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Abstract

The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors
of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based
on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect
folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions
(IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question
about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that
21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease
mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated
polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of
transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order
mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The
repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (RRW, RRC, ERK, RRH,
RRQ) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed
accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63
and, in agreement with our predictions, observed an increased a-helical propensity of the region harboring the mutation.
Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease
mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for
improving predictors of the functional impact of missense mutations.

Citation: Vacic V, Markwick PRL, Oldfield CJ, Zhao X, Haynes C, et al. (2012) Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic
Protein Disorder. PLoS Comput Biol 8(10): e1002709. doi:10.1371/journal.pcbi.1002709

Editor: Yanay Ofran, Bar Ilan University, Israel

Received January 31, 2012; Accepted August 14, 2012; Published October 4, 2012

Copyright: � 2012 Vacic et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in whole or in part with the following grants: NSF MCB0444818 (LMI), NIH RO1 HD065288 (LMI), NIH RO1 MH091350 (LMI),
NIH 5T32GM007752-32 (PRLM). PRLM gratefully acknowledges HHMI for financial support. Computational work at UCSD is supported in part by the NSF, NIH,
CTBP, NBCR and NSF Supercomputer centers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lilyak@ucsd.edu

¤a Current address: Google Inc, Mountain View, California, United States of America
¤b Current address: WaterSmart Software, San Francisco, California, United States of America

Introduction

Recent years have seen significant advancements in cataloging

the genetic variation in humans and relating it to disease

susceptibility. In particular, missense mutations, which introduce

changes in the amino acid sequence of proteins, have been the

subject of considerable attention due to the large number of

ongoing exome sequencing studies. As a result, numerous

computational models that classify amino acid substitutions as

damaging or benign are currently available (reviewed in [1,2,3]).

The majority of these methods rely on the information from solved

or modeled protein structures [4,5,6,7,8,9] and/or are based on

evolutionary conservation, following the assumption that func-

tionally important residues of proteins are conserved

[10,11,12,13]. This choice of features limits the usefulness of

current methods for classifying mutations in proteins that lack a

fixed structure or have low sequence conservation, both of which

are hallmarks of the intrinsically disordered proteins (IDPs).

Underestimating the impact of missense mutations in intrinsically

disordered regions (IDRs) leads to a decrease in overall sensitivity

of the existing methods. For example, it has recently been

observed that SIFT predictions have more false negatives on

annotated disease mutations in disordered, solvent accessible and

non-conserved regions [14].
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Intrinsically disordered proteins were first identified as a distinct

class of proteins more than a decade ago [15,16,17,18]. It has since

been clearly demonstrated that IDPs are prevalent in eukaryotic

proteomes [19], are involved in signaling and regulation [20,21],

carry sites of posttranslational modifications [22,23], and serve as

hubs in protein interaction networks [24,25,26]. Despite their

important functional roles [27,28,29,30,31], IDRs generally have

low sequence conservation [32], with the exception of IDRs

involved in chaperone activity and RNA binding [33]. IDPs have

been implicated in many human diseases, including cancer,

diabetes, cardiovascular and neurodegenerative disorders [20,34].

Due to their signaling and regulatory roles, IDPs tend to be tightly

regulated, and disruptions in regulation of IDPs have been linked

to disease [35]. Despite the functional importance and disease

relevance of IDPs, the prevalence of disease-associated missense

mutations in disordered regions and their impact on disordered

conformations have not been investigated so far.

Here, we offer a new perspective on disease mutations that

accounts for mutations in disordered regions. We investigate

disease-associated mutations located in ordered and disordered

regions, and compare them to missense mutations from two

control datasets, single amino acid polymorphisms and neutral

evolutionary substitutions. We demonstrate that deleterious

missense mutations may affect disordered regions, thereby

disrupting the disorder-based type of structure. Our results suggest

that disease mutations in ordered regions (ORs) and IDRs differ

substantially in frequency, properties, and functional impact. We

find that disease mutations in disordered regions more frequently

cause predicted disorder-to-order transitions and influence pre-

dicted disordered binding regions (MoRFs) compared to mutations

from the control datasets. IDR mutations are also enriched in

DNA-binding and transmembrane domains, and in sites of

posttranslational modifications. Accelerated molecular dynamics

simulations performed on a deleterious disorder-to-order transi-

tion mutation that affects the DNA-binding domain of tumor

protein p63 support our disorder predictions. We further show

that two widely used predictors of functional impact of single

nucleotide variants, PolyPhen-2 and SIFT, exhibit a .10%

decrease in sensitivity when predicting the effect of annotated

disease mutations located in IDRs compared to ORs mutations.

Our findings have broad implications for improving predictors of

the functional impact of missense mutations and therefore may

significantly influence the interpretation of novel variants identi-

fied in large genome sequencing projects.

Results

Mutation frequencies in ordered and disordered regions
We examined the frequency of annotated disease mutations

(DM) from the UniProt database in predicted ordered and

disordered regions and compared them to the distributions of

putatively functionally neutral mutations from two control

datasets, annotated polymorphisms from UniProt (Poly) and

neutral evolutionary substitutions (NES) (Materials and Meth-
ods). We observed that disease mutations preferentially affect

ordered regions, with 78.3% of them mapped to the predicted

ordered regions and 21.7% mapped to the predicted disordered

regions (Table 1). Neutral evolutionary substitutions are more

evenly distributed, with 55.3% observed in ORs and 44.7% in

IDRs (Table 1). The annotated polymorphisms show somewhat

intermediate distribution, with 59.6% in ORs and 40.4% in IDRs.

Enrichment of disease mutations in ordered regions agrees with

previous observations that disease mutations frequently affect

protein structure, activity and stability [4,7]. Our results were

consistent across three disorder predictors, VLXT [36], VSL2B

[37] and IUPRED [38] (Table S1).

The enrichment of disease mutations in ORs cannot be

explained by the overall lower disorder content of the proteins

containing these mutations. Although proteins that carry disease-

associated mutations are on average slightly less disordered than

proteins from the Poly dataset (mean6SD 32.7617.9% vs

35.3619.5%, respectively; also see Figure S1), this difference is

not sufficient to explain the 3.6 fold enrichment of disease

mutations in ORs. Furthermore, despite the fact that the NES

dataset was constructed from the same set of proteins as DM

(Materials and Methods), only a 1.2 fold enrichment of

mutations in ORs compared to IDRs is observed in this dataset

(Table 1), which lends further support to enrichment of disease

mutations in ORs. Finally, we compared mutation rates (number

of amino acid changes per ordered and per disordered residue) in

ORs and IDRs in all three datasets, and only in the DM dataset

the mutation rate in ORs was higher than the mutation rate in

IDRs (Table 2).

Despite the prevalence of disease mutations in ordered regions,

21.7% of DMs are mapped to the predicted disordered regions.

We have investigated these mutations in greater detail, as

Table 1. Disease mutations have higher frequencies in
ordered regions.

IDR OR

Dataset Proteins Mutations n % n % Fold

DM 2,194 15,459 3,356 21.7 12,103 78.3 -

Poly 8,489 24,220 9,790 40.4 14,430 59.6 0.54

NES 1,998 60,299 26,927 44.7 33,372 55.3 0.49

doi:10.1371/journal.pcbi.1002709.t001

Author Summary

Intrinsically unstructured or disordered proteins have been
implicated in the etiology of a wide spectrum of diseases.
However, the molecular mechanisms that relate mutations
in intrinsically disordered regions (IDRs) to disease path-
ogenesis have not been investigated. Disordered proteins
do not conform to the prevailing view of deleterious
mutations which equates function, structure and evolu-
tionary conservation – intrinsically disordered regions are
functional, but lack a fixed three-dimensional structure and
in general have low sequence conservation. Here we
demonstrate that .20% of disease-associated missense
mutations affect IDRs and interfere with their functions.
We further show that 20% of deleterious mutations in IDRs
induce predicted disorder-to-order transitions. Our predic-
tions are supported by accelerated molecular dynamics
simulations that show an increase in helical propensity of
the region harboring a disease disorder-to-order transition
mutation of tumor protein p63. Our results refine the
traditional structure-centric view of disease mutations and
offer a new perspective on the role of non-synonymous
mutations in disease. Our findings have broad implications
for improving predictors of the functional impact of
missense mutations, and for interpretation of novel
variants identified in large genome sequencing projects
that aim to provide a better understanding of human
genetic variation and its relevance to common diseases.

Disease Mutations in Disordered Regions
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discussed below, and mutations in IDRs form the main focus of the

remainder of this study.

Disorder-to-order (DRO) and order-to-disorder (ORD)
transition mutations

Based on the predicted disorder probability score, a residue can

be classified as ordered or disordered depending on whether its

score is below or above a threshold of 0.5. When analyzed from an

order/disorder perspective, any missense mutation can have two

different outcomes: (i) it can change the prediction score

sufficiently to cross the 0.5 threshold, which would result in a

conversion of the prediction from disorder to order, or from order

to disorder; or (ii) it can preserve the order/disorder assignment.

Thus, the effect of missense mutations can be classified as DRD

(disorder-to-disorder) or ORO (order-to-order) when disorder and

order assignments do not change; and as DRO (disorder-to-order)

or ORD (order-to-disorder) transitions when predicted disorder

and order classes switch.

Disease mutations mapped to disordered regions cause DRO

transitions significantly more frequently than neutral evolutionary

substitutions or polymorphisms (Table 2). We observed that 20%

of the disease mutations in disordered regions result in a DRO

transition, compared to only 11.5% and 7.3% in the Poly and

NES control sets (Fisher’s exact P = 1.06?10232 and 5.47?102105,

respectively). In contrast, the rates of ORD transition show no

change or a slight depletion in DM compared to Poly and NES,

respectively (Table 2). Similar results were obtained using three

different disorder predictors (Table S3). These observations

suggest that disease mutations in disordered regions are more

likely to cause a significant structural perturbation, and possibly

disrupt functions that necessitate protein disorder. Below, we

examine the structural and functional implications of disease

mutations in greater detail.

Secondary structure predictions and mutations
To better understand how disease mutations influence protein

secondary structure, we applied the secondary structure predictor

PHD [39] to both the disease and control datasets. In each dataset,

we calculated the frequencies of secondary structure elements

(helices, strands and loops) and transitions between them upon a

mutation. Overall, we observed that disease mutations affect

helices and strands more frequently than control mutations

(Table S4). We also observed that although most mutations do

not cause a change in the assignment to a predicted helix, strand

or loop, there is nevertheless a statistically significant increase in

transitions between secondary structure elements caused by

disease mutations compared to the control datasets (Table S5).

This increase was most pronounced for transitions from helices

and strands into loops, and to a lesser extent for transitions from

loops into helices and strands (Figure 1). There was no significant

difference between disease and control mutations for transitions

from helix into strand and vice versa (Figure 1). Although similar

trends are observed for loops predicted by PHD and disordered

regions predicted by VLXT, VSL2B and IUPred (see Figure 1,

Table 2 and Table S3), it is important to note that predicted

regions of disorder and loops do not necessarily overlap [40,41],

and that many secondary structure elements predicted by PHD

are found within experimentally verified disordered regions

[40,42,43].

Despite the lack of stable secondary and tertiary structure in

disordered regions, the dynamic behavior of IDRs does not

preclude formation of short transient secondary structure ele-

ments. These short transient elements, or Molecular Recognition

Features (MoRFs) [44], frequently mediate interactions of IDRs

with their physiological binding partners [44,45,46]. Below, we

investigated the influence of missense mutations on MoRFs.

Disease mutations in predicted a-MoRF regions
Molecular recognition features (MoRFs) are short order-prone

segments within longer disordered regions that fold upon binding

to their interaction partners [47]. a-MoRFs specifically form a-

helices upon binding. We predicted the presence of a-MoRFs at

the position of the residue both before and after it was mutated,

and classified the mutation as falling into one of the three

categories: (i) ‘‘predicted MoRF lost’’ - an a-MoRF was predicted

to overlap the position of the mutated residue in the wild-type

sequence but not in the mutant sequence; (ii) ‘‘predicted MoRF

gained’’ - an a-MoRF was predicted not to overlap the position of

the mutated residues in the wild-type sequence but was predicted

to overlap the position of the mutated residue in the mutant

sequence; (iii) ‘‘MoRF present, no change’’ - an a-MoRF was

predicted to overlap the mutated position in both the wild-type

and the mutant sequences. Mutations where an a-MoRF was

absent from both wild-type and mutant sequences were not taken

into account. Amino acid substitutions were placed into IDR and

OR categories based on the wild-type disorder score. Details of

MoRF predictions are provided in the Materials and Methods
and in the Supplementary Text S1.

IDR mutations lead to gain or loss of predicted a-MoRFs 2.2 to

5.1 times more frequently than OR mutations, independent of the

dataset used (Figure S2). Disease mutations in IDRs lead to a loss

of predicted a-MoRFs 1.39 times more frequently than Poly and

1.36 times more frequently than NES (Fisher’s exact P = 0.0012

and 7.9?1024, respectively). Disease mutations in ORs have an

opposite effect – they lead to a gain of predicted a-MoRFs 1.5-fold

more frequently than Poly and 1.8-fold more frequently than NES

(P = 0.0020 and 1.65?1025). A follow up investigation showed that

DRO and ORD mutations significantly contribute to the

observed effect (Figure 2). Disease DRO mutations lead to a

loss of predicted a-MoRFs 2.1-fold more frequently than Poly and

NES (P = 1.11?1024 and 5.68?1025), and similarly disease ORD

Table 2. Disorder-to-order transition mutations are significantly enriched in disease.

DRO DRD ORD ORO

Dataset n % n % Fold P-value n % n % Fold P-value

DM 670 20.0 2,686 80.0 - - 590 4.9 11,513 95.1 - -

Poly 1,125 11.5 8,665 88.5 1.7 1.06610232 710 4.9 13,720 95.1 1.0 0.89

NES 1,971 7.3 24,956 92.7 2.7 5.476102105 1,870 5.6 31,502 94.4 0.9 0.0023

P-values were calculated using Fisher’s exact test between mutation counts in DM and Poly or NES.
doi:10.1371/journal.pcbi.1002709.t002

Disease Mutations in Disordered Regions
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mutations lead to a gain of predicted a-MoRFs 1.7-fold more

frequently than Poly and 2.0-fold more frequently than NES

(P = 0.025 and 0.0012).

Disease mutations in eukaryotic linear motifs (ELMs)
We also examined the influence of disease and control

mutations on Eukaryotic Linear Motifs (ELMs), short (3 to 11

residues) conserved sequence motifs that play roles in mediating

cell signaling, controlling protein turnover and directing protein

localization [48]. ELMs were previously shown to be enriched in

IDRs [49]. We mapped mutations from the three datasets onto

1040 annotated ELM instances from human proteome (see

http://elm.eu.org/elms/browse_instances.html) and found that

only 99 mutations overlap an ELM. Although disease DRO

mutations were slightly enriched in ELMs in comparison to

control DRO mutations (Table S6), this difference reached

statistical significance only for DM vs NES (P = 0.012), but not for

DM vs Poly (P = 0.22), likely due to a limited number of

observations. We did not observe any differences for other classes

of mutations. Although a decisive conclusion about enrichment of

DRO disease mutations within ELMs could not be made at this

point, we believe that the trend towards such enrichment warrants

further investigation when larger numbers of ELMs and annotated

mutations become available.

Functional characterization of disease mutations in IDRs
and ORs

To characterize the functional impact of missense mutations, we

examined UniProt region/residue feature annotations associated

with each mutation (Materials and Methods). A number of

functional annotations for disease mutations in IDRs and ORs

show significant differences in fold enrichment (Figure 3). Disease

mutations in disordered regions are enriched in domains and

functions associated with DNA binding motifs (homeobox, zinc

finger, basic motif), transmembrane domains, sites of post-

translational modifications, disulfide bond formation, and triple

helical regions, which are often found in cytoskeletal and coiled-

coil proteins. Some of these functional categories were previously

strongly associated with disordered regions [28,30], and many

DNA-binding domains are known to be either entirely or partially

disordered when not associated with DNA [50,51,52]. Further

investigation of keywords associated with DRO transitions shows

an enrichment of functions similar to IDR, while ORD transition

mutations show enrichment in ABC transporter and ATP-binding

regions (Tables S7 and S8).

DRO and ORD mutation patterns are different
In order to investigate mutations that contribute to the observed

DRO and ORD transitions, we calculated the ‘‘wild-type

residueRmutant residue’’ transition matrices in all three datasets

and compared the differences in frequencies of DRO (Figure 4,

first row) and ORD (Figure 4, second row) mutations between

DM and Poly (Figures 4A and 4C), and DM and NES

(Figures 4B and 4D). We observe that certain residue-into-

residue substitutions are enriched (red), while others are depleted

(green) in disease. Arginine (R) is the most frequently mutated

residue in the DRO dataset, and leucine (L) is most frequently

mutated in the ORD dataset. The overall results do not depend

on the choice of the control dataset (Poly or NES).

Figure 1. Transitions between helices (H), strands (E) and loops (L) upon mutations from three datasets, based on PHDsec
predictions. Transitions from helix or strand to loop and vice versa are significantly enriched in disease. P-values were calculated using Fisher’s exact
test between mutation counts in DM vs Poly or NES. Categories with Bonferroni-corrected P-values,0.05 are marked with an asterisk.
doi:10.1371/journal.pcbi.1002709.g001

Figure 2. Disease DRO transition mutations lead to the loss of
predicted a-MoRFs (panel A), while ORD transition mutations
lead to the gain of predicted a-MoRFs (Panel B) significantly
more frequently than control mutations. Y-axes show fractions of
all DRO and ORD mutations that cause loss or gain of the predicted a-
MoRFs, and error bars correspond to one standard deviation.
doi:10.1371/journal.pcbi.1002709.g002

Disease Mutations in Disordered Regions
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The heat plots in Figure 4 point to specific mutations that are

highly enriched in disease. The most frequent disease mutation

that causes a disorder-to-order transition is RRW (Figure 4C).

Other DRO transition mutations significantly enriched in the

DM dataset include most notably RRC, RRH, ERK, RRQ

(Figure 4E, left section). Several other types of disorder-to-order

transition mutations, such as RRK, ERD, LRF, SRT, are

significantly depleted in the DM dataset (Figure 4E, right

section), which demonstrates that distinct types of mutations

preferentially occur within disease and control categories.

To verify that this result is not an artifact of our analysis, for

example due to general enrichment of RRW mutations in

disordered regions, or the choice of control datasets, we have

compared the frequencies of RRW substitutions from this study to

the matrices constructed based on the alignments of completely

disordered sequences [53]. This comparison showed that in

general RRW substitutions occur extremely rarely in disordered

regions (with 0.11% in D85 matrix and 0.03% in D40 matrix),

whereas we find RRW substitution with much higher frequency

in our datasets (11.69% in DM, 6.52% in Poly, and 0.95% in

NES). This result suggests that the RRW mutation is truly

enriched among disease mutations.

Another category of amino-acid substitutions in DM, albeit not

significantly enriched as a group, involve order-to-disorder

mutations, such as LRP, CRR, GRR, WRR and others

(Figure 4F). Some of the enriched order-to-disorder mutations

are inverses of the enriched disorder-to-order mutations, such as

WRR, CRR, LRR, whereas some are shared between DRO

and ORD, such as GRE. This shared category points to the fact

that there is no strong preference for glycine and glutamic acid to

be located in either ordered or disordered regions, as reflected by

the presence of both residues in the middle of the TOP-IDP scale

of residue disorder propensities [54].

In summary, our analysis shows that a limited set of mutations

accounts for a large fraction of all DRO and ORD transitions in

the DM dataset. The top five disorder-to-order transition

mutations (RRW, RRC, ERK, RRH and RRQ) collectively

account for 44.0% of all DRO disease mutations, and the top five

order-to-disorder transition mutations (LRP, CRR, GRR,

WRR and FRS) collectively account for 32.2% of all ORD

Figure 3. Fold differences of UniProt FT annotations in DM compared to Poly (panels A,C) and NES (panels B,D) that show
statistically significant frequency difference between mutations in IDR and OR. Top row (A, B) contains level 1 and the bottom row (C, D)
level 2 features. Error bars are one standard error of fold difference. Categories are sorted by decreasing fold difference in DM compared to controls.
doi:10.1371/journal.pcbi.1002709.g003

Disease Mutations in Disordered Regions
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Figure 4. Enrichment and depletion of DRO (panels A, B, E) and ORD (panels C, D, F) mutations as % of disease mutations in
comparison to % of polymorphisms (Poly; panels A, C) and % of neutral evolutionary substitutions (NES; panels B, D). In the
heatplots (panels A, B, C, D) wild-type residues are on the Y-axes and the mutant residues on the X-axes. The residues are arranged according to the

Disease Mutations in Disordered Regions
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disease mutations (Figure 4C and 4F). Specific knowledge of the

mutations responsible for such transitions may help the develop-

ment of new classifiers to better predict the effects of mutations in

IDRs.

Arginine is the most frequently mutated residue in DM
We next compared the frequencies of wild-type and mutant

residues in all datasets to the frequencies of typical human proteins

from the UniProt database (Figure S3). Mutations of arginine

and glycine are most dominant in DM and account for 28.5% of

all disease mutations, 18.6% of all Poly and only 11.1% of NES

mutations (Figure S3B). After normalizing by the baseline residue

frequency [55] (Figure S3A), mutations of cysteine and trypto-

phane stood out, reflecting that in DM these two resides are

mutated significantly above what is expected based on their

frequency of occurrence in the human proteome. Interestingly,

tryptophane and cysteine, and to a lesser degree histidine, are the

residues into which other residues most frequently mutate, with a

more pronounced effect in IDRs than in ORs (Figure S4).

High mutability of arginine, also observed in earlier studies

[56,57], together with the high propensity of arginine
mutations to cause disorder-to-order transitions suggest

an underlying mechanism which predisposes arginine to be a

frequent target for disease mutations. Arginine is encoded by 6

distinct codons, 4 of which contain the CG dinucleotide (CGG,

CGT, CGC and CGA). DNA methylation often involves CpG

dinucleotides and due to spontaneous deamination 5-methylcyt-

osine is more prone to mutating into T. Upon a C-to-T transition,

the first three arginine codons would become codons for W (TGG)

or C (TGT, TGC), and the last one would create a stop codon

(TGA). The observed high frequency of RRW and RRC in DM

and low frequency in control datasets (Figure S5) argues in favor

of negative selection against these amino acid substitutions, which

frequently cause predicted disorder-to-order transitions in pro-

teins.

Mutations in IDRs are less accurately predicted
A recent study demonstrated that SIFT has a higher error rate

when predicting the impact of SNVs in solvent accessible and

disordered protein regions [14]. In order to rigorously evaluate this

statement, SIFT [10] and PolyPhen-2 [58] were applied to all

mutations in DM, Poly and NES datasets, and the prediction

accuracies on mutations in different order/disorder categories

were compared (Figure 5 and Table S9). Both SIFT and

PolyPhen-2 predict significantly less disease mutations as delete-

rious in IDRs than in ORs (SIFT ‘‘damaging’’ 64.3% vs 74.4%, x2

P = 4.19?10228; PolyPhen-2 ‘‘probably damaging’’ 60.8% vs

74.9%, P = 8.05?10274). SIFT and PolyPhen-2 both predict

significantly more polymorphisms to be benign in IDRs than in

ORs (SIFT ‘‘tolerated’’ 78.7% vs 73.5%, P = 1.86 ?10218;

PolyPhen-2 ‘‘benign’’ 55.5% vs 53.7%, P = 3.74 ?10264), and

likewise for neutral evolutionary substitutions (SIFT 91.6% vs

87.9%, P = 7.38?10245, PolyPhen-2 80.2% vs 75.6%,

P = 2.84?102215). IDR mutations seem to be more difficult to

handle for the PolyPhen-2 model in general, and in all three

datasets more IDR than OR mutations are returned as

‘‘unknown’’ (DM 4.4% vs 1.2%, Poly 7.5% vs 3.4%, NES 8.7%

vs 2.4%). Upon closer examination, we determined that among

DM mutations, the DRD transition category was the most

difficult to predict correctly for both predictors, while the DRO

category was most often correctly predicted as deleterious.

However, in the case of DRO mutations, higher sensitivity comes

at the expense of lower specificity, and significantly more

mutations from Poly and NES are predicted as deleterious in

DRO transitions than in any other category (Table S9). Similar

results were obtained by analyzing raw PolyPhen-2 and SIFT

scores (Figures S6 and S7). Notably, the DM dataset investigated

here overlaps with the predictors’ training sets, and the reported

accuracies are likely to be lower when applied to out-of-training set

examples. In summary, our findings underscore the need for

incorporating features of IDRs into predictive disease mutation

models.

Accelerated molecular dynamics simulations of p63
DRO mutation

We observed 670 mutations in UniProt predicted to cause

DRO transitions, and 590 mutations predicted to cause ORD

transitions (Tables S10 and S11). We note that the number of

such examples would be higher if extensively studied proteins with

an excessively large number of mutations (such as p53, androgen

receptor, etc.) were included in the analysis (Materials and
Methods and Figure S8). In addition to disease mutations

mapped to predicted disordered regions, we elsewhere summa-

rized DRO disease mutations found in the experimentally

ascertained disordered regions from the DisProt database [59].

Below, we show an example of a protein carrying predicted DRO

disease mutation (Figure 6).

Tumor protein p63 (TP63) is a transcription factor involved in

development and morphogenesis of epithelial tissues [60,61]. The

sequence, structure and domain organization of p63 are highly

similar to tumor suppressor protein p53, with the exception of two

additional domains at p63 C-terminus, which are alternatively

spliced in some p63 isoforms. More than 30 distinct missense

mutations have been identified in p63 and associated with several

malformation genetic syndromes such as ectrodactyly ectodermal

dysplasia-cleft syndrome 3 (EEC3, MIM: 604292), split hand/foot

malformation-4 (SHFM4, MIM: 605289), and nonsyndromic cleft

lip (NSCL, MIM: 129400). Most of the mutations that cause

EEC3 occur within the DNA-binding domain of p63 [62]. One of

these mutations, R243W, is predicted to cause a DRO transition,

shown in Figure 6A as a sharp drop in disorder score of the 235–

245 region (red dotted line) after R243 has been in silico mutated to

W. Since R243 is not directly involved in binding to DNA, the

mutations affecting this residue are predicted to destabilize the

protein as a result of hydrogen bond loss and overpacking [63].

DNA-binding domains of transcription factors tend to be

predicted as fully or partially disordered [64,65], and binding to

DNA typically induces a DRO transition [66]. In agreement with

these observations, only a single NMR structure of p63 DBD

without DNA (PBD: 2RMN) is available, while all X-ray structures

of p63 DBD found in PDB (PDB: 3US0, 3US1, 3US2, 3QYM and

3QYN) have been crystallized in complex with DNA. Residue

R243 is located in the modeled turn region of the NMR structure,

adjacent to a short a-helix. We investigated the effects of the

R243W mutation on p63 DBD conformation using an extensive

set of accelerated molecular dynamics (AMD) simulations [67,68]

on both the wild-type p63 (wt-p63) and its R243W mutant.

Vihinen flexibility scale [83]. In panels E and F, frequencies of top ten DRO (panel E) and ORD (panel F) mutations enriched and depleted in the DM
dataset are shown. * signify Fisher’s exact P-values of DM vs. Poly; + signify p-values of DM vs. NES. *** or +++ 2 P,0.001; ** or ++ 2 P between
0.001–0.01; * or + 2 P between 0.01–0.05.
doi:10.1371/journal.pcbi.1002709.g004

Disease Mutations in Disordered Regions

PLOS Computational Biology | www.ploscompbiol.org 7 October 2012 | Volume 8 | Issue 10 | e1002709



AMD is an efficient and versatile enhanced conformational

space sampling algorithm that has previously been successfully

applied to the study of the conformational behavior of IDPs

[69,70]. A comparative analysis of a series of AMD trajectories

for wt-p63 and its R243W mutant revealed no significant

differences in the global structural dynamics of the p63 DBD.

However, marked differences in the conformational behavior of

residues adjacent to R243W were observed (Figure 6B). The

introduction of R243W mutation caused a significant increase in

the free energy weighted w/y propensity of the a-helical/

frustrated a-helical conformation of these residues, resulting a-

helical population statistics of 70–90% and 30%–50% in the

R243W mutant for residues 236–240 and 241–243 respectively,

compared to 20%–60% and 20–25% in the wild-type system

Figure 5. Distribution of PolyPhen-2 (panels A, C, E) and SIFT (panels B, D, F) calls for mutations in DM, Poly and NES datasets. Both
predictors show a drop in sensitivity for disease mutations in IDR and DRD categories (A, B) and a drop in specificity for DRO mutations in Poly (C,
D) and NES (E, F).
doi:10.1371/journal.pcbi.1002709.g005
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(Table S12). The formation of an ostensibly exclusive (frustrated)

a-helical coil in this region in the presence of the R243W

mutation is fully consistent with the predicted DRO transition

(Figure 6A).

It is interesting to note that in both the experimental NMR

structure and the AMD simulations for wt-p63 the side-chain of

R243 forms a strong salt-bridge with E252. One may postulate

that in the wild-type system the strong electrostatic interaction

between R243 and E252 introduces tensile stress in the extended

loop region K232-R243, which exhibits conformational exchange

on slow time-scales between local extended b-sheet/PPII and a-

helical constructs. By contrast, the introduction of the R243W

mutation removes the tensile strain from the loop facilitating the

formation of a stable a-helix.

Figure 6. Disorder predictions and the effect of a R243W missense mutation in human protein p63. (A) PONDR VLXT disorder
predictions for wild type and mutant p63. R243W mutation causes drop in the disorder score of 235–245 region. (B) Differential free energy weighted
w/y propensity plots for residues 235–243 obtained from AMD simulations performed on the wild-type and R243W mutant p63 DBD systems. The red
dots represent those regions of the Ramachandran plot more heavily sampled by the mutant and the black dots represent those regions with greater
propensity in the wild-type system.
doi:10.1371/journal.pcbi.1002709.g006
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Discussion

The widely accepted structure-centric view of deleterious

mutations asserts that a disease may be caused by mutations

disrupting protein activity, stability, oligomerization and other

structure-based properties. Here, we further extend this concept

by introducing a disorder-centric view of disease mutations,

according to which a disease may arise due to a disruption of the

disorder-based protein properties [59]. We have demonstrated

that a substantial fraction of disease-associated muta-
tions are located within the intrinsically disordered
protein regions, and that disease mutations in IDRs
have a significant functional impact despite the fact that

IDRs lack fixed structure and have fewer evolutionary constraints

than ORs [32]. The analysis of mutations in IDRs shows that

disorder-to-order transition mutations may be especially relevant

to disease due to their enrichment compared to control datasets. In

addition, our analysis suggests that several types of disease

mutations may have particularly critical impact on disordered

structure.

There are many ways in which mutations in IDR may increase

disease risk or cause a disease. For example, DRO mutations have

a potential to alter interactions with DNA, RNA, proteins or

ligands. Both, our results and those of a recent study by Dan et al.

[71], which examined transitions between disorder and secondary

structure in proteins with solved 3D structures, converged on the

observation that disorder-to-order (i.e. disorder-to-secondary

structure in [71]) transitions are significantly enriched in DNA

binding proteins. In addition, mutations in IDR could influence

posttranslational modifications, assembly of macromolecular

complexes, as well as signaling and regulatory processes that

depend on disorder. Adding support to this hypothesis is an

observation that disease mutations often disrupt anchoring of

flexible loops of the catalytic domains in protein kinases, and that

mutated residues are frequently involved in substrate binding and

regulation [72]. This also suggests a potential downstream effect of

mutations in IDR via dysregulation of cellular pathways which

could lead to disease [59].

Our results show that across all three datasets, mutations in IDR

are more likely to cause a predicted DRO transition than

mutations in ORs are to cause a predicted ORD transition

(Table 2). This is in agreement with a recent study by Schaefer

et al. [73], which showed that disordered regions are more sensitive

to mutations than protein regions with defined secondary

structure, with a caveat that ‘‘order’’ and ‘‘helix or strand’’ cannot

be fully equated. Despite a significant enrichment of DRO

mutations in disease, the majority of disease mutations in IDR do

not result in a disorder-to-order transition (as defined in this paper)

but they nonetheless sufficiently disrupt the disordered conforma-

tion to affect disorder-mediated functions. It is likely however that

many other mutations that do not reach the disorder-to-order

transition threshold may still disrupt the structure and conse-

quently function of the disordered regions.

Our findings have wide implications for large genome

sequencing projects that aim to provide a better understanding

of human genetic variation and its relevance to complex diseases

[1]. Because the sheer volume of the observed variants precludes

systematic functional follow-up studies on each one individually,

newly identified SNVs are short-listed and prioritized using

predictors of the functional impact of SNVs, such as SIFT,

PolyPhen-2 and others [2]. The majority of the currently used

predictors are structure- and/or conservation-based, and therefore

less accurate on variants in unstructured and non-conserved

protein regions. Disorder predictions could be either integrated

into current approaches, or new approaches, which analyze the

features of mutations in ORs and IDRs separately, could be

developed. In addition, in this study we demonstrate that specific

types of mutations (such as RRW, RRC, etc.) account for almost

one half of all DRO transitions (Figure 4). This additional

information may be important to include as a training feature

when developing new predictors for the effects of DRO SNVs.

A broader issue raised by our results is that caution should be

exercised when interpreting the relationship between structure,

function and conservation. A study by Yue and Moult found

that human disease-relevant mutations in some cases could

correspond to the wild-type variants in the mouse [11].

Compensatory mutations [74] illustrate that function cannot

be fully equated with the ‘‘first order conservation’’, and that

sometimes co-evolution of amino acids constrained by protein

structure necessitates looking into the ‘‘second order conserva-

tion’’ between pairs of residues. Our results are consistent with

the fact that IDRs are less conserved at any individual position,

but rather show a conservation of disorder propensity within a

region [75], with DRO transition mutations – detrimental to

conservation of disorder – being particularly enriched in

disease.

Choosing an appropriate control for the analysis of disease

mutations is an issue which deserves close attention [76]. One of

our control datasets, polymorphisms from UniProt (Poly), is likely

to contain a fraction of as yet unannotated disease mutations,

because it was assembled by translating missense single nucleotide

variants (currently without any disease associations) into single

amino acid changes [76,77]. This is further supported by the

predictive result that between 20% [7] and 25% [11] of non-

synonymous SNPs are likely to be associated with diseases.

Nonetheless, Poly controls for an important previously identified

confounder: because disease missense mutations are translations of

a single nucleotide variation within a DNA codon, a genetically

appropriate control has to be analogously constrained by the

genetic code, that is, assembled from amino acid changes which

are translations of functionally neutral SNVs [57,76]. In the

protein space, another concern is that length distribution and

amino acid compositions of proteins from DM and Poly datasets

differ, which may influence their baseline biochemical properties,

including disorder content (Figure S1). In order to address this

potential confounder, the second control (NES) was generated

starting with the sequences of proteins from the DM dataset. The

downside of this approach is that the set of disease mutations spans

within-population differences, while changes in the orthologs span

larger, inter-species distances. In practice, this means that in DM

and Poly the mutation probability matrix is dominated by the

effects of the genetic code, while in DM and NES it is dominated

by effects of physico-chemical similarity between amino acids.

Nonetheless, variants fixed between species are likely to be non-

deleterious (even though about 9% of interspecies substitutions

have been estimated to be damaging [7]), and therefore they

provide a useful additional control that takes into account

sequence conservation. In the light of advantages and shortcom-

ings of different control datasets, it is reassuring to see that when

using either Poly or NES, protein disorder-related properties

(Tables 1 and 2) and WT-to-mutant amino acid changes

(Figure 4) are consistent and independent of the control dataset

used. In addition, the preponderance of annotated mutations

within OR might show some degree of ascertainment bias since

some disease mutations were annotated as ‘‘disease’’ because they

were mapped to protein structured domains. We hypothesize that

an unbiased sample would contain a higher proportion of disease

mutations that map to IDRs.
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In summary, our results refine the traditional structure-centric

view of disease mutations, and suggest new avenues for research in

the area of protein disorder. With the recent explosion of exome

and whole genome sequencing efforts, interpretation of the

identified variants will require highly accurate predictors for the

functional impact of SNVs in order to make reliable conclusions

about their health risks. Our results offer help in narrowing down

the gamut of disease mutations that dramatically influence protein

structure and disorder. We hope that it will also facilitate

predictions of the influence of mutations on protein function,

which is currently a formidable task. The importance of mutations

in disordered regions should not be overlooked in an attempt to

construct better predictors.

Materials and Methods

Datasets
A list of single amino acid substitutions annotated with the

keyword ‘‘disease’’ was extracted from the UniProt/SwissProt

database [77]. This manually curated catalog contains missense

mutations associated with both Mendelian and complex diseases,

but no nonsense nor frame shift mutations, and no products of

alternative splicing.

The initial set of mutations was filtered as follows: proteins that

carry disease mutations and have $40% pairwise sequence

identity were clustered using hierarchical clustering with single

linkage, and one representative protein was selected at random

from each cluster. We further removed four proteins with an

unusually high number of annotated disease mutations (Figure
S8A): tumor suppressor p53 (P04637), coagulation factor VIII

(P00451), androgen receptor (P10275), and Stargardt disease

protein (P78363). Taken together, these four proteins account for a

total of 12.4% of all disease mutations found in the non-redundant

set of proteins. All mutations from the removed proteins were

discarded.

We assembled two control datasets: (1) annotated single amino

acid polymorphisms from UniProt (Poly) [77] and (2) a set of

pseudo-mutations based on amino acid variation in mammalian

orthologous proteins (neutral evolutionary substitutions, NES).

The first control dataset (Poly) was filtered analogously to disease

mutations, and redundant proteins and titin (with unusually high

number of polymorphisms) were removed (Figure S8B).

The second control dataset (NES) (Figure S8C) was construct-

ed following the approach of Sunyaev et al. [78]. Proteins that

carry disease mutations which also passed our filtering criteria

were aligned by the use of multiple sequence alignment program

MUSCLE [79] against their InParanoid [80] orthologs from 10

mammalian species (P. troglodytes, P. pygmaeus abelii, M. musculus, M.

mulatta, C. familiaris, E. caballus, R. norvegicus, C. porcellus, B. taurus,

and M. domestica), using the BLOSUM85 matrix. The set of neutral

evolutionary substitutions (NES) was assembled from all single

amino acid differences in orthologous proteins that had $95%

sequence identity with the human disease protein. Finally, all

annotated disease mutations were filtered out from the NES

dataset. The numbers of proteins and mutations in the three

datasets are summarized in Table 1.

Disorder predictions
Protein disorder was predicted using VLXT [36], VSL2B [37]

and IUPRED [38]. Disorder predictions were carried out on full

length wild-type (WT) and mutated protein sequences, generated

by changing only one residue at a time. Disorder score ,0.5

signified predicted order and $0.5 signified predicted disorder.

We defined the effect of a mutation as a disorder-to-order (DRO)

transition if the prediction score for a residue to be mutated was

$0.5 in the WT protein, and ,0.5 after the mutation. Order-to-

disorder (ORD) transitions were analogously defined. The

enrichment/depletion trends for DRO and ORD transitions

are consistent across all three predictors (Tables S1 and S3).

As a second comparison of disorder predictors, we examined the

distributions of the difference between disorder prediction scores

on WT and mutated sequences, defined as Dps = ps(WT

residue)2ps(mutated). The three predictors have different ob-

served dynamic ranges for Dps: [20.91, 0.85] for VLXT, [20.34,

0.39] for VSL2B and [20.28, 0.27] for IUPRED, consistent with

the fact that VLXT is more sensitive to small changes in amino

acid sequence. Distribution of Dps is more platykurtic in DM

compared to Poly and NES for all three predictors (higher % of

disease-associated mutations in the tails), indicating that disease

mutations tend to cause stronger differences in prediction scores.

Secondary structure predictions
Secondary structure was predicted from sequence using

PHDsec [81]. We used only reliable predictions, defined as

having both a ‘‘from’’ and ‘‘to’’ secondary structure assignment

score $4. We note, however, that the trend was the same when all

secondary structure predictions were used without thresholding on

the reliability score.

a-MoRF predictions
a-MoRFs were predicted from sequence using a two stage

stacked prediction method [44]. The first stage identified potential

a-MoRF regions from PONDR VLXT [36] predictions by

scanning for short predicted ordered regions flanked by predicted

disordered regions. The second stage classified potential a-MoRF

regions as either a-MoRFs or non-a-MoRFs using a quadratic

discrimination model [44]. Further details of a-MoRF predictions

are provided in the Supplementary Text S1.

Functional characterization
Residues were functionally annotated using the UniProt/

SwissProt feature table (FT) at two levels of granularity, the FT

keywords only (level 1) and concatenations of the FT keyword and

description (level 2). Features marked as ‘‘Potential’’, ’’Probable’’

or ‘‘By similarity’’ were removed. The ‘‘Description’’ field was

normalized by removing prefixes such as ‘‘For’’, ‘‘Required for’’,

‘‘Sufficient for’’, ‘‘Essential for’’, ‘‘Essential to’’, ‘‘Important for’’,

‘‘Critical for’’, ‘‘Necessary for’’, ‘‘Involved in’’, ‘‘Mediates’’, etc.

Finally, all features that occurred ,5 times in DM were removed.

After this process, 22 level 1 and 782 level 2 features remained. We

removed all disease keywords from this analysis, since they would

be trivially enriched in the DM dataset.

Molecular dynamics simulations
Standard classical and accelerated molecular dynamics simula-

tions were performed on both wild-type and R243W p63 mutant

using an in-house modified version of the AMBER-10 simulation

suite [82]. The reader is referred to the Supplementary Information

(Supplementary Text S2) for a description of the accelerated

molecular dynamics method and computational details.

Supporting Information

Figure S1 Histograms of the distribution of proteins in DM and

Poly datasets with x% of residues predicted to be disordered by

VLXT. The lower mode and shorter right tail of the DM

distribution indicates that on average proteins carrying disease-

associated mutations (DM) are less disordered than proteins
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carrying polymorphisms (Poly) (mean6SD 32.7617.9% disorder

vs 35.3619.5%).

(TIF)

Figure S2 Summary of the effect of mutations in DM, Poly,

NES on predicted molecular recognition features (a-MoRFs).

Disease DRO transition mutations lead to a loss, while ORD

transition mutations lead to a gain of predicted MoRFs,

significantly more frequently than control mutations (marked with

an asterisk, and reproduced in Figure 2 of the main text).

(TIF)

Figure S3 Frequencies of mutated residues across all proteins (A,

B); in ordered regions (C, D), and in disordered regions (E, F). In

panel (A) frequencies of amino acids across whole proteins were

normalized by frequencies in human proteins from UniProt; (C)

frequencies in ORs normalized with frequencies from PDBS25

(sequences of proteins with solved crystal structures from PBD,

filtered at 25% pairwise sequence identity); and (E) frequencies in

IDR with frequencies in experimentally confirmed disordered

regions from the DisProt database, as described in (Vacic et al.,

2007).

(TIF)

Figure S4 Frequencies of residues mutated into (A, B) across all

proteins, (C, D) in ordered regions and in (E, F) disordered regions

only. Normalization was performed as in Figure S3 and (Vacic

et al., 2007).

(TIF)

Figure S5 Frequencies of mutations from (A,B) and into (C,D)

arginine in DM, Poly and NES mutation datasets. (A) and (C) were

normalized by the frequencies of amino acids from human

proteins in UniProt, as described in (Vacic et al., 2007).

(TIF)

Figure S6 Histogram of PolyPhen-2 scores for (A) disease

mutations shows drop in sensitivity for mutations in IDRs and

specifically for DRD mutations, while scores for (B) neutral

polymorphisms and (C) neutral evolutionary substitutions show a

drop in specificity for DRO mutations. High scores indicate

deleterious mutations.

(TIF)

Figure S7 Histogram of SIFT scores for (A) disease mutations

shows drop in sensitivity for mutations in IDRs and specifically for

DRD mutations, while scores for (B) neutral polymorphisms and

(C) neutral evolutionary substitutions show a drop in specificity for

DRO mutations. Scores#0.05 indicate damaging mutations.

(TIF)

Figure S8 Scatter plots of the number of mutations per protein

against the rank of the protein for (A) DM, (B) Poly and (C) NES.

Disease mutation (DM) plot (A) identifies four proteins which have

an unusually high number of annotated disease mutations: tumor

suppressor p53 (P04637), coagulation factor VIII (P00451),

androgen receptor (P10275), and Stargardt disease protein

(P78363). Taken together, these 4 proteins account for a total of

12.4% of all disease mutations, and were removed from subsequent

analysis. The protein with most mutations in plot (B) is titin

(Q8WZ42), the longest protein in the human proteome as annotated

in UniProt, which has been removed from the Poly dataset.

(TIF)

Table S1 Disease mutations have higher frequencies in ordered

regions independently of the choice of predictor (VLXT, VSL3B,

and IUPred).

(XLS)

Table S2 Comparison of mutation rates in amino acid

substitutions per residue (mean 6 standard deviation) in

disordered (IDR) and ordered (OR) regions in three studied

datasets, disease mutations (DM), polymorphisms (Poly) and

neutral evolutionary substitutions (NES). P-values were computed

using Students t test.

(XLS)

Table S3 Disorder-to-order transition mutations are significant-

ly enriched in DM independently of the choice of predictor.

Order-to-disorder transition mutations are significantly depleted in

disease when compared to NES but not when compared to Poly

(after multiple testing correction). P-values were computed using

Fisher’s exact test.

(XLS)

Table S4 PHD secondary structure predictions (E strand, H

helix, L loop) for disease mutations (DM), polymorphisms (Poly)

and neutral evolutionary substitutions (NES) show an enrichment

of predicted helices (H) and strands (E) in DM, and a

corresponding depletion of loops (L).

(XLS)

Table S5 Changes in PHD secondary structure predictions (E

strand, H helix, L loop) upon mutations in disease mutations

(DM), polymorphisms (Poly) and neutral evolutionary substitutions

(NES) dataset.

(XLS)

Table S6 Number of mutations in disease (DM), polymorphisms

(Poly) and neutral substitutions (NES) datasets mapped to human

instances of the eukaryotic linear motifs (ELM). Compared to

controls, IDR disease mutations are enriched in ELM regions.

DRO mutations in DM are significantly enriched in ELM regions

compared to NES.

(XLS)

Table S7 Fold difference for Swiss Prot FT Level 1 features

between DM and Poly (first two rows), and DM and NES (last

three rows) for DRO and ORD transitions. Only features with

Bonferroni-corrected P-values,0.05 in either DRO or ORD

were included.

(XLS)

Table S8 Fold difference for Swiss Prot FT Level 2 features

between DM and Poly (first five rows), and DM and NES (the

remaining rows) for DRO and ORD transitions. Since no

features in DM/Poly and only two features in DM/NES passed

the Bonferroni-corrected P-value cutoff, all features with uncor-

rected P-value,0.01 in either DRO or ORD were included.

Features in bold have significantly different fold difference

between disease mutations in DRO or ORD.

(XLS)

Table S9 PolyPhen-2 and SIFT calls for all mutations in DM,

Poly and NES show a drop in sensitivity for calling disease-

associated mutations in IDRs (bold font in row DM IDR) and a

drop in specificity for DRO (bold font in rows Poly DRO and

NES DRO).

(XLS)

Table S10 670 disease mutations from UniProt predicted to

result in a DRO transition.

(XLS)

Table S11 590 disease mutations from UniProt predicted to

result in a ORD transition.

(XLS)
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Table S12 Summary of the AMD simulations as secondary

structure propensities in DNA-binding domain of tumor protein

p63 in the wild-type p63 (Before mutation) and in the R243W

mutant (After mutation). ‘‘Difference’’ displays the differences

between the wildtype and the R243W mutant and demonstrates

than upon the mutation propensity towards a-helical conforma-

tion increases leading to a decrease in entropy of the sampled

populations for all but one residue (K242). Abbreviations are as

follows: b, b-sheet (2180,w,2100, y.120); ppII, poly-proline II

(2100,w,0, y.120); a, a-helix (2100,w,0, 275,y,225);

Frust. a, ‘‘frustrated’’ a-helix (2159,w,2100, 275,y,225);

Entropy, Shannon’s entropy of the residue propensities.

(XLS)

Text S1 Details of a-MoRF predictions.

(DOC)

Text S2 Details of accelerated molecular dynamics (AMD)

simulations carried out on the wild-type and R243W mutant of

p63 DNA-binding domain.

(DOC)
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