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Eigenvalue spectra of asymmetric random matrices for multicomponent neural networks
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This paper focuses on large neural networks whose synaptic connectivity matrices are randomly chosen from
certain random matrix ensembles. The dynamics of these networks can be characterized by the eigenvalue spectra
of their connectivity matrices. In reality, neurons in a network do not necessarily behave in a similar way, but may
belong to several different categories. The first study of the spectra of two-component neural networks was carried
out by Rajan and Abbott [Phys. Rev. Lett. 97, 188104 (2006)]. In their model, neurons are either “excitatory” or
“inhibitory,” and strengths of synapses from different types of neurons have Gaussian distributions with different
means and variances. A surprising finding by Rajan and Abbott is that the eigenvalue spectra of these types
of random synaptic matrices do not depend on the mean values of their elements. In this paper we prove that
this is true even for a much more general type of random neural network, where there is a finite number of
types of neurons and their synaptic strengths have correlated distributions. Furthermore, using the diagrammatic
techniques, we calculate the explicit formula for the spectra of synaptic matrices of multicomponent neural
networks.
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I. INTRODUCTION

In neuroscience, interconnections of neurons are often
represented by synaptic matrices whose elements are drawn
from a certain random matrix ensemble [1,2]. Knowing
the distribution of eigenvalues of these random matrices
is very important in studying spontaneous activities and
evoked responses of the network. To calculate the eigenvalue
distribution of these matrices, it is often necessary to work with
asymmetric (non-Hermitian) random matrix theory, which
has been successfully applied to many fields of physics and
interdisciplinary sciences, e.g., the phase diagram of QCD
[3,4], nuclear decay and resonances in multichannel chaotic
scattering [5], and neural networks [1,2,6].

A prominent result of asymmetric random matrix theory is
Girko’s circle law [7]. In its variation with partial symmetry,
the circle becomes an ellipse [6]. These classic results,
however, cannot be directly applied to realistic neural network
models where neurons do not behave in the same way [1,8,9].
Assume there are N number of neurons and let W be the
synaptic matrix. In the model of Rajan and Abbott [1], there
are f N numbers of neurons which are “excitatory,” and
all others are “inhibitory.” To model this neural network,
elements in f N columns of W are sampled from a Gaussian
distribution with mean μE/

√
N and variance σ 2

E/N and
elements in the remaining (1 − f )N columns of W are
Gaussian variables with mean μI/

√
N and variance σ 2

I /N .
Therefore, the synaptic matrix has the structure W = J� +
M , where J is drawn from the real Ginibre ensemble [10] such
that 〈Jij 〉=0, 〈J 2

ij 〉=1/N , and � = diag(σEIf N,σI I(1−f )N ),
where If N and I(1−f )N are identity matrices of dimension f N

and (1 − f )N , respectively. M is a constant matrix whose
elements are the mean strengths of the synapses. Since there
are two types of synapses, every row of M is identical, and
in each row, the first f N elements are equal to μE/

√
N and

the remaining (1 − f )N elements are equal to μI/
√

N . In
particular, M is chosen to be in a “balanced” situation such
that f μE + (1 − f )μI = 0 [11,12]. To confine eigenvalues
inside a unit circle, a second constraint [1] is introduced which

requires that the strengths of the synapses attached to each
neuron independently sum to zero. It is found in Ref. [1] that, in
the limit N → ∞, modifying the mean strengths of excitatory
and inhibitory synapses has no effect on the eigenvalue spectra
of the synaptic matrices. Therefore, the spectrum of W is
identical to that of J�.

It is natural to wonder why the “mean” strength matrix
M has no effect on the spectra. Moreover, in real biological
neural systems, several different types of neurons may connect
with each other to form a multicomponent network [8,9].
Distributions of synaptic strengths of different types of neurons
are distinct [13] and could be non-Gaussian [13,14]. The
dynamics of this network therefore depends on properties of
each type of neuron. It is interesting to find whether or not
the eigenvalue density of this type of networks depends on
the mean value of each individual type of synapse. These
questions are addressed in Sec. II. One of the main results
of this paper shows that, even without the second constraint
in Ref. [1] and when synaptic strengths have certain non-
Gaussian distributions, the spectrum of the network still does
not depend on the mean synaptic strengths.

Aside from biological motivations, the eigenvalue problem
of random plus fixed matrices has been a research topic in
both random matrix theory and condensed matter physics for
a long time [15–18]. A different point of view of the problem
in this paper is the following: how is the density function
of large random matrix J� perturbed by the rank-1 constant
matrix M? Note that random matrix J� is not of Wigner type,
nor are its elements independently and identically distributed
(iid). Therefore this paper provides results to similar problems
studied in Refs. [17,18].

Furthermore, finding the eigenvalue density of random ma-
trices of the form J�, where J is drawn from a random matrix
ensemble and � is a fixed matrix, has been an interesting topic
in random matrix theory and mesoscopic physics [19]. When
J is drawn from the circular unitary ensemble (CUE), an exact
result is given in Ref. [20], and the large-N limit is calculated
in Ref. [21]. In Sec. III, we calculate the density function of
J� where J belongs to the real Ginibre ensemble using the

066116-11539-3755/2012/85(6)/066116(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1103/PhysRevE.85.066116


YI WEI PHYSICAL REVIEW E 85, 066116 (2012)

method introduced in Refs. [22,23]. Discussion and remarks
are made in the last section.

II. SYNAPTIC STRENGTH OF NON-GAUSSIAN
DISTRIBUTIONS

Let the N × N -dimensional real matrix W be the synaptic
matrix of an N -neuron network. Assume there are m types of
neurons and the ith type of neuron has a population of fiN ,∑m

i=1 fi = 1. Define a constant diagonal matrix

� = diag
(
σ1If1N, . . . ,σmIfmN

)
> 0, (2.1)

where IfiN is the fiN -dimensional identity matrix. Let v be
an N -dimensional row vector with the following form,

v = (μ1, . . . ,μ1︸ ︷︷ ︸
f1N

,μ2, . . . ,μ2︸ ︷︷ ︸
f2N

, . . . , μm, . . . ,μm︸ ︷︷ ︸
fmN

), (2.2)

where μi is the mean strength of the synapses from neurons of
the ith type. Define the N × N -dimensional mean matrix M ,
whose rows are all equal to v. The synaptic matrix W in our
model takes the form

W = J� + M, (2.3)

where J is an N × N -dimensional real random matrix drawn
from the ensemble

P (J ) = 1

Z
exp[−N trV (JJ T )], (2.4)

where V is an arbitrary function and Z is the normalization
constant. The case V (x) = x/2 corresponds to the Ginibre
ensemble where elements of J are statistically independent
Gaussian variables. By symmetry, the mean of Jij vanishes,
〈Jij 〉 = 0. The variance of Jij is determined by V , which is
normalized to be 1/N , i.e., 〈J 2

ij 〉 = 1/N .
Synaptic matrix W defined in Eq. (2.3) has m column

blocks. Each block corresponds to one type of neuron. By
construction, elements of W have the following statistical
properties,

Var(Wij ) = �2
jj

/
N and 〈Wij 〉 = vj , (2.5)

i.e., the ith type of synaptic strength has variance σ 2
i /N and

mean μi . The matrix M has a column block structure similar
to that defined in Ref. [1]. Following Ref. [1], we also chose
to put the synapses in the balanced situation, i.e.,

m∑
i=1

fiμi = 0. (2.6)

We want to know the eigenvalue density ρ(x,y) of W in
the limit N → ∞, with fixed f ’s. Let z = x + iy, the density
ρ(x,y) is related to the Green’s function GW (z,z̄) as

ρ(x,y) = 1

π

∂

∂z̄
GW (z,z̄), where

GW (z,z̄) = 1

N

〈
trN

1

z − W

〉
J

. (2.7)

In the above formula, 〈· · ·〉J means averaging over the
ensemble Eq. (2.4) of matrix J . We write the Green’s
function as GW (z,z̄) to emphasize it is not analytic on a
two-dimensional region of the (x,y) plane, more details can

be found in Ref. [23]. This region is called the support of the
density function because we have ∂

∂z̄
GW (z,z̄) �= 0. Since we

will be dealing with both N × N - and 2N × 2N -dimensional
matrices, to remove ambiguity, we use trN as the trace operator
for N × N matrices. We work on asymmetric random matrices
with the methods introduced in Refs. [22,23]. For consistency,
we adopt the notation convention of Ref. [22] in the remainder
of this paper. We define a 2N × 2N -dimensional matrix:

Z =
(

z λ

λ z̄

)
. (2.8)

For asymmetric matrix W , we define the resolvent (matrix
valued Green’s function) GW [22,23] as

GW (Z) =
(G1 G2

G3 G4

)
=

〈 [
Z −

(
W

WT

)]−1

2N×2N

〉
J

.

(2.9)

Introducing the self-energy �W , we have

GW (Z) = 1

Z − �W

. (2.10)

The Green’s function in Eq. (2.7) can be found from
GW [22,23],

GW (z,z̄) = lim
λ→0,N→∞

1

N
trNG1, (2.11)

where the limit N → ∞ is taken before λ → 0. Similarly, as in
Eqs. (2.7)–(2.11), we define GJ�, �J�, and GJ�. Introducing
a constant matrix

M =
(

M

MT

)
, (2.12)

we have the relation

GW (Z) = GJ�(Z − M) = 1

Z − M − �J�

. (2.13)

It is impossible to calculate �J� explicitly for arbitrary V .
But for our purpose it is sufficient to know its basic structure.
Without loss of generality, assume V (x) = x/2 + · · ·, so that
we can expand trV (JJ T ) as

trNV (JJT ) = 1
2 trNJJT + g2trN (JJT )2 + g3trN (JJT )3 + · · · .

(2.14)

We expand the higher order terms in Eq. (2.14) and use the
quadratic term to calculate the ensemble averages, denoted by
〈 〉0. Let W̄ = J�. Then because of the presence of matrix �,
we have 〈

W̄abW̄
T
cd

〉
0 = �2

bb

N
δadδbc, 〈W̄ab〉0 = 0. (2.15)

The self-energy �J� can be written in terms of the
cumulants of P (J ), i.e., 
2k , k = 1,2, . . .. And it is well known
that in the limit N → ∞, to leading order in 1

N
, each of these

cumulants is the sum of all connected planar diagrams with k

external J ’s and J T ’s. All diagrams which contribute to �J�

are also planar diagrams, as shown in Fig. 1. By Eq. (2.15),
the self-energy �J� has the following structure:

�J� =
(

�1 �2

�3 �4

)
= 1

N

(
0 aIN

b�2 0

)
, (2.16)
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GJΛ
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+ · · ·ΣJΛ =

FIG. 1. Contributions of the quadratic cumulant 
2 and the
quartic cumulant 
4 to the self-energy �J�.

where scalars a and b are functions of z and z̄ and are
determined by V and � is defined in Eq. (2.1). In the Appendix,
we prove that GW = GJ�. This fact, together with Eq. (2.7),
completes the proof that the eigenvalue spectrum of W is
identical to that of the random matrix J�, as discovered in
Ref. [1] when J belongs to the Ginibre ensemble.

In Fig. 2, we compare the eigenvalue spectra of W =
J� + M and W = J�. In both cases J is drawn from a
non-Gaussian ensemble. All spectra are generated by Monte
Carlo simulations. Since ρ(x,y) = ρ(|z|), where z = x + iy,
it is sufficient to show the dependence of eigenvalue density
function on radius |z|. We find these functions match quite
well. In comparison, we replace M with a constant matrix,
which does not have the column structure, and find the density
function is rather different.

Next, we test our result on the two-component Gaussian
network of Ref. [1]. Denote the weight matrix by W = J� +
M and follow the brief discussion in the Introduction. We fix
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FIG. 2. Density ρ of eigenvalues as a function of radius |z| in the
complex plane. Simulations are run for random matrices of dimension
N = 200, drawn from the ensemble defined in Eq. (2.4) with
V (x) = x + x2. There are four types of neurons in the network, with
f = (0.1,0.2,0.3,0.4) and � = diag(0.5I20,1.0I40,1.5I60,2.0I80). (a)
μ = (10,30,30,−40). (b) μ = (1,3,3,−4). (c) μ = (0,0,0,0), i.e.,
M = 0. (d) Density functions in panels (a)–(c) are drawn in the same
plane. We find the bulk of the three functions are very similar, which
shows that even when elements of weight matrix M are of order
higher than 1/

√
N , the density function of J� + M still converges

to that of J� as N → ∞. This is due to the column structure of
M . In comparison, we show in panel (d) the density function of
W = J� + M , where M is a constant matrix whose elements are
randomly chosen from uniform distribution on [0,1].
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FIG. 3. Percentage of eigenvalue outliers of two-component
Gaussian network W decays as N increases. For f = 0.2, elements
in f N columns of W have Gaussian distribution with variance 2

N
and

mean μe. Other elements have Gaussian distribution with variance 1
N

and mean μi . From top to bottom, (μe,μi) are (1, − 1
4 ), ( 1√

N
, − 1

4
√

N
),

( 1
N

, − 1
4N

), and (0,0), respectively.

f = 0.2 and choose the variance of the Gaussian distributions
for excitatory and inhibitory synaptic strengths to be 2

N
and 1

N
,

respectively. The only constraint on the mean strength matrix
M is the balance condition. As in the previous example and
already pointed out in Ref. [1], the bulk of the spectra of W

with different M matrices are almost identical. From numerical
simulations, it appears that when M has larger elements, there
are more eigenvalues outside the support of the spectrum; see
Eq. (3.6) for the definition. To show this is a finite-size effect,
we calculate the percentage of outliers, for different matrix
size N . It shows in Fig. 3 that, for all values of M , as N → ∞,
the percentages of outliers for W = J� + M approach those
of W = J�.

III. SYNAPTIC STRENGTH OF GAUSSIAN DISTRIBUTION

In this section, we calculate the eigenvalue density of a
multicomponent Gaussian network. Assume there are m types
of neurons in the network and synaptic strengths have different
Gaussian distributions. From the previous section we know the
density functions of J� + M and J� are identical when M

has the column structure and satisfies the balance condition,
even without the additional constraint of Ref. [1]. Therefore,
the spectrum of this network is the density function ρ(x,y) of
the following random matrix,

W = J�, (3.1)

where J is drawn from the real Ginibre ensemble, i.e., V (x) =
1
2x in Eq. (2.4), and � is defined in Eq. (2.1). The case m = 2
is solved in Ref. [1] with the method in Ref. [6]. For m > 2,
we find the technique developed in Refs. [22,23] is more
convenient. Define an operator t̄rN which, when it acts on
an N × N matrix A, gives t̄rNA = trNA�2. By Eq. (2.15), the
equation for the one particle irreducible (1PI) self-energy �W
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GWΣW =

FIG. 4. Self-energy �W is related to resolvent GW by Eq. (3.2).

(Fig. 4) is

�W =
(

�1 �2

�3 �4

)
= 1

N

(
0 t̄rNG2 · IN

trNG3 · �2 0

)
. (3.2)

Note that the above matrix has the structure outlined
in Eq. (2.16). The generalized Green’s function GW [defined in
Eq. (2.9)] is related to �W by the Schwinger-Dyson equation,
Eq. (2.10),

GW =
(G1 G2

G3 G4

)
=

(
z − �1 λ − �2

λ − �3 z̄ − �4

)−1

2N×2N

. (3.3)

From Eqs. (3.2) and (3.3), we get the following equation
for an unknown variable p = 1

N
t̄rNG2 · 1

N
trNG3,

m∑
i=1

fiσ
2
i

|z|2 − pσ 2
i

= 1. (3.4)

Equation (3.4) has multi-number of solutions. The correct one
for our problem is the one satisfying the boundary condition

p||z|2=0 = −1. (3.5)

The boundary of spectrum is determined by the transition point
p = 0 [22], which corresponds to the circle with radius |z|B ,
such that

|z|2B =
m∑

i=1

fiσ
2
i . (3.6)

The disk region defined by |z| � |z|B is the support of the
spectrum. Off the support, we always have p = 0. In the
case m = 2, the formula in Eq. (3.6) gives the same result
for the spectrum boundary obtained in Ref. [1] by solving a
saddle-point equation. From Eq. (2.11), the Greens’s function
GW (z,z̄) is given by the following formula:

GW (z,z̄) =
{

z̄
∑m

i=1
fi

|z|2−pσ 2
i

, |z|2 � |z|2B,

1
z
, |z|2 > |z|2B.

(3.7)

From Eq. (3.4), when on the support of spectrum, we get

∂p

∂|z|2 =
∑m

i=1
fiσ

2
i

(|z|2−pσ 2
i )2∑m

i=1
fiσ

4
i

(|z|2−pσ 2
i )2

. (3.8)

Finally, by Eq. (2.7), we get the eigenvalue density of W :

ρ(x,y) =
{

1
π

(|z|2 ∂p

∂|z|2 − p
) ∑m

i=1
fiσ

2
i

(|z|2−pσ 2
i )2 , |z|2 � |z|2B,

0, |z|2 > |z|2B.

(3.9)
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FIG. 5. Density ρ of eigenvalues as a function of radius in the
complex plane |z|, for N = 400. The solid lines are the analytic
results by Eq. (3.9) and the symbols are numerical simulations. The
figure shows results for different sets of variances σ 2/N with fixed
population f = (0.1,0.2,0.3,0.4).

We introduce the notation 〈σa〉 = ∑m
i fiσ

a
i , where a is a

constant. From Eq. (3.9), we find the eigenvalue density at
the center and boundary of the spectrum:

ρ(0) = 1

π
〈σ−2〉 and ρ(|z|B) = 1

π

〈σ 2〉
〈σ 4〉 . (3.10)

When m = 1, from Eqs. (3.4) and (3.9) we easily recover
the well-known result for the Ginibre ensemble [10]. For
m = 2, choosing the solution for the quadratic equation,
Eq. (3.4), satisfying condition (3.5), and then from Eq. (3.9),
we successfully recover the results obtained in Ref. [1]. For
large m, it is hardly possible to have an analytic solution for
Eq. (3.4). But it is very simple to find the numerical solution
for this algebraic equation. It turns out that there is always only
one solution on [−1,0], which is just what we need according
to the boundary conditions.
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FIG. 6. Density ρ of eigenvalues as a function of radius in the
complex plane |z|, for N = 400. The solid lines are the analytic results
obtained by Eq. (3.9) and the symbols are numerical simulations.
The figure shows results for different sets of population with fixed
variances σ 2 = (0.1,0.2,0.3,0.4)/N .
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In Fig. 5, we compare the density function in Eq. (3.9) with
numerical simulations for synaptic strengths with different
variances σ ’s but the same f ’s. In Fig. 6, we let the f ’s
change but keep the σ ’s fixed. In both cases, we observe a
very good match between numeric data and analytical results.
The only significant deviation happens near |z| = 0. In fact,
this deviation already appears when � = IN and it is shown
to be due to the finite-size effect [6].

IV. DISCUSSION

In the first part of this paper, we show that modifying
the mean strengths of synapses of a neural network does not
change the density function of the synaptic matrix even when
there are several types of neurons and the strengths of their
synaptic connections have correlated distributions.

In Eq. (2.4), the ensemble of random matrix J is chosen to
be O(N ) invariant so that all elements of random matrix J have
the same distribution. Differences between different types of
neurons are introduced only by � and M . In fact, we can draw
the synaptic matrix W from more general ensembles. As long
as Eq. (2.15) holds and M has the column block structure,
eigenvalue spectra of W will not depend on M .

We therefore prove that the density functions of large
random matrices described by Eqs. (2.3) and (2.4) are not
changed by perturbations of the rank-1 matrix M . This type of
random matrices are not of Wigner type or have iid elements
as in Refs. [17,18].

It is its structure that makes M irrelevant to the eigenvalue
density function. In reality, we may need to choose the mean
value of synaptic connections to be of the same order of their
fluctuations, i.e., 〈Mij 〉 ∝ N−1/2. But this is not necessary
in our proof. If the balance condition is not imposed, the
eigenvalue spectra will be identical to the balanced case except
the eigenvalues at zero will be shifted [1,17].

In the second part of this paper we calculate the density
function of random matrices of the form J�, where J belongs
to the Ginibre ensemble. These matrices describe random
networks with multiple independent components. We find
closed formulas for the eigenvalue density at both the center
and the boundary of the spectrum in terms of variances of
synaptic strengths.

When J is drawn from the ensemble in Eq. (2.4) and
� = IN , we know by the single-ring theorem [24–26] that
the support of the eigenvalue spectrum is either a disk or
an annulus. It will be interesting to find out whether or not
the single-ring theorem still holds when � is diagonal but not
proportional to IN . Equation (3.6) shows when J has Gaussian
distribution the support of the spectrum is always a disk of
radius |z|B , but never an annulus. This indeed agrees with the
single-ring theorem. Clearly, to prove the single-ring theorem
for J�, where J belongs to the general ensemble defined in
Eq. (2.4), we need to take different approaches. Work on this
topic is currently in process.
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APPENDIX

In this section we show that in the large-N limit, due to the
structure of M, the Green’s function GW defined in Eq. (2.11)
equals to GJ� defined similarly for J�, i.e.,

GW = GJ� + O(N−1). (A1)

Step 1. Define D = (z̄ − MT )(z − M) − ab�2, where a

and b are scalars shown in Eq. (2.16). By Eq. (2.13), GW can
be written as

GW =
(

D−1(z̄ − MT ) aD−1

∗ (z − M)D−1

)
. (A2)

Here we used the fact that the (12)-element of �J� is
proportional to the identity matrix and the following formula
from linear algebra:(

E F

G H

)−1

=
(

E−1 + E−1FX−1GE−1 −E−1FX−1

−X−1GE−1 X−1

)
,

(A3)

where X = H − GE−1F .
Step 2. Let Ipq be a p × q-dimensional matrix with all

elements equal to 1 and let Mi = fiN for i = 1, . . . ,m. Then
D−1 has the following m × m block structure:

D−1

=

⎛
⎜⎜⎝

a1 + b11IM1M1 b12IM1M2 · · · b1mIM1Mm

b21IM2M1 a2 + b22IM2M2 · · · b2mIM2Mm

...
...

. . .
...

bm1IMmM1 bm2IMmM2 · · · am + bmmIMmMm

⎞
⎟⎟⎠ ,

(A4)

where ai = 1/(|z|2 − abλ2
i ), bii = O(N−1), bi �=j = O(N−2),

and ai + biiMi = O(N−1), for i,j = 1, . . . ,m. This claim is
proved by induction. First, notice that D has the same m × m

block structure as in Eq. (A4) except all its parameters are of
order 1. Using the fact

(a + bIMM )−1 = 1

a
− b

a(bM + a)
IMM (A5)

and Eq. (A3), we find that, for m = 2, D−1 indeed has the
properties described by Eq. (A4). Then assume the claim is true
for m = n − 1. By straightforward calculation using Eqs. (A3)
and (A5), we find the claim is also true for m = n.

Step 3. Substituting Eqs. (A4) to (A2) and using Eq. (2.11),
we get Eq. (A1). This completes the proof.
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