated ion

channel, such as channelrhodopsin, in that cell and stimulating

optically [26,61,62]. The spread of activity can be monitored

electrophysiologically or using calcium-sensitive indicators.

To predict the spread of activity, we may decompose the

excitation pattern into the eigenmodes and, by taking advantage of

eigenmode independence, express temporal evolution as a

superposition of the independently decaying eigenmodes. The

initial redistribution of charge would correspond to the fast

eigenmodes, whereas the long-term evolution of charge distribu-

tion would be described by the slow eigenmodes. Text S3 further

Figure 4. Linear systems analysis of the giant component of the gap junction network. (a). Survival function of the eigenvalue spectrum
(blue). The algebraic connectivity, l2 , is 0:12 and the spectral radius, l248, is 118. A time scale associated with the decay constant is also given. (b).
Scatterplot showing the ‘1 norm and decay constant of the eigenmodes of the Laplacian. The fastest modes from Figure 3 in Text S4 are marked in
red. The sparsest and slowest modes, most amenable to biological analysis, are located in the lower-left corner of the diagram. (c). Eigenmode of
Laplacian corresponding to l3 (marked green in panel (b)). (d). Eigenmode of Laplacian corresponding to l13 (marked cyan in panel (b)).
doi:10.1371/journal.pcbi.1001066.g004
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discusses eigendecomposition and the interpretation of eigen-

modes.

Understanding propagation of neuronal activity in response to

stimulation (either for the complete network or for ablation studies)

may also be carried out directly in the time domain by stepping

through the dynamics in (6) or more electrophysiologically realistic

nonlinear dynamics. Predictions of experimental results would

then be determined by stimulating and measuring exactly as in the

experiment itself.
Motifs. Several of the quantitative properties computed thus

far measure global network structure or individual neuron

properties. Now we analyze the frequency of various

connectivity subnetworks among small local groups of neurons.

Overrepresentation in the subnetwork distribution often displays

building blocks of the network such as computational units

[17,63]. Since the gap junction network is undirected, there are

four kinds of subnetworks that can appear over three neurons; this

distribution is shown in Figure 5(a). As a null-hypothesis we use

random network ensembles that preserve the degree distribution.

We find that fully connected triplets are overrepresented.

Four neurons can be wired into 11 kinds of subnetworks; this

distribution is shown in Figure 5(b). In the case of quadruplets, the

null-hypothesis preserves the degree for each neuron and the

number of triangles. A numerical rewiring procedure is used to

generate samples from these random network ensembles [38,64],

since no analytical expression for expected subnetwork counts is

extant [65]. We find that a ‘‘fan’’ (motif #7) and a ‘‘diamond’’

(motif #10) are overrepresented.

Note that neurons participating in motifs also make connections

with neurons outside of the motif, which are traditionally not

drawn in putative functional circuits [8,60]. Such putative

functional circuit diagrams may even omit connections within

the motif [8,60], which we do not allow.

Chemical Synapse Network
Now we consider the chemical synapse network. Recall that due

to structural differences between presynaptic and postsynaptic

ends of a chemical synapse, electron micrographs can be used to

determine the directionality of connections. Hence the adjacency

matrix is not symmetric as it was for the gap junction network.

Basic structure and connectivity. The network that we

analyze consists of 279 neurons and 2194 directed connections

implemented by one or morhemical synapses. The adjacency

matrix of the network shown in Figure 1 is suggestive of a three-

layer architecture. The distribution of connections between

categories, Table 3 in Text S4, reveals that each chemical

subnetwork is characterized by a high number of recurrent

connections, just as for the gap junction. However, the majority of

connections with other subnetworks is consistent with feedforward

information processing (sensory to interneuron and interneuron to

motorneurons). Therefore, a three-layer network abstraction may

be more valuable for chemical synapses than for gap junctions.

There are two different definitions of connectivity for directed

networks. A weakly connected component is a maximal group of

neurons which are mutually reachable by possibly violating the

connection directions, whereas a strongly connected component is

a maximal group of neurons that are mutually reachable without

violating the connection directions. The whole chemical synapse

network is weakly connected and can be divided into a giant

strongly connected component with 237 neurons, a smaller

strongly connected component of 2 neurons, and 40 neurons that

are not strongly connected (Table 4 in Text S4).

The random directed network corresponding to the chemical

network is fully weakly connected, even when the degree

distribution is taken into account (see Methods). A strongly

connected giant component as small as in the chemical network is

not likely in a random network (see [66]). Thus, the chemical

network is more segregated than would be expected for a random

network.

Distributions of degree, multiplicity and the number of

terminals. Since chemical synapses form a directed network,

neuron connectivity is characterized by in-degrees (the number of

incoming connections) and out-degrees (the number of outgoing

connections) rather than simply degrees. The joint distribution of

Figure 5. Subnetwork distributions for the gap junction network. Overrepresented subnetworks are boxed, with the p-value from the step-
down min-P-based algorithm for multiple-hypothesis correction [64,77] (n~1000) shown inside. (a). The ratio of the 3-subnetwork distribution and
for the mean of a degree-preserving ensemble of random networks (n~1000). The counts for the particular random networks that appeared in the
ensemble are also shown. (b). The ratio of the 4-subnetwork distribution and for the mean of a degree and triangle-preserving ensemble of random
networks (n~1000). The counts for the particular random networks that appeared in the ensemble are also shown.
doi:10.1371/journal.pcbi.1001066.g005
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in-degrees and out-degrees is shown in Figure 6(a). As can be seen

by the distribution clustering around the diagonal line, the in-

degrees and out-degrees are correlated; the Pearson correlation

coefficient is 0:52 (p-value 0:00), very similar to the Pearson

correlation coefficient of an email network, 0:53, though the email

network was much larger (N~16881) [67].

The survival functions associated with the marginal distributions

of in-degrees and out-degrees are shown in Figures 6(b) and 6(c)

respectively. The mean number of incoming and outgoing

connections is 7:86 each. We attempt to fit these distributions.

The tails of the two distributions can be satisfactorily fit by power

laws with exponents 3:17+0:13 and 4:22+0:20 respectively.

Exponential fit is ruled out (p-valuev0:1) for the in-degree but not

for the out-degree distribution. In the latter case, the log-likelihood

is insignificantly lower for the exponential decay than for the

power law.

Multiplicity of connection, mij , is the number of synapses in

parallel from neuron i to neuron j. The corresponding survival

function (including unconnected pairs) is shown in Figure 6(d).

The mean number of synapses per connection (excluding

unconnected pairs) is 2:91. The tail of the distribution can be

fitted by an exponential, but not by a power law (p-valuev0:1). In

addition, the whole distribution (m§1) can be fit by a stretched

exponential (or Weibull) distribution, p(m)*(m=b)c{1e{(m=b)c

with the scale parameter b~0:36 and the shape parameter

c~0:47. A stretched exponential applied to the whole distribution

has the same number of fitting parameters as an exponential decay

fit to the tail starting with an adjustable m. Log-likelihood

comparison of the tail exponential and the stretched exponential

favors the latter.

As for the gap junction network, we can also study the

distribution of number of synaptic terminals on a neuron. This

involves adding the multiplicities of the connections, rather than

just counting the number of pre- or post-synaptic partners. The

joint histogram (not shown) exhibits similar correlation as for the

degree distribution, with Pearson correlation coefficient 0:42 (p-

value 0:00).

Figures 6(e) and 56(f) show the marginal survival functions for

the number of post-synaptic terminals (in-number) and the

number of pre-synaptic terminals (out-number). The mean

number of pre- and post-synaptic terminals is 22:9 each. We

were unable to find a satisfactory simple fit to the in-number

distribution, Figure 6(e). The tail of the out-number distribution

could be fit by a power law with exponent 4:05+0:19, but not by

an exponential, Figure 6(f).

As for the gap junction network, we can identify central neurons

(cf. [47,68]) for the chemical network. The degree centrality in a

directed network may be defined with respect to the in-degree or

the out-degree. Interestingly, neuron AVAL has the largest in-

degree and AVAR has the second largest in-degree, whereas

AVAR has the largest out-degree and AVAL has the second

largest out-degree, Figure 6(a).

Small world properties. In the strongly connected

component, we can define the directed geodesic distance as the

shortest path between two neurons that respects the direction of

the connections. The distribution of the directed geodesic distance,

Figure 1(b) in Text S4, is characterized by the mean path length,

L~3:48 computed over all pairs of neurons in the strongly

connected component. For a random network degree-matched to

the chemical network, one would expect L(r)~2:91+0:017
(Monte Carlo with N~1000) and the ratio L=L(r)~1:2.

Although there are several definitions of clustering for directed

graphs in the literature [69], we use the clustering of the out-

connected neighbors since it captures signal flow emanating from a

given neuron:

C~
1

N

X
i

Ci Ci~
E(N i)

ki(ki{1)
, ð8Þ

where E(N i) is the number of connections between out-neighbors

of neuron i, ki is the number of out-neighbors of i, and Ci

measures the density of connections in the neighborhood of

neuron i. For the chemical network, the clustering coefficient is

0:22. For a degree-matched random network we computed the

clustering coefficient C(r)~0:079+0:006 (Monte Carlo with

N~1000) and the ratio C=C(r)~2:8. Therefore, the chemical

strongly connected component is a small-world network with

S~2:3.

For directed networks, measures of in-closeness and out-

closeness may be defined using the average directed geodesic

distance. In particular, the normalized in-closeness is the average

geodesic distance from all other neurons to a given neuron:

diavg(i)~
1

N{1

X
j:j=i

dji, ð9Þ

and the out-closeness is the average geodesic distance from a given

neuron to all other neurons:

doavg(i)~
1

N{1

X
j:j=i

dij , ð10Þ

where N is the number of neurons. Normalized centralities are the

inverses: cic(i)~1=diavg(i) and coc(i)~1=doavg(i). The motivation

behind these indices is similar to that in the gap junction case. In-

closeness central neurons can be easily reached from all other

neurons in the network. Out-closeness central neurons can easily

reach all other neurons in the network. Normalized in-closeness

centrality cic(i) and normalized out-closeness centrality coc(i) are

weakly anti-correlated, with Pearson correlation coefficient {0:12
(p-value 0:07).

For the giant component of the chemical network, the most in-

closeness central neurons include AVAL, AVAR, AVBR, AVEL,

AVER, and AVBL. All are command interneurons involved in the

locomotory circuit; these neurons are also central in the gap

junction network. The in-closeness centrality of command

interneurons may indicate that in the C. elegans nervous system,

signals can propagate efficiently from various sources towards

these neurons and that they are in a good position to integrate it.

The most out-closeness central neurons include DVA, ADEL,

ADER, PVPR, AVJL, HSNR, PVCL, and BDUR. Only PVCL is

a command interneuron involved in locomotion. The neuron

DVA is an interneuron that performs mechanosensory integration;

ADEL/R are sensory dopaminergic neurons in the head; and the

other central neurons are interneurons in several parts of the

worm. The out-closeness centrality of these neurons may indicate

that signals can propagate efficiently from these neurons to the rest

of the network and that they are in a good position for broadcast.

Spectral properties. Although chemical synapses are likely

to introduce more nonlinearities than gap junctions, linear systems

analysis can provide interesting insights, especially in the absence

of other tools. Such an approach has additional merit in C. elegans,

where neurons do not fire classical action potentials [58] and have

chemical synapses that likely release neurotransmitters tonically

[54]. To justify such analysis, a system of linear equations may be

derived by approximating sigmoidal synaptic transmission
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functions with a Taylor series expansion around an equilibrium

point [54].

A major source of uncertainty in linear systems analysis of the

chemical network is the unknown sign of connections, i.e.

excitatory or inhibitory, due to the difficulty in performing

electrophysiology experiments. We use a rough approximation

that GABAergic neurons make inhibitory synapses, whereas

glutamergic and cholinergic neurons form excitatory synapses

[70], but see [60]. The following 26 neurons express GABA [71]:

DVB, AVL, RIS, DD01–DD06, VD01–VD13, and the four RME

neurons.

Similarly to the gap junction network, we write the system of

linear differential equations for the chemical synapse network

[53,54]:

Ci
dVi

dt
~
X

j

Vjgji{gm
i Vi, ð11Þ

where Vi is the membrane potential of neuron i measured relative

to the equilibrium, Ci is the membrane capacitance of neuron i, gji

is the conductance in neuron i contributed by a chemical synapse

in response to voltage Vj measured relative to the equilibrium and

gm
i is the membrane conductance of neuron i. Assuming that each

neuron has the same capacitance C and each chemical synapse

contact has the same conductance g, i.e. gij~gAij , we can rewrite

this equation in terms of the time constant t~C=g as:

t
dVi

dt
~
X

j

VjAji{
gm

i

g
Vi: ð12Þ

To avoid redundancy we defer analyzing this system of

differential equations to the next section, where we consider the

combined system including both gap junctions and chemical

synapses.

Motifs. We also find subnetwork distributions for the

chemical synapse network. Since the network is directed, there

are many more possible subnetworks. In particular there are 3
possible subnetworks on two neurons and 16 possible subnetworks

on three neurons. We identify overrepresented subnetworks by

comparing to random networks, generated with a rewiring

procedure [38,64]. Such random network ensembles preserve in-

degree and out-degree in the case of doublets and, additionally,

the numbers of bidirectional and unidirectional connections for

each neuron in the case of triplets.

Figures 7(a) and 7(b) show the subnetwork distributions on two

and three neurons, respectively. We find that the C. elegans network

contains similar overrepresented subnetworks as found by

analyzing incomplete data [17,64]. For example, there is greater

reciprocity in the chemical network than would be expected in a

random network. Similarly, triplets with connections (of any

direction) between each pair of neurons (seven rightmost triplets in

Figure 7(b)) collectively occur with much greater frequency than

would be expected for a random network.

Overrepresentation of reciprocal [8, Ch. 7] and triangle [7]

motifs were previously noted. Such overrepresentation would arise

naturally if proximity was a limiting factor for connectivity,

however there is no evidence for this limitation. Thus, motifs may

have a functional role.

Full Network
Having considered the gap junction network and the chemical

synapse network separately, we also examine the two networks

collectively. To study the two networks, one may either look at a

single network that takes the union of the connections of the two

networks or one may look at the interaction between the two

networks.

Single combined network. First we look at a combined

network, which is produced by simply adding the adjacency

matrices of the gap junction and chemical networks together,

while ignoring connection weights. Thus we implicitly treat gap

junction connections as double-sided directed connections. This

new network consists of 279 neurons and 2990 directed

connections. It has one large strongly connected component of

274 neurons and 5 strongly isolated neurons. The five isolated

neurons are IL2DL/R, PLNR, DD06, and PVDR; this set is

simply the intersection of the isolated neurons in the gap junction

and chemical networks and does not seem to have any

commonalities among members. Of course, it follows that since

the chemical network is a single weakly connected component, this

combined network is also a single weakly connected component.

Naturally, the combined network is more compact than the

individual networks. The mean path length L~2:87, the geodesic

distance distribution (Figure 1(c) in Text S4) becomes narrower. For

a random network degree-matched to the combined network, one

would expect L(r)~2:62+0:008 (Monte Carlo with N~1000) and

the ratio L=L(r)~1:1. The clustering coefficient for the combined

network is C~0:26. The clustering coefficient for a degree-matched

random network C(r)~0:10+0:004 (Monte Carlo with N~1000)

and the ratio C=C(r)~2:6. Therefore, the combined network is

small-world, just like individual networks, with S~2:37.

Turning to closeness centrality, the most in-close central

neurons are AVAL/R, AVBR/L, and AVEL/R, as would be

expected from the individual networks. The most out-close central

neurons are DVA, ADEL, AVAR, AVBL, and AVAL, which

include the top out-close neurons for both individual networks.

We can also calculate the degree distribution of this combined

network. The Pearson correlation coefficient between the in-

degree and out-degree is 0:71 (p-value 0:00); it is not surprising

that the coefficient is so large considering that the gap junctions

introduce an in- and out-connection simultaneously. Similar to the

chemical synapse network, the tails of both the in-degree and the

out-degree survival functions (Figures 4(a) and 4(b) in Text S4) can

be fit with power laws. The tail of the out-degree could also be fit

by an exponential decay, albeit with lower likelihood.

The neurons with the greatest degree centrality are AVAL and

AVAR. As for the chemical synapse network, neuron AVAL has the

largest in-degree and AVAR has the second largest in-degree,

whereas AVAR has the largest out-degree and AVAL has the second

largest out-degree (Figures 4(a) and 4(b) in Text S4). The next two

neurons are AVBL/R in both in-degree and out-degree senses.

As for the chemical synapse network, the tail of the out-number

distribution was fit by a power law and the tail of the in-number

Figure 6. Degree distribution (a) and survival functions for the distributions of in-/out-degree, multiplicity, and in-/out-number of
synaptic terminals in the chemical synapse network (b)–(f). Neurons or connections with unusually high statistics are labeled. The tails of the
distributions can be fit by a power law with exponents 3:17 for in-degree (b); 4:22 for out-degree (c); and 4:05 for out-number (f). The exponents for
the survival function fits can be obtained by subtracting one. The survival function of the multiplicity distribution for m§1 can be fit by a stretched
exponential of the form e{(m=b)c

where b~0:36 and c~0:47 (d). No satisfactory fit was found for the distribution of in-numbers (e).
doi:10.1371/journal.pcbi.1001066.g006
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distribution could not be fit satisfactorily. The tail of the out-

number distribution could also be fit by an exponential, albeit with

lower likelihood. The multiplicity can be fit satisfactorily by a

stretched exponential.

Spectral properties. In this section we apply linear systems

analysis to the combined network of chemical synapses and gap

junctions taking into account multiplicities of individual

connections. Due to our ignorance about the relative

conductance of a single gap junction and of a single chemical

synapse, we assume that they are equal. By combining equations

(6) and (12) we arrive at:

t
dVi

dt
~
X

j

½{VjL
(gap)
ij zVjA

(chem)
ji �{gm

i

g
Vi, ð13Þ

where A
(chem)
ji is negative if neuron j is GABAergic and positive

otherwise.

We proceed to find a spectral decomposition for the combined

network. To avoid trivial eigenmodes, we restrict our attention to

the strongly connected component of the combined network

containing 274 neurons. As before, we ignore the
gm

i

g
Vi term and

only study the matrix W~{L(gap)zAT(chem). Since W is not

symmetric, eigenvalues and eigenmodes may be complex-valued,

occurring in complex conjugate pairs. Eigenvalues are plotted in

the complex plane in Figure 8(a).

What is the meaning of complex eigenvalues? The imaginary

part of an eigenvalue is the frequency at which the associated

eigenmode oscillates. The real part of an eigenvalue determines

the amplitude of the oscillation as it varies with time. Eigenmodes

that have an eigenvalue with a negative real part decay with time,

whereas eigenmodes that have an eigenvalue with a positive real

part grow with time. When examining the temporal evolution of

the eigenmodes whose eigenvalues are shown in Figure 8(a), one

should keep in mind that the ignored
gm

i

g
Vi term would shift the

real part of the eigenvalues towards more negative values.

As for the gap junction network alone, we can look for eigenmodes

that may have functional significance. For example, the sixth

eigenmode of the combined network, Figure 8(b), includes neurons

that are involved in sinusoidal body movement. As before, one may

focus on sparse and slow eigenmodes for ease of investigation. The

distribution of ‘1 norm and real part of eigenvalues is shown in

Figure 8(c), and twelve of the sparsest and slowest eigenmodes of the

combined network are plotted in Figure 8(d).

Having the eigenspectrum of the combined network allows one

to calculate the response of the network to various perturbations.

By decomposing sensory stimulation among the eigenmodes and

following the evolution of each eigenmode, one could predict the

worm’s response to the stimulation. A similar calculation could be

done for artificial stimulation of the neuronal network, induced for

example, using channelrhodopsin [26,61,62].

As noted for the gap junction alone, the network may also be

studied in the time domain directly by stepping through the

dynamics in (13) or more electrophysiologically realistic nonlinear

dynamics.

Interaction between networks. We have measured the

structural properties of the combined network formed by adding

together the adjacency matrices of the gap junction and chemical

synapse network, however it is unclear how they interact. The two

networks could be independent, or their connections could overlap

more or less often than by chance.

To investigate how the two networks overlap, we look at local

structure. Figure 9 shows the likelihood ratios of chemical synapse

connections being absent, being unidirectional, and being bidirec-

tional given the presence or absence of a gap junction between the

same pair of neurons (see Methods). As can be seen, chemical

synapses are more likely to be absent when there is no gap junction

than when there is one. Unidirectional, and especially bidirectional,

chemical synapses are more likely when there is a gap junction

between given neurons. In this sense, the two networks are

correlated, however it should be noted that when there is a gap

junction, about 60% of the time there is no chemical synapse.

Durbin had found that chemical and gap junction networks are

essentially independent when imposing physical adjacency restric-

Figure 7. Subnetwork distributions for the chemical synapse network. Overrepresented subnetworks are boxed, with the p-value from the
step-down min-P-based algorithm for multiple-hypothesis correction [64,77] (n~1000) shown inside. (a). The ratio of the 2-subnetwork distribution
and the mean of a random network ensemble (n~1000). Realizations of the random network ensemble are also shown. (b). The ratio of the 3-
subnetwork distribution and the mean of a random network ensemble (n~1000). Realizations of the random network ensemble are also shown.
doi:10.1371/journal.pcbi.1001066.g007
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tions [8, Ch.,7], but as noted above, there is no evidence that

proximity is a limiting factor for connectivity in C. elegans. Thus,

there may be a functional role for correlation/anticorrelation of

the joint presence of gap junction and chemical connections.

Why might the presence of connections in two networks either

be correlated or anticorrelated? One possibility is that correlated

connections simultaneously perform different functions [72]

whereas anticorrelation yields connections between distinct kinds

of neuronal pairs [73,74], [Tavoularis CR and Wicker SB,

unpublished].

What are the different functions performed by chemical

synapses and gap junctions that could lead to correlation? One

possibility is that the two different functions are sign-inverting and

non-inverting coupling. Gap junctions are non-inverting: higher

potential in a neuron raises the potential in other gap-junction-

coupled neurons. Chemical synapses, on the other hand, may be

either excitatory (non-inverting) or inhibitory (inverting). When

the likelihood computations are repeated considering only neuron

pairs where the presynaptic neuron is known to be GABAergic

[71], there is not much change, see Figure 9. This suggests that the

primary purpose of overlapping inhibitory chemical synapses is

not to counter excitatory gap junctions. Some other reason, such

as differing temporal properties or robustness from redundancy, is

needed to explain correlation. This result, however, is only

suggestive since the neurotransmitters and their action on

postsynaptic receptors in many neurons have not been deter-

mined.

Another measure of the interaction between the two networks is

the correlation between the degree sequences. The Pearson

correlation coefficient between the gap junction degree and the

chemical network in-degree is greater than the Pearson correlation

coefficient between the chemical network in-degree and out-

degree. The Pearson correlation coefficient between the gap

junction degree and the chemical network out-degree is less than

the Pearson correlation coefficient between the chemical network

in-degree and out-degree. This is shown in Table 1 where

comparisons to Pearson correlation coefficients between randomly

permuted degree sequences (see Methods) are also shown. Large

Pearson correlation coefficients imply that neurons are ordered in

similar ways according to degree centrality.

Figure 8. Linear systems analysis for the strong giant component of the combined network. (a). Eigenvalues plotted in the complex
plane. (b). The eigenmode associated with eigenvalue l6 (marked cyan in panel (c)). (c). Scatterplot showing the sparseness and decay constant of the
eigenmodes. (d). Sparse and slow eigenmodes of the combined network (marked red in panel (c)). The real parts of the eigenmodes corresponding to
l222,l224,l225,l226,l227,l232,l267,l268,l270,l272,l273, and l274 are shown. The eigenmodes are labeled with neurons that take value above a fixed
absolute value threshold. Neurons with negative values are in red, whereas neurons with positive values are in black.
doi:10.1371/journal.pcbi.1001066.g008
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The two networks seem to primarily reinforce each other with

correlated structure rather than augment each other with antic-

orrelated connections.

Robustness Analysis
Although the reported wiring diagram corrects errors in

previous work and is considered self-consistent, one might wonder

how remaining ambiguities and errors in the wiring diagram might

affect the quantitative results presented. Furthermore there are

connectivity pattern differences among individual worms; these

individual variations may have similar effects on the analysis as

errors and ambiguities.

For network properties that are defined locally, such as degree,

multiplicity, and subnetwork distributions, clearly small errors in

the measured wiring diagram lead to small errors in the calculated

properties. For global properties such as characteristic path length

and eigenmodes, things are less clear.

To study the robustness of global network properties to errors in

the wiring diagram, we recalculate these properties in the wiring

diagrams with simulated errors. We simulate errors by removing

randomly chosen synaptic contacts with a certain probability and

assigning them to a randomly chosen pair of neurons. Then, we

calculate the global network properties on the ensemble of edited

wiring diagrams. The variation of the properties in the ensemble

gives us an idea of robustness.

First, we explore the robustness of the small world properties

and the giant component calculations. We edit wiring diagrams by

moving each gap junction contact with 10% probability and

chemical synapse contact with 5% probability. Tables 5 and 6 in

Text S4 show the global properties for 1000 random networks

obtained by editing the experimentally measured network. These

tables suggest that our quantitative results are reasonably robust to

ambiguities and errors in the wiring diagram.

Properties for the neuronal network from prior work in [13] are

also shown for comparison. The number of synaptic contacts that

must be moved to achieve this network (editing distance) roughly

corresponds to that with 25:6% probability.

Second, we characterize robustness for the linear systems

analysis. Because of greater sensitivity of the eigenvalues to errors,

we edit wiring diagrams by moving each gap junction contact with

1% probability and a chemical synapse contact with 0:5%
probability. The spectra for 100 randomly edited networks along

with the spectrum for the measured network (Figure 8(a)) are

shown in Figure 10. Although the locations of eigenvalues shift in

the complex plane, many of them move less than the nearest

neighbor distance and remain isolated.

In addition to considering the effect of typical random edits, we

can characterize the effect of worst-case errors on the eigenvalues

using the e-pseudospectrum [75], which gives the eigenvalue loci

Le for all perturbations by matrices of norm e (Figure 10). For the

gap junction, Le(L) is simply the set of disks of radius e around the

eigenvalues, but for the chemical and combined networks, Le(A
T )

and Le(W) are larger. In the worst case scenario, most eigenmodes

become mixed up.

Electron micrographs of chemical synapses have a further

ambiguity when more than one postsynaptic partner receives input

at a release site. We treated such polyadic (send_joint) synapses no

differently than other synapses, but one might alternatively

determine multiplicity by counting such synapses at 50% strength.

This alternate quantitation clearly does not change statistics that

ignore multiplicity; the change in the spectrum is depicted in

Figure 10.

Small deviations from equality when weighting gap junctions

and chemical synapses to form the combined network yield similar

spectral changes as the alternate quantitation of chemical synapses

displayed in Figure 10.

Discussion

We have presented a corrected and more comprehensive

version of the neuronal wiring diagram of hermaphrodite C. elegans

using materials from White et al. [7] and new electron

micrographs. Despite the significant additions, this wiring diagram

is still incomplete due to methodological limitations discussed in

the An Updated Wiring Diagram section. Yet, our work represents

the most comprehensive mapping of the neuronal wiring diagram

to date. The sensitivity of our analysis to methodological

limitations (and to network structure variation among individual

organisms) is discussed in the Robustness Analysis section.

We proposed a convenient way to visualize the neuronal wiring

diagram. The corrected wiring diagram and its visualization

should help in planning experiments, such as neuron ablation.

Next, we performed several statistical analyses of the corrected

wiring, which should help with inferring function from structure.

By using several different centrality indices, we found central

neurons, which may play a special role in information processing. In

particular, command interneurons responsible for worm locomo-

tion have high degree centrality in both chemical and gap junction

networks. Interestingly, command interneurons are also central

according to in-closeness, implying that they are in a good position

to integrate signals. However, most command interneurons do not

have highest out-closeness, meaning that other out-closeness central

Figure 9. Likelihood ratio for the possible chemical network
doublets (horizontal axis) given the absence/presence of a gap
junction between the two neurons (as indicated by the green
marks).
doi:10.1371/journal.pcbi.1001066.g009

Table 1. Degree sequence correlation Coefficients.

gap/in gap/out in/out email [67]

correlation coefficient
r (p-value)

0:64(0:00) 0:44(0:00) 0:52(0:00) 0:53

avg. rand. perm. r {0:00+0:06 0:00+0:06 0:00+0:06

doi:10.1371/journal.pcbi.1001066.t001

Caenorhabditis elegans Neuronal Network

PLoS Computational Biology | www.ploscompbiol.org 15 February 2011 | Volume 7 | Issue 2 | e1001066



neurons, such as DVA, ADEL/R, PVPR, etc., are in a good

position to deliver signals to the rest of the network.

Linear systems analysis yielded a principled methodology to

hypothesize functional circuits and to predict the outcome of both

sensory and artificial stimulation experiments. We have identified

several modes that map onto previously identified behaviors.

Networks with similar statistical structural properties may share

functional properties thus providing insight into the function of the

C. elegans nervous system. To enable comparison of the C. elegans

network with other natural and technological networks [76], we

computed several structural properties of the neuronal network. In

particular, the gap junction network, the chemical synapse

network, and the combined neuronal network may all be classified

as small world networks because they simultaneously have small

average path lengths and large clustering coefficients [14].

The tails of the degree and terminal number distributions for

the gap, chemical and combined networks (with the exception of

the in-numbers) follow a power law consistent with the network

being scale-free in the sense of Barabási and Albert [40]. The tails

of some distributions can also be fit by an exponential decay,

consistent with a previous report [15]. However, we found that

exponential fits for the tails have (sometimes insignificantly) lower

log-likelihoods than power laws, making the exponential decay a

less likely alternative. For whole distributions, neither distribution

passes the p-value test; if one is forced to choose, the exponential

decay may be a less poor alternative.

Several statistical properties of the C. elegans network are similar

to those of the mammalian cortex. In particular, the whole

distribution of C. elegans chemical synapse multiplicity is well-fit by

a stretched exponential (or Weibull) distribution (Figure 6(d)).

Taking multiplicity as a proxy of synaptic connection strength, this

is reminiscent of the synaptic strength distribution in mammalian

cortex, which was measured electrophysiologically, [30,77]. The

definition of stretched exponential distribution is slightly different

[30], but has the same tail behavior. The stretch factor is *0:5,

close to that in the cortical network.

In addition, we found that motif frequencies in the chemical

synapse network are similar to those in the mammalian cortex

[77]. Both reciprocally connected neuron pairs and triplets with a

connection between every pair of neurons (regardless of direction)

are over-represented. The similarity of the connection strength

and the motif distributions may reflect similar constraints in the

two networks. Since proximity is unlikely to be the limiting factor,

we suggest that these constraints may reflect functionality. We

found that the chemical synapse and the gap junction networks are

correlated, which may provide insight into their relative roles.

To conclude the paper, let us note that our scientific

development was not hypothesis-driven, but rather exploratory.

Yet we hope that the reported statistics will help in formulating a

theory that explains how function arises from structure.

Materials and Methods

Data Acquisition
This section describes the methods used to determine neuronal

connectivity; see [78] for further details.

We started assembling the wiring diagram by consolidating

existing data from both published and unpublished sources. Using

J. G. White et al.’s The Mind of a Worm (MOW) [7] as the starting

point, we extracted wiring data from diagrams, figures, tables, and

text (for example, see [7, Appendix A, pp. 118–122] on neuron

AVAL/R). The connectivity of each neuron, its synaptic partner,

and synaptic type (chemical, gap junction, neuromuscular) was

manually entered into an electronic database. In the ventral cord,

determining this level of synaptic specification was complicated by

the fact that connections were recorded by neuron class. For

Figure 10. The spectrum of the giant component of the combined network matrix W (red), E-disks around the spectrum (light blue),
spectra of 100 randomly edited networks (blue), and the E-pseudospectrum (orange). The value E~4 is used (the average spectral norm of
the 100 editing matrices was 3:4+0:9). The spectrum of the giant component of the combined network matrix W under an alternate quantitation of
send_joint synapses is also shown (green).
doi:10.1371/journal.pcbi.1001066.g010
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example, bilateral neurons PVCL and PVCR were simply listed as

PVC. We assigned proper connections to the appropriate left/

right neuron by referring to White and coworker’s original

laboratory notebooks and original electron micrographs. In some

cases, the number of synapses for a given neuron class in MOW

differed from the sum of connections for the bilateral pairs in the

notebooks and/or electron micrographs. The synaptic value of

these neurons was determined by taking the value in MOW and

dividing it between the left/right neurons proportionally to the

values in the notebooks and/or electron micrographs.

Next we incorporated R. M. Durbin’s data for the anterior

portion of the worm, reconstructed from animal N2U [8]. For

neurons that projected beyond the nerve ring, only the anterior

connections needed update. Since data from MOW did not specify

the location of synapses, integration proved difficult. For these

neurons, we obtained positional information by cross-referencing

Durbin’s data against original electron micrographs and his

handwritten annotations in White’s laboratory notebooks. Only

synapses located in regions addressed by Durbin were included.

Connections in the middle and tail regions of the worm were

mostly unaffected by these updates.

Studies based on green fluorescent protein (GFP) reporters

mostly confirm the electron micrograph reconstructions described

in MOW. A few differences between GFP-stained neurons and

White’s work have been observed [Hobert O and Hall DH,

unpublished]. Notably, the anterior processes of DVB and PVT

could have been mistakenly switched in MOW [7]. Based on these

findings, we reversed the connections for neurons DVB and PVT

anterior to the vulva.

Most published works have focused on the neck and tail regions

of C. elegans where most neuron cell bodies reside. Reconstructions

of neurons in the mid-body of the worm, on the other hand, are

scant and incomplete. From a combination of published works

[7,8,10,79], we found that wiring data for 64 neurons had large

gaps or were missing entirely. Sixty-one of these were motor

neurons in the ventral cord. Two were excretory neurons (CANL/

R) that do not appear to make any synapses. The remaining

neuron, RID, is the only process in the dorsal cord that extends

over the length of the animal.

At the C. elegans archive (Albert Einstein College of Medicine),

we uncovered a large number of reconstruction records in White et

al.’s laboratory notebooks. These notebooks identified neurons by

different color code labels depending on the animal, the location of

the neurite (ventral or dorsal), and magnification of the electron

micrograph. To ascertain the identity of the neurons, we relied on

a combination of color code tables and comparisons of common

anatomical structures between electron micrograph prints. In the

end, we identified notes for full reconstructions of 24 of the

aforementioned neurons. Partial connectivity data for the

remaining 38 were also available where 22 neurons have

partial/missing dorsal side connections and 6 neurons have partial

ventral side connections. We checked the connections of all (both

published and unpublished) neurons in the ventral cord against

electron micrographs used by White and coworkers. Over 600
updates were made to the original notes and published

reconstructions. Many of these updates were additions of

previously missed neuromuscular junctions between ventral cord

motor neurons and body wall muscles.

We found that a large section on the dorsal side of the worm,

from just anterior to the vulva to the pre-anal ganglion, was

never electron micrographed at high power magnification. This

dearth of imagery was why so many neurons were missing

dorsal side reconstructions. Using original thin sections for the

N2U worm prepared by White et al., we produced new high

power electron micrographs of this dorsal region. Due to the

condition of the sections, only one of every 2–3 sections was

imaged. These new electron micrographs extended nearly 9mm
on the dorsal side. New dorsal side data for 3 neurons (DA5,

DB4, DD3) were obtained from these electron micrographs.

Resource constraints prevented us from covering the entire

dorsal gap.

From our compilation of wiring data, including new recon-

structions of ventral cord motor neurons, we applied self-

consistency criteria to isolate neurons with mismatched reciprocal

records. The discrepancies were reconciled by checking against

electron micrographs and the laboratory notebooks of White et al.

Connections in the posterior region of the animal were also cross-

referenced with reconstructions published in [10]. Reconciliation

involved 561 synapses for 108 neurons (49% chemical ‘‘sends,’’

31% chemical ‘‘receives,’’ and 20% electrical junctions).

Giant Component for Random Networks
For a random network with N neurons and probability p of a

connection being present, if the constant c~Npw1, then the size

of the giant component is asymptotically normal with mean Na(c)
and variance Nb(c) [80, p. 120]. These quantities are given by

a(c)~1{
c

c
and b(c)~

c(1{
c

c
)

c(1{c)2
, ð14Þ

where

c~{W {
c

ec

� �
, ð15Þ

and W (:) is the Lambert W -function. If we take N to be 279 and p

to be 514=
279

2

� �
, then c~3:698. Using the asymptotic

approximation, the size of the giant component is distributed

approximately normally with mean 271 and variance 9:22. Thus

the probability of having a giant component of size 248, which is

over 7 standard deviations from the mean, is about 10{14. If a

precise evaluation of this infinitesimal value is desired, large

deviations techniques, rather than the asymptotic approximation

may be more valid [81].

To apply this method to the weakly connected component of a

directed network, we are interested in the undirected network

formed by adding a connection between two neurons if there is a

connection in either direction. For a random directed network

with probability q of presence of a directed connection, the

probability of a connection existing in either direction is

p~q2z2q(1{q). Taking q to be 2194=279=278~0:0283, p is

0:0558. Then for an undirected random network with N~279
and the specified p, c is 15:56. Then the size of the giant

component is distributed approximately normally with mean 279
and variance 0:0000487. Thus the probability of the giant weakly

connected component containing all the neurons in such a

random network is overwhelming. Again, large deviations

techniques should be used to get a precise evaluation of the

probability of being on the order of 10000 standard deviations

away from the mean.

Giant Component for Random Networks with Given
Degree Distribution

Consider the ensemble of random networks with a given degree

distribution [82]. For the gap junction network, the generating
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function corresponding to the measured degree distribution is

G0(x)~
1

279

� �
26z39xz59x2z43x3z46x4z
�

23x5z15x6

z5x7z8x8z4x9z3x11z2x14z2x15zx24zx29zx34zx40
�
,

with derivative

G
0
0(x)~

1

279

� �
39z118xz129x2z184x3z115x4z90x5z35x6z64x7
�

z36x8z33x10z28x13z30x14z24x23z29x28z34x33z40x39
�
:

Therefore G
0
0(1)~

1028

279
. The generating function G1 is then

G1(x)~
1

1028

� �
39z118xz129x2z184x3z115x4z90x5z35x6
�

z64x7z36x8z33x10z28x13z30x14z24x23z29x28z34x33z40x39
�
:

As shown in [82], the expected fraction of the network taken up by

the giant component, S, is S~1{G0(u), where u is the smallest

non-negative solution to u~G1(u). In our case, we find u~0:043,

and so S~0:90. That is to say, one would expect the giant

component to consist of 251 neurons.

Using the computed S and G’
0(1), we can find the average

component size excluding the giant component, which turns out to

be 1:58.

For the symmetrized chemical network, the generating function

corresponding to the measured degree distribution is

H0(x)~
1

279

� �
2xz6x2z8x3z6x4z14x5z14x6z19x7z20x8z19x9
�

z20x10z17x11z18x12z14x13z9x14z10x15z9x16z4x17z9x18z7x19

z3x20z9x21z8x22z3x23z4x24z3x25z2x26z3x27z2x29zx31zx32

z2x33zx34zx36zx42zx48zx49z2x50zx51zx52zx53zx56zx83zx85
�
,

with derivative

H
0
0(x)~

1

279

� �
2z12xz24x2z24x3z70x4z84x5z133x6
�

z160x7z171x8z200x9z187x10z216x11z182x12z126x13

z150x14z151x15z68x16z162x17z133x18z60x19z189x20

z176x21z69x22z96x23z75x24z52x25z81x26z58x28

z31x30z32x31z66x32z34x33z36x35z42x41z48x47

z49x48z100x49z51x50z52x51z53x52z56x55z83x82

z85x84
�
:

Therefore H
0
0(1)~

3929

279
. The generating function H1 is then

H1(x)~
1

3929

� �
2z12xz24x2z24x3z70x4z84x5z133x6
�

z160x7z171x8z200x9z187x10z216x11z182x12z126x13

z150x14z151x15z68x16z162x17z133x18z60x19z189x20

z176x21z69x22z96x23z75x24z52x25z81x26z58x28

z31x30z32x31z66x32z34x33z36x35z42x41z48x47

z49x48z100x49z51x50z52x51z53x52z56x55

z83x82z85x84
�
:

The expected fraction of the network taken up by the giant

component, S, is S~1{H0(u), where u is the smallest non-

negative solution to u~H1(u). Here u is found to be 0:00051, and

so S~0:999996. That is to say, one would expect the giant

component to consist of 278:9990 neurons.

Path Length for Random Networks with Given Degree
Distribution

Continuing from the previous subsection, we find the derivative

of the generating function G1 for the gap junction network to be

G
0
1(x)~

1

1028

� �
118z258xz552x2z460x3z450x4z210x5z448x6
�

z288x7z330x9z364x12z420x13z552x22z812x27z1122x32z1560x38
�
:

Thus G
0
1(1)~

1986

257
. Letting z1~G

0
0(1)~

1028

279
and z2~G

0
0(1)

G
0
1(1)~

2648

93
, it is shown in [82, (53)], that the expected path

length is

L~
ln (N{1)(z2{z1)zz2

1

� �
{ ln z2

1

ln z2=z1½ � ~3:05: ð16Þ

Fitting Tails of Distributions
To find functional forms of the tails of various distributions, we

follow the procedure outlined in [42]. For the candidate functional

forms—say, the power law p(d)*d{c and the exponential decay

p(d)* exp ({ld)—we perform the following steps. First, we find

the optimal parameter of the fit by maximizing the log-likelihood

and the optimal starting point of the fit by minimizing the

Kolmogorov-Smirnov statistic. Second, we evaluate the goodness

of fit by calculating the p-value that the observed data was

generated by the optimized distribution using pw0:1 as a criterion

for plausibility. Finally, if several distributions pass the p-value test

we compare their log-likelihoods to find the most probable one.

Circuits in Eigenmodes
Let us bound the probability of finding an eigenmode that

comprises a random set of neurons. Let N be the number of

neurons in the network being analyzed. Let Ki be the number of

neurons that appear strongly in the ith eigenmode and let

K~ maxi Ki. Furthermore let M be the number of neurons in the
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random set, which one might endeavor to investigate as a putative

functional circuit derived from an eigenmode.

Now go through each eigenmode and add to a list all possible

unordered M-tuples of strong neurons. Even if all of these are

unique, the size of the list is upper-bounded by
PN

i~1

Ki

M

� �
which

itself is upper-bounded by N
K

M

� �
.

Additionally, we can compute the number of all unordered M-

tuples of neurons. This number is
N

M

� �
.

Thus, if a random set of neurons was selected from all possible

sets of neurons, the probability p that there would be an

eigenmode containing all of them is upper-bounded as

pƒ

PN
i~1

Ki

M

 !

N

M

 ! ƒ

N
K

M

 !

N

M

 ! ~
NK !

(K{M)!M!

M!(N{M)!

N!

~
K(K{1) � � � (K{Mz1)

(N{1)(N{2) � � � (N{Mz1)
ƒ

KM

NM{1
:

Suppose we are interested in putative functional circuits of size

M~6 in the giant component of the gap junction network, which

has N~248 and from Figure 2 in Text S4 take K~20. Then even

the loosest upper-bound yields

pƒ

KM

NM{1
~

206

2485
~6:8|10{5,

and so finding a random set of neurons in an eigenmode is

unlikely.

Suppose we know L functional circuits of size M through

molecular biology and want to know the probability of at least one

of them appearing in the eigenmodes by chance. By the union

bound (Boole’s inequality), this probability is less than pL. If we

take L~20 and M~6, the probability of a known functional

circuit appearing in the eigenmodes by chance is less than

1:4|10{3 for the giant component of the gap junction network.

Gap Junction–Chemical Synapse Likelihoods
The likelihood ratios shown in Figure 9 are the following

quantities, empirically estimated from either all neuron pairs or

pairs with a GABAergic presynaptic neuron. The first is

Pr½chem: absentjgap absent�
Pr½chem: absentjgap present� ,

The second is

Pr½chem: unidirectionaljgap absent�
Pr½chem: unidirectionaljgap present� ,

and the third is

Pr½chem: bidirectionaljgap absent�
Pr½chem: bidirectionaljgap present� :

Degree Correlation Coefficients
Table 1 shows the Pearson correlation coefficients between

neuron degree sequences. The average Pearson correlation

coefficients of randomly permuted degree sequences from 10000
trials are also shown for comparison. The standard deviation is

also shown since the distributions of the three randomized

correlation coefficients were all nearly symmetric about zero.

E-Pseudospectrum Computation
We used the MATLAB package EigTool [83] to compute

pseudospectra.

MATLAB Code and Data
Note that MATLAB code for computing several network

properties is available at http://mit.edu/lrv/www/elegans/. This

collection of software may be used not only to reproduce most of

the figures in this paper, but also for future connectomics analyses.

The collected data is available from the WormAtlas [22] as well

as from the same website as the MATLAB code.

Supporting Information

Text S1 Algorithm for directed network drawing.

Found at: doi:10.1371/journal.pcbi.1001066.s001 (0.09 MB PDF)

Text S2 Algebraic form of survival functions.

Found at: doi:10.1371/journal.pcbi.1001066.s002 (0.09 MB PDF)

Text S3 Eigendecomposition.

Found at: doi:10.1371/journal.pcbi.1001066.s003 (0.16 MB PDF)

Text S4 Supporting figures and tables.

Found at: doi:10.1371/journal.pcbi.1001066.s004 (0.08 MB PDF)
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