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Abstract. The intracellular sorting of EGF-receptor 
complexes (EGFoRC) has been studied in human 
epidermoid carcinoma A431 cells. Recycling of EGF 
was found to occur rapidly after internalization at 
37"C. The initial rate of EGF recycling was reduced at 
18°C. A significant pool of internalized EGF was in- 
capable of recycling at 18°C but began to recycle 
when cells were warmed to 37°C. The relative rate of 
EGF outflow at 370C from ceils exposed to an 18°C 
temperature block was slower (tla = 20 min) than the 
rate from cells not exposed to a temperature block (tv2 
= 5-7 min). These data suggest that there might be 

both short- and long-time cycles of EGF recycling in 
A431 cells. Examination of the intraceUular EGF-RC 
dissociation and dynamics of short- and long-time re- 
cycling indicated that EGF recycled as EGF-RC. 
Moreover, EGF receptors that were covalently labeled 
with a photoactivatable derivative of 125I-EGF recycled 
via the long-time pathway at a rate similar to that of 
t25I-EGF. Since EGF-RC degradation was also blocked 
at 18°C, we propose that sorting to the lysosomal and 
long-time recycling pathway may occur after a highly 
temperature-sensitive step, presumably in the late en- 
dosomes. 

M 
ANY serum proteins, hormones, growth factors, 
and viruses are carried into the cell by receptor- 
mediated endocytosis. Ligand-receptor com- 

plexes formed at the cell surface are internalized via coated 
pits and transported to the membrane system of the en- 
dosomal compat~auent. This compartment represents several 
types of tubular-vesicular organelles that differ in morphol- 
ogy (12, 15, 16, 21, 29), biochemical composition (31), phys- 
ical parameters (13, 23, 31), fusion capacity (13, 30), relative 
acidity (43), and subcellular localization (16, 19, 21, 29, 41). 
During traversal of the endosomal network, segregation 
(sorting) of ligands and receptors to different intracellular 
pathways can occur. Two major pathways exist for both 
ligand-occupied and free receptors: a "recycling" pathway 
that allows the internalized receptors to return back to the 
cell surface and possibly be involved in several rounds of en- 
docytosis; and a "degradative pathway," the entrance to which 
appears to be related to the inability of some receptors to es- 
cape endosomes during their transformation into mature 
lysosomes (for review see reference 41). Many details of the 
intracellular trafficking of recycling receptors, typified by 
those for asialoglycoprotein and transferrin, have been dem- 
onstrated (11, 18, 19, 35). However, the general mechanism 
of sorting to the lysosomal pathway, which is known to be 
used for instance by the growth factor receptors, remains 
poorly understood. 

EGF is internalized by a receptor-mediated mechanism in 
various receptor-bearing cells (for review see reference 6). 

Although the endocytic pathway for the EGF receptor and 
the transferrin receptor appears morphologically to be the 
same (1, 33), the final destination of the EGF receptor (as 
well as EGF itself) is thought to be mature lysosomes (2, 4, 
10, 14, 27). The half-life of the EGF receptor is reduced dra- 
matically when the internalization of receptors is induced by 
EGF (2, 17, 24, 36, 37). This rapid EGF-induced receptor 
degradation has been proposed to be dependent on the tyro- 
sine kinase activity of the EGF receptor (17). 

As a model system, we have studied EGF receptor endocy- 
tosis in human epidermoid carcinoma A431 cells, which ex- 
press an extraordinarily high level of EGF receptors. Many 
details of EGF endocytosis in these cells have been demon- 
strated by using several methodological approaches (1, 7, 14, 
20, 26, 27, 33, 34, 39). Although EGF-receptor complexes 
(EGF-RC) t have been reported to enter A431 cells via 
coated pits as well as by micropinocytosis (14, 20), no data 
indicate different intracellular processing of EGF-RC due to 
the different mechanisms of internalization (20, 27). Upon 
internalization the EGF-RC become distributed throughout 
the tubular cisternae and vesicular elements at the cell pe- 
riphery (27). This peripheral endosomal compartment ap- 
pears to be connected by carrier vesicles or an endosomal 

1. Abbreviations used in this paper: ANBS-125I-EGF, photoactivatable 
deritive of 125I-EGF; anti-EGFR, antibody specific to the EGF-receptor; 
EGF-RC, EGF-receptor complexes; SAB, sodium acetate buffer; WM, 
working medium. 
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network with the pericentriolar endosomal complex, a re- 
gion having a high concentration of radial incoming microtu- 
bules and different tubular-vesicular membrane organelles 
(27, 33, 39). The rate of delivery of EGF receptors to the 
degradative pathway appears to be relatively slow in A431 
cells, since only a small proportion of EGF and the EGF 
receptors can be observed in lysosome-like compartments 
after 1 h of internalization (23, 27, 39). 

In this report we demonstrate that EGF-RC can recycle in 
A431 cells. We propose that this recycling proceeds via two 
pathways that differ in relative rate, temperature sensitivity, 
and subcellular occurrence. 

Materials and Methods 

Mouse EGF was purified on a Mono Q HR5/5 column (FPLC, Pharmacia 
Fine Chemicals, Piscataway, NJ) and iodinated with Iodo-Gen (Serva Fine 
Biochemicals Inc., Garden City Park, NJ), according to Burgess et al. (5). 
The specific activity of I~I-EGF was "o50,000 cprrdng. Rabbit anti-EGF 
receptor serum (anti-EGFR) was a gift from Dr. Graham Carpenter (Van- 
derbilt University, Nashville, TN). Formalin-fixed Staphylococcus aureus 
cells (Pansorbin) were obtained from Caibiochem-Behring Corp. (San 
Diego, CA). Reagents for chromatography and electrophoresis were pur- 
chased from Pharmacia Fine Chemicals. Other chemicals were obtained 
from Sigma Chemical Co. (St. Louis, MO), Fluka AG (Buchs, Switzerland) 
or Serva Fine Biochemicals Inc. 

Photoactivatable Derivative of uq-EGF 
Photoactivatable 125I-EGF (ANBS-125I-EGF) was freshly prepared before 
each experiment. 1 t~g of 125I-EGF in 200 #1 of 0.1 M sodium phosphate 
buffer (pH 7.6) was mixed with 15 #l of 0.2% N-(5-azido-2-nitrobenzoyl- 
oxy)-succinimide ester (Sigma Chemical Co.) in DMSO and held at 4°C 
overnight. The reaction was stopped by the addition of 30 #1 of 100 mM 
lysine. All steps of the procedure were carried out under weak red light. 

Cell Culture 
Human epidermoid carcinoma A431 cells were obtained from Cell Culture 
Collection (Institute of Cytology, Leningrad, USSR) and maintained in 
basal Eagle's medium supplemented with 10% calf serum, as previously de- 
scribed (33). 

u~I-EGF-CeU Interaction Experiments 
The cells were plated on 35-ram-tissue culture dishes or 24-well plates and 
used 2-3 d after plating, in a confluent state. A working medium (WM), 
containing DME, 20 mM Hepes (pH 7.3), and 0.1% BSA, was used in most 
experiments. The cells were rinsed with cold WM and incubated with 
20-40 ng/ml of t25I-EGF in WM at 2"C for 1 h, followed by extensive 
washing of the cells to remove unbound ligand. The cells were incubated 
for 5 or 15 min in WM at 370C to allow endocytosis of the ligand, and en- 
docytosis was stopped by rinsing the cells with ice cold WM. The cells were 
then treated with 0.2 M sodium acetate buffer (pH 4.5) containing 0.5 M 
NaCI (hereafter referred to as SAB) at 2*C for 2 and 0.5 min, successively. 
The remaining SAB was then washed away by three rapid rinses with cold 
WM. Such mild acid/salt treatment removes "o90% of the surface-bound 
EGF from A431 cells labeled with 125I-EGF at 2°C. A subsequent rinse 
with 0.2 M acetic acid (pH 2.8), containing 0.5 M NaCI, or with SAB at 
pH 4.5 for 6 min removed not more than an additional 3-5% of the label. 
Cells subjected to the above protocol, including SAB treatment, are referred 
to as "t251-EGF-loaded cells," and were used as the starting point in most 
experiments. These cells have a minimal amount of 125I-EGF-RC on the 
surface and a relatively large pool of internalized t2SI-EGF-RC (34). The 
viability of the cells was evaluated by staining with a mixture of acridine 
orange and ethydium bromide and was '°93-95 % before and after SAB 
treatment. 

The 1251-EGF-loaded cells were chased in WM containing 250 ng/ml of 
unlabeled EGF at 2, 18, or 37"C for the times indicated in each experiment. 
At the end of each chase time, the medium was collected and used for deter- 
mining the amount of intact 125I-EGF and low molecular weight products 

of its degradation by the use of TCA precipitation, as described previously 
(33). The surface-bound 125I-EGF was extracted by SAB treatment for 6 
min. Finally, the ceils were lysed in 1 N NaOH to determine the intracellu- 
lar 125I-EGF. 

In some experiments the cells treated for 6 min with SAB were incubated 
in WM containing 0.5% Brij-58 (for 10 min at room temperature before 
being lysed in NaOH) to extract free intracellular 125I-EGE This mild de- 
tergent treatment has been used previously (33) to distinguish between in- 
tracellular, free (detergent-extracted), and receptor-bound (detergent-re- 
sistant) labeled ligand. 

The nonspeciflc binding of t25I-EGF routinely determined in the pres- 
ence of 500-fold excess of unlabeled EGF was "ol-2%. 

Covalent Cross-Linking of EGF-RC 
Cells were loaded with 40 ng/ml of ANBS-125I-EGE as described above 
for z2SI-EGE and then incubated in WM containing 250 ngtml of unla- 
beled EGF for 3 h at 18°C. The medium was replaced with fresh WM con- 
taining unlabeled EGE and the cells were irradiated by using an UV lamp 
equipped with a 340-nm glass filter at 2°C for 10 rain. All procedure steps 
before irradiation were carried out under weak red light. 

The cells containing covalently linked t25I-EGF-RC were then incubated 
in fresh WM with unlabeled EGF for a second chase at 37°C. At the end 
of each chase time point, the medium was collected and the cells were 
treated with SAB for 6 min,. as described for t25I-EGF binding experi- 
ments. 

To separate surface from intraceUular covalently linked 12SI-EGF-RC, 
the ceils were incubated for 1 h in ice cold WM containing anti-EGFR 
diluted to a saturating concentration (1:50), as described by Soderquist and 
Carpenter (32). Then the cells were washed with PBS and solubilized in 
RIPA buffer (1% Nonidet-40, 1% deoxycholate, 50 mM Tris-HC, pH 7.5, 
150 mM NaCI, 1 mM EDTA, 5 mM sodium o~lhovanadate, 1 mM PMSF, 
0.02% sodium azide) at 2°C for 15 min. An aliquot of the cell lysate, con- 
taining total cell-associated ~2SI-EGF-RC, was saved, and the remaining ly- 
sate was immediately mixed with 20 tA of Pansorbin to precipitate the sur- 
face receptors recognized by anti-EGFR. After 30 min of shaking Pansorbin 
was pelleted in an Eppendorf centrifuge, an aliquot of supernatant (contain- 
ing intracellular receptors not available to the antibody) was saved, and the 
pellet was washed four times with RIPA buffer and boiled in 40 #1 of the 
sample buffer (25) for 10 rain. The aliquots of lysate, supernatant, and im- 
munoprecipitate were processed by SDS-PAGE (25). The gel was subjected 
to autoradiography at -70"C, and the 175- and 155-kD bands correspond- 
ing to the covalently linked EGF-RC were sliced from the dried gel and 
counted on a V-counter. 

In some experiments anti-EGFR was included in the chase medium. In 
these experiments, ceils were solubilized at the end of the chase, and 20 #1 
of Paosorbin was added to the cell lysate to precipitate any J251-EGF-RC 
exposed to the antibody during the chase. 

To determine the efficiency of cross-linking, two experimental proce- 
dures have been used. In one, cells labeled with ANBS-]25I-EGF at 2°C 
were either irradiated or kept in the dark. Surface-bound but not covalently 
linked ANBS-t25I-EGF was then removed by treatment with SAB for 6 
min. The efficiency of cross-linking at the cell surface was "o12-16%, as 
determined by the decrease in the amount of ANBS-125I-EGF removed by 
SAB from irradiated cells. 

In the other procedure, ceils loaded with ANBS-Z25I-EGF and exposed 
to 18°C, as described before, were not irradiated, but were solubilized in 
hot sample buffer in the dark before being processed for gel electrophoresis. 
Based on the decrease in the amount of free ANBS-t25I-EGF (that mi- 
grated with the front in 7.5 % gels) from irradiated cells in comparison with 
that from nonirradiated cells, the cross-linking efficiency was 14-16%. 

The protein content in the cell lysates was determined as described previ- 
ously (23). 

Results 

To study the dynamics of ~25I-EGF recycling and degrada- 
tion, ~2q-EGF-loaded cells (prepared as described in Ma- 
terials and Methods) have been used as an experimental 
model. After ~25I-EGF loading, the cells were incubated in 
the presence of excess unlabeled EGF (250 ng/ml) according 
to the different experimental protocols outlined in Table I. 
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Table I. Experimental Protocols Used for 125I-EGF*-Cell Interaction Experiments 

Protocol ~2~I-EGF cell- ~2~I-EGF cell- Chases in the presence of 
No. binding conditions loading conditions~: excess unlabeled EGF 

1 1 h at  2 ° C  15 min  at  3 7 ° C / S A B  

2 1 h at 2 ° C  15 min  at 3 7 ° C / S A B  

3 1 h at 2°C 15 min at 37°C/SAB 
4 1 h at 2°C 15 min at 37°C/SAB 
5 1 h at 2°C 5 min at 37°C/SAB 
6 1 h at 2°C SAB 

Chase  at  3 7 ° C  

3-h chase at 37°C/2nd chase at 37°C 
Chase at 180C 
3-h chase at 18°C§/2nd chase at 37°C 
1-h chase at 2°C/2nd chase at 37°C 
1-h chase at 2°CII/2nd chase at 37°C 

* These protocols have also been used in experiments with photoactivatable ~zSI-EGF. 
~: The cel ls  loaded at 37°C and treated with SAB are referred to as "~251-EGF-loaded" cells. 
§ These cells are referred to as "18°C-exposed, ~2~I-EGF-Ioaded" cells. 
II These cells are referred to as "unloaded" cells. 

IdenU'fication of Two Pathways 
for uSI-EGF Recycling 

In the first set of experiments, ~25I-EGF was allowed to in- 
ternalize for 15 min at 37°C after labeling (protocol 1-4, 
Table I). Under these conditions ~40-50% (100-150,000 
molecules/cell) of initially surface-bound ~25I-EGF was in- 
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Figure 1. t2SI-EGF recycling and degradation in the presence of 
unlabeled EGF. A431 cells were loaded (as described in'Materials 
and Methods) with 20 ng/ml ~25I-EGF as in protocols 1--4 (Table 
I). SAB treatment removed 1.69 ng t2SI-EGF/106 cells whereas 
1.73 ng 125I-EGF/10~ cells were internalized. Ceils were chased 
in the presence of excess unlabeled EGF at 37°C (closed symbols) 
or 180C (open symbols) according to protocols [ O r 3, respective- 
ly. After a 3-h incubation, fresh medium was applied (arrow) and 
the cells were incubated for a second chase time at 37*C (pro- 
tocols 2 or 4). At various time points, the medium (A) was assayed 
for intact tzSI-EGF (o,e) and low molecular weight products of 
its degradation (t3,1), and the cells (B) were assayed for the 
surface-bound ( '~',~) and intracellular 125I-EGF (A,A). Each 
data point was averaged from three values differing by <5 %. 

ternalized. After mild SAB treatment to remove remaining 
~25I-EGF on the surface, these 125I-EGF-loaded cells were 
incubated for a chase time at 37°C (protocol 1) or 18°C (pro- 
tocol 3) in the presence of unlabeled EGE At 37°C rapid ac- 
cumulation of t ' I -EGF into the medium (Fig. 1 A, o) and 
a corresponding decrease of the amount of intracellular t2sI- 
EGF (Fig. 1 B, *) was observed. The high rate of ligand 
outflow (~1.3-1.5 x 1@ molecules/cell per min in different 
experiments) measured during the first 20-40 min was fol- 
lowed by a slower exit during the next 2 h of the chase. The 
amount of free L25I-EGF in the medium reached a maximal 
level after the 3-h continuous chase and did not increase with 
further incubation. I f  the medium was replaced with fresh 
medium after the 3-h time point (protocol 2), an additional 
small accumulation of labeled ligand in the medium oc- 
curred during the second chase at 37°C (Fig. 1 A, o). How- 
ever, this accumulation probably corresponds to dissociation 
of 12~I-EGF from the cell surface (Fig. 1 B, , )  rather than 
an additional outflow of internalized ligand (Fig. 1 B, A) 
due to recycling. 

I f  the chase of ~25I-EGF-loaded cells was performed at 
18°C (protocol 3), the rate of accumulation of free ~25I- 
EGF in the medium was three times lower than at 37°C and 
became negligible after 2-3 h of continuous incubation (Fig. 
1 A, o). The total amount of J25I-EGF recycled to the 
medium during 3 h at 18°C was half that at 37°C. However, 
when the cells exposed at 18°C for 3 h (referred to as "18°C - 
exposed, t2SI-EGF-loaded cells") were chased a second 
time in fresh medium containing unlabeled EGF at 37°C 
(protocol 4), an additional outflow of intracellular t25I-EGF 
was measured during the second chase (Fig. 1 A, o). The 
total amount of 125I-EGF leaving the cells during the 3-h 
chase at 18°C and the second chase at 37°C was similar to 
the amount exiting l"I-EGF-loaded cells originally chased 
at 37°C for 3 h (Fig. 1 A, o). These data suggest the existence 
of a temperature-sensitive pool of internalized Iz~I-EGF in- 
capable of recycling at 18°C but able to be recycled at 37°C. 

When the 18°C-exposed, lzSI-EGF-loaded ceils were in- 
cubated in the presence of unlabeled EGF at 37°C for a sec- 
ond chase period (Fig. 2 A, o), free ~2SI-EGF accumulated 
in the medium with an initial linear rate of outflow of ,u700 
t25I-EGF molecules/cell per min. The accumulation was 
90% complete after 70-90 min of continuous incubation at 
37°C. The half-time for ~zSI-EGF outflow from the 180C - 
exposed, t2SI-EGF-loaded cells was measured in several ex- 
periments and was found to be ,x,20 rain. 

The degradation of internalized ~2~I-EGF was blocked at 
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Figure 2. Long-time recycling of ~25I-EGF. Cells were loaded 
with t25I-EGF as in Fig. 1. 1.23 ng 125I-EGF/10e cells were re- 
moved by SAB and 1.08 ng t25I-EGF/106 cells were internalized. 
t25I-EGF-loaded cells were chased with unlabeled EGF for 3 h at 
18"C and were incubated in fresh medium for a second chase time 
at 37°C (protocol 4, Table I). At various times during the second 
chase the amount of intact t25I-EGF ( . )  and its degradation 
products (0) in the medium (A) as well as the surface-bound (a) 
and intracellular ~25I-EGF (D) in the ceils (B) were determined. 
The amount of free intracellular ~25I-EGF (•), expressed as a 
percent of total intracellular ~25I-EGF, was determined by using 
the Brij-extraction procedure described in Materials and Methods. 
The data points are averaged from three values differing by <5 %. 

18°C (Fig. 1 A, n) but was initiated after the cells were 
warmed to 370C (Fig. 2 A, o) during the second chase. The 
rate of degradation was found to be relatively slow, since 
only ,x,80% of the ~25I-EGF incapable of recycling:was 
degraded even after a 7-h chase at 37°C in the presence of 
excess unlabeled EGF (data not shown). 

Taken together, the data presented in Figs. 1 and 2 allow 
us to propose that ,~25-30% of the total internalized 1251- 
EGF recycles in A431 cells via both a slower ("long-time") 
pathway strongly inhibited at 18"C and a rapid ("short-timeD 
pathway partially inhibited at this temperature. The remain- 
ing 40-50% of internalized 125I-EGF fails to be recycled 
and undergoes gradual degradation. This proportion was 
found to be similar when the cells were treated as in protocol 
4 with anywhere from 5 to 200 ng/ml of ~25I-EGF. 

Examination of Internalized ' È I - E G F - R C  Dissociation 
during Long-Time Recycling 
In previous studies (34) no significant dissociation of mtra- 
cellular EGF-RC was observed during rapid recycling of 
EGF in EGF-loaded cells. In these studies, we have used the 

Brij-58 treatment procedure described in Materials and 
Methods to determine how much 125I-EGF dissociates from 
internalized receptors under conditions in which long-time 
recycling is observed (during a 37°C chase of 18°C-exposed, 
12SI-EGF-loaded cells). As seen in Fig. 2 B (A) the amount 
of Brij-extractable '2SI-EGF was between 10 and 15% of to- 
tal intracellular ~25I-EGF after an 80-rain chase at 37°C, by 
which time >90% of the ~2SI-EGF capable of recycling has 
escaped the cells (Fig. 2 A, o). The dissociation reached a 
maximal level of 50-60% after 4 h of chase at 37°C (data 
not shown). In control experiments ,~7-10% of bound z25I- 
EGF was released from the surface of ceils labeled with 
125I-EGF at 2°C and then incubated at room temperature for 
10 rain. Approximately the same amount of ligand might be 
expected to dissociate from intracellular receptors during 
the Brij treatment. This suggests that at least 90-95% of in- 
ternalized ~25I-EGF-RC do not dissociate during long-time 
recycling in 18°C-exposed, ~2~I-EGF-loaded cells. 

Comparison of Long- and Short-Time Recycling 
of USI-EGF 
If L25I-EGF recycles as ~25I-EGF-RC, the amount of surface 
~25I-EGF present during the 37°C chase of ~25I-EGF-loaded 
cells should be dependent on the difference between the rates 
of J25I-EGF-RC outflow and 125I-EGF dissociation from cell 
surface receptors, since rebinding and reinternalization of 
'25I-EGF is inhibited by an excess of unlabeled EGF. There- 
fore, in the next set of experiments the dynamics of long- and 
short-time recycling of ~25I-EGF and of dissociation of '2sI- 
EGF from cell surface receptors were examined in more 
detail. 

To study the rapid recycling pathway, cells were treated as 
in protocol 5. '25I-EGF was bound to the cells for 1 h at 
2°C, and the cells were allowed to internalize 125I-EGF for 
5 rather than 15 min at 37°C before remaining surface-bound 
t25I-EGF was removed with SAB. The initial rate of 12sI- 
EGF recycling in the cells loaded for 5 min should cor- 
respond to the rate of short-time recycling, since only a mini- 
real contribution of long-time recycling (tv2 =20 min) 
would be expected in the early time point of the time-scale 
of endocytosis. 

The t25I-EGF-loaded cells were further incubated with 
unlabeled EGF for 1 h at 2°C to create an excess of unlabeled 
EGF-RC at the cell surface. As seen in Fig. 3, when the cells 
were then subjected to a second chase with unlabeled EGF 
at 37°C, both a rapid increase in the amount of surface- 
bound 125I-EGF (Fig. 3 A, o) and an accumulation of free 
'25I-EGF in the medium (Fig. 3 B, . )  were observed. The 
same dynamics of rapid reappearance of EGF on the cell sur- 
face was seen if cells were allowed to internalize ligand at 
37°C for anywhere from 2 to 15 rain (data not shown). 

To examine long-time recycling, cells were t25I-EGF 
loaded and exposed to 180C as in protocol 4. When these 
cells were chased at 37°C a second time, rapid accumulation 
of ~25I-EGF in the medium was observed (Fig. 3 B, A), but 
the amount of surface-bound Iz~I-EGF showed a small ini- 
tial decrease that then leveled off (Fig. 3 A, z~). 

To study specifically the rate of dissociation of t25I-EGF 
from surface receptors, cells with the same, minimal surface 
pool of ~25I-EGF as in nSI-EGF-loaded cells but with a 
negligible intracellular pool of ~2SI-EGF were ne~ed.  To 
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Figure 3. Dynamics of short- and long-time recycling and cell sur- 
face dissociation of t~5I-EGF. Cells were labeled with 40 ng/ml 
of ~2~I-EGF and then treated as outlined in Table I: long-time 
recycling (zx,~) as in protocol 4, short-time recycling (o,~) as in 
protocol 5, and dissociation (u,,)  as in protocol 6. During the 
procedure 1.79, 1.26, or 0.:~5 ng/106 cells of ~2~I-EGF remained 
associated with cells after removal of 1.58, 2.25, or 2.90 ng/10 ~ 
cells of ~5I-EGF from the cell surface when cells were treated 
according to protocols 4, 5, or 6, respectively. At various times 
during the second chase at 37°C, the amount of surface-bound (A) 
and free ~5I-EGF in the medium (B) was determined. Data 
represent the average value from two parallel dishes. 

accomplish this, cells were labeled with ~25I-EGF at 2°C, 
treated with SAB without first being allowed to internalize 
the labeled ligand, and then chased with an excess of unla- 
beled EGF at 2°C for 1 h (protocol 6). When these "un- 
loaded" cells were incubated for a second chase time at 37°C 
in fresh medium containing unlabeled EGF, a rapid release 
of ~2SI-EGF from surface receptors to the medium (Fig. 3 
B, . ) ,  and a corresponding decrease in the amount of 
surface-bound ~25I-EGF (Fig, 3 A, u) were observed. The 
initial rate of ~25I-EGF release from surface receptors was 
similar whether the cells were t2SI-EGF loaded; 18°C - 
exposed, t2~I-EGF-loaded; or unloaded (Fig. 3 B). 

The initial increase in tige amount of surface-bound ~25I- 
EGF during short-time recycling indicates both that the bulk 
of ~25I-EGF recycles as ~25I-EGF-RC and that the initial rate 
of outflow of ~2SI-EGF-RC is higher than the rate of ~25I- 
EGF dissociation from the cell surface. The rate of long-time 
recycling appears to be similar or slightly slower than the 
rate of dissociation, since dissociation was compensated for 
by the insertion of recycled t25I-EGF-RC into the cell sur- 
face (Fig. 3 A). Furthermore, the decrease in the surface pool 

of ~25I-EGF in "unloaded" ceils suggests that maintenance of 
a minimal level of surface 125I-EGF during long-time recy- 
cling requires an intracellular pool of ~25I-EGF-RC. 

The Long-Time Recycling of Covalently Linked 
~23I-EGF-RC 
The absence of a significant pool of free intracellular ~25I- 
EGF during long-time recycling (Fig. 2 B) and analysis of the 
kinetics of long-time recycling (Fig. 3) suggest that this recy- 
cling can occur as recycling of ~25I-EGF-RC. However, it is 
not possible to estimate from the data in Fig. 3 how much 
~2~I-EGF is recycled as ~25I-EGF-RC. Therefore, to directly 
examine the long-time recycling of EGF-RC, EGF receptors 
were covalently labeled with ANBSJ25I-EGE 

Cells were loaded with 40 ng/ml of ANBS-125I-EGF and 
chased with unlabeled EGF for 3 h at 18°C according to pro- 
tocol 4. UV irradiation of the cells after the 18°C chase 
resulted in covalent linking of ANBS-~25I-EGF to receptors 
with an efficiency of 14-16% (see Materials and Methods). 

After irradiation 18°C-exposed, ANBS-225I-EGF-loaded 
cells were incubated for a second chase time at 37°C in the 
presence of unlabeled EGF (250 ng/ml). At various times 
during the 37°C chase, covalently linked t25I-EGF-RC pres- 
ent on the cell surface were separated from intracellular 
complexes by use of the cell surface immunoprecipitation 
method described in Materials and Methods. Besides the ex- 
pected 175-kD EGF-RC band, a minor band of 155 kD, 
which represents the partially degraded EGF-RC, was found 
in immunoprecipitates from these cells. Its appearance, 
however, is dependent upon the time involved in the immu- 
noprecipitation procedure, since only the 175-kD band was 
seen if cells were solubilized in hot sample buffer and sub- 
jected immediately to electrophoresis without immunopre- 
cipitation. 

As seen in Fig. 4 the intensity of the EGF-RC band immu- 
noprecipitated from the cell surface was minimal in 18°C - 
exposed cells (lane A) and increased during the chase incuba- 
tion at 370C (lanes B-E). Intracellular receptors could be 
recovered from the supernatant of the cell surface immuno- 
precipitation. As expected, the intensity of the band corre- 
sponding to intracellular EGF-RC decreased with chase time 
(lanes A'-E'). 

In Fig. 5 the amount of covalently linked J25I-EGF-RC 
present at the cell surface (in cell surface immunoprecipi- 
tates) was expressed as a percent o f  the total amount of 
covalently linked ~25I-EGF-RC in the c~lls (in whole cell 
lysates). The redistribution of t2SI-EGF-RC from the intra- 
cellular pool to the surface pool during the chase at 37°C in- 
dicates that covalently linked EGF-RC were recycled by the 
long-time pathway. 

In the experiments presented in Figs. 4 and 5, the total 
amount of covalently linked ~z~I-EGF-RC (normalized to 
the protein content in each dish) decreased, by 14% (SEM = 
6.9%) during a 1-h chase at 37°C. Together with results 
presented in Fig. 2 A, this suggests a similar rate of degrada- 
tion for ~25I-EGF in 18°C-exposed cells whether ~25I-EGF,is 
covalently linked to receptors or not. 

The rates of recycling and degradation of ANBS-~I - 
EGF not covalently linked to receptors were found to be 
similar to the rates obtained for ~:5I-EGF (data not shown). 
In Fig. 5 the apparent rate of ligand recycling is expressed 
as a percentage of the sum of ~25I-EGF found in the medium 
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Figure 4. Long-time recycling of 
covalently linked ~25I-EGF-RC. 
Cells were labeled with 40 ng/ml 
of ANBSJ25I-EGF and treated 
according to protocol 4 (Table I) 
before being UV irradiated. 1.89 
and 0.90 ng 125I-EGF/106 cells 
were removed from cells during 
SAB treatment and the first 
chase, respectively, whereas 1.01 
ng ~25I-EGF/106 cells remained 
intracellular. The second chase 
was for 0 (lanes A and A'), 20 
(lanes B and B'), 30 (lanes C and 
C'), 45 (lanes D and D'), and 70 
(lanes E and E') min at 37°C. At 
each of these time points surface 
~25I-EGF-RC were immunopre- 
cipitated as described in Mate- 
rials and Methods and subjected 
to SDS-PAGE. Lanes A-E are 
immunoprecipitates of cell sur- 
face 12~I-EGF-RC, while lanes 
A'-E' are supernatants of these 
immunoprecipitates, containing 
intracellular 125I-EGF-RC. 

and on the cell surface to the total 125I-EGF associated with 
the cells and the medium. As seen in Fig. 5 the rate of reap- 
pearance of covalently linked ' ' I -EGF-RC on the cell sur- 
face is slightly lower than the rate of 'z~I-EGF recycling. 

tT} ~ 4 0 .  

~ 3 0 .  

20- 
LU 

E 
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Figure 5. Time course of long-time recycling of nSI-EGF and 
covalently linked 12SI-EGF-RC. The experiments on recycling of 
covalently linked EGF-RC were carried out as described in the leg- 
end of Fig. 4. The radioactivity from surface t2~I-EGF-RC (from 
cell surface immunoprecipitates) and total cell-associated 1251- 
EGF-RC (from cell surface immunoprecipitates) was estimated by 
cutting out the appropriate bands from the gels and counting them 
in a 3' counter. The recycling of covalently linked 12~I-EGF-RC (0) 
is expressed as a ratio of the surface to the total amount of the cova- 
lently linked '2~I-EGF-RC associated with cells at each time point 
during the second chase. The data are averaged from three separate 
experiments similar to those presented in Fig. 4. The recycling of 
noncovalently bound nSI-EGF from 18°C-exposed, 125I-EGF- 
loaded cells (e) is expressed as a ratio of the sum of medium and 
surface-bound, nSI-EGF relative to the total amount of 12SI-EGF 
associated with cells and medium at each time point. The data were 
averaged from two experiments carried out according to protocol 
4 (Table I), as described in the legend of Fig. 2. 

This might be due to some reinternalization of the recycled, 
covalently linked '25I-EGF-RC during the second chase at 
37°C, whereas the probability of reinternalization of the 
recycled, uncoupled '25I-EGF (that can dissociate from the 
cell surface receptors) is much lower. 

To demonstrate that covalently linked EGF-RC can, in the 
presence of excess unlabeled EGE be reinternalized during 
the 37°C chase of 18°C-exposed cells, anti-EGFR was in- 
cluded in the chase medium, so that any recycled EGF-RC 
appearing on the cell surface would be bound by the anti- 
EGFR before reinternalization. As seen in Fig. 6, lane C', 
more '25I-EGF-RC was recovered in the immunoprecipi- 
tates when anti-EGFR was included in the chase medium 
than when anti-EGFR was added to the cells after the chase 
(lane B') .  This result indicates that reinternalization of the 
recycled covalently linked complexes does take place. 

The approximate amount of the covalently linked '251- 
EGF-RC capable of internalization during a 1-h chase at 
37°C was determined in cells treated as in protocol 6 (Table 
I). The cells were first incubated with AN-BS-'25I-EGF at 
2°C, treated with SAB, chased with unlabeled EGF (250 
ng/ml) at 2°C for an additional hour, and irradiated to couple 
the ligand to receptors. The intracellular pool of covalently 
linked '2q-EGF-RC in these "unloaded" cells was negligi- 
ble, whereas the surface pool was similar to that in 18°C - 
exposed, t2q-EGF-loaded cells (Fig. 6 B, A and A'). 

The unloaded cells were further incubated for a second 
chase with unlabeled EGF at 370C in the presence or ab- 
sence of anti-EGFR. The amount of coCalently linked '251- 
EGF-RC present on the cell surface of thesecells decreased 
more than two times after a 1-h chase (lane B), whereas a 
slight increase in the amount of covalently linked complexes 
is seen when complexes present on the cell surface anytime 
during the chase were recovered by including the antibody 
in the chase medium (lane C). Similarly, approximately half 
of the 'z~I-EGF-RC present at the cell surface during a 1-h 
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Figure 6. Long-time recycling and reinternalization of covalently 
linked t2H-EGF-RC. "Unloaded" cells (lanes A-C) were obtained 
according to protocol 6 (Table I). Briefly, cells were labeled with 
40 ng/ml of ANBS-~25I-EGF at 2°C, treated with SAB, and chased 
with unlabeled EGF at 2°C for 1 h before UV irradiation 2.97 
ng/106 cells of ligand were removed from the surface whereas 0.26 
rig/106 cells were still associated with the cells. 18°C-exposed, 
ANBSJ25I-EGF-loaded cells (lanes A'-C') were obtained and ir- 
radiated as described in the legend of Fig. 4. During the procedure 
1.75 ng/106 cells of the label were removed by SAB whereas 1.74 
ng/106 cells were internalized. Both unloaded and 18*C-exposed 
cells were incubated for a second, 1-h chase at 37°C in fresh 
medium containing unlabeled EGF alone. The surface covalently 
linked ~25I-EGF-RC were immunoprecipitated before (lanes A and 
A') and after the chase at 37°C (lanes B and B'). Covalently linked 
~25I-EGF-RC exposed on the cell surface at anytime during the 
chase were identified by antiserum present throughout the chase 
(lanes C and C'). (A) Autoradiograms of the immunoprecipitates 
of the 125I-EGF-RC. The gels were exposed with x-ray films at 
-70°C for 7 d (lanes A-C) or 2 d (lanes A'-C') (B) The corre- 
sponding amount of radioactivity recovered from the imunopecipi- 
tates of t25I-EGF-RC at each time point. The total amount of cel- 
lular covalently linked ~25-I-EGF-RC per dish did not change 
significantly during the chase in unloaded ceils and decreased by 
5-7% after the chase in 18°C-exposed, t25I-EGF-loaded cells. 

chase incubation of 18°C-exposed cells at 37°C can be inter- 
nalized. Based on this estimation the rate of long-time recy- 
cling of covalently linked 125I-EGF-RC would be •1.5 times 
higher than the apparent rate of reappearance of the com- 
plexes on the cell surface (Fig. 5, o) and, therefore, similar 
to the rate of long-time recycling of 125I-EGF-RC that are 
not covalently linked (Fig. 5, o). 

Discussion 

We have studied the intraceUular sorting of endocytosed 
EGF-RC in human epidermoid carcinoma A431 cells. Ex- 
amination of the fate of internalized t2~I-EGF in these cells 
showed that ligand was rapidly recycled to the cell surface 
at 37°C in the early stages of endocytosis. The rate of this 
recycling was partially reduced at 16-18°C (Fig. 1 and refer- 
ence 34). Moreover, a significant pool of internalized t25I- 
EGF was unable to escape the cell at 18°C but was capable 
of recycling if cells were warmed to 37°C, albeit at a slower 
rate than if cells were not exposed to the temperature block. 
Recycling of this pool of internalized EGF seems to involve 
passage through a highly temperature-sensitive step, which 
suggests that there are different pathways for rapid ("short- 
time") and slower Clong-time") recycling. 

The "slower" pool could be examined after 3 h of continu- 
ous incubation of L25I-EGF-loaded cells at 18°C in the pres- 
ence of excess unlabeled EGE L25I-EGF capable of recy- 
cling at 18°C escaped the cells during this incubation. 
Evaluation of the t~/2 for ~25I-EGF outflow from 18°C - 
exposed cells warmed up to 37°C yielded a value of 20 rain. 
This value for short-time recycling can not be determined 
correctly at 37°C since both types of recycling would occur 
at this temperature. However, it is likely that the component 
of long-time recycling would have only an insignificant 
influence on the initial linear rate of t2~I-EGF outflow mea- 
sured during early stages of endocytosis. Therefore, based 
on the assumption that about half of the total pool of recycled 
EGF uses the long-time cycle (Fig. 1), a tt/2 of 5-7 min for 
short-time t25I-EGF recycling at 37°C was calculated from 
the data of several experiments similar to those presented in 
Figs. 1 and 3. Interestingly, similar values were obtained for 
rapid transferrin recycling in A431 cells (19) and insulin 
retroendocytosis in adipocytes (22). 

The data obtained by using mild treatment of the cells with 
Brij-58 indicated that EGF-RC do not dissociate within the 
endosomal compartment in A431 cells (33). Electron micro- 
scopic studies with the use of EGF-ferritin (26) or anti-EGF 
serum (7) also indicate that ligand remains associated with 
endosomal membrane in these cells. No significant dissocia- 
tion of internalized EGF-RC was observed during short- (34) 
or long-time recycling (Fig. 2 B). 

Analysis of the dynamics of ~25I-EGF recycling (Fig. 3) 
supports a model of EGF-RC recycling, though these data do 
not demonstrate whether EGF recycles exclusively as EGF- 
RC, especially via the long-time pathway. However, exami- 
nation of the long-time recycling of covalently labeled 1251- 
EGF-RC revealed a similar rate to that observed for t25I-EGF 
recycling (Figs. 4-6). Taken together, the data allow us to 
propose that EGF remains bound to the receptor during rout- 
ing to the recycling and degradative pathways. However, a 
significant dissociation of EGF-RC appears to occur in the 
late stages of intracellular processing, within the lysosomal 
compartment (26, 33). 

In our experiments short-time recycling could be observed 
in cells allowed to internalize receptors during a brief (2-5 
min) exposure to 37°C. Morphologically EGF and EGF 
receptors have been demonstrated to localize in "early" en- 
dosomes after similar incubations (9, 14, 27). We have also 
observed phycoerythrin and peroxidase conjugates of EGF 
to be distributed throughout the peripheral endosomal corn- 
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partment in A431 cells after similar treatments (data not 
shown). Therefore, it might be proposed that short-time re- 
cycling is due to the bi-directional movement of peripheral 
endosomes demonstrated by Nanovid microscopy in living 
A431 cells (9, 39) and/or to a rapid sorting process within 
the peripheral endosomal compartment that is similar to 
what has been described for the asialoglycoprotein and trans- 
ferrin receptors in Hep G2 cells (35). 

Long-time recycling of EGF-RC was highly inhibited at 
18°C. Degradation of EGF (Fig. 1) and EGF receptor is also 
blocked at 16-20°C (10, 37). By EM EGF-RC have been 
demonstrated to accumulate within the pericentriolar en- 
dosomal compartment in A431 cells at 20°C (27). Similar 
accumulation of endocytosed ligand and receptors in "late" 
endosomes has been observed in several cell lines after rela- 
tively long incubations at 16-20°C (28, 30). Griffiths et al. 
(12) have observed that transport of endocytic and recycling 
markers through a so-called "sorting" compartment rich in 
mannose-6-phosphate receptor was blocked at 20°C. In our 
experiments a 3-h incubation at 18°C of cells loaded with 
fluorescent or peroxidase conjugates of EGF in the presence 
of unlabeled EGF resulted in concentration of the label ex- 
clusively within pericentriolar multivesicular endosomes 
(data not shown). Additionally, the initiation of long-time re- 
cycling and degradation of the labeled EGF by warming 
18°C-exposed ceils to 37°C was closely associated with 
redistribution of the EGF-containing endosomes from the 
pericentriolar endosomal complex. Therefore, we propose 
that intracellular sorting of EGF-RC to the long-time recy- 
cling or degradation pathway occurs within the pericentrio- 
lar compartment in A431 cells. 

The juxtanuclear/pericentriolar endosomal compartment 
in A431 cells has been found to be a region of accumulation 
for transferrin receptor complexes (18, 33). A comparative 
analysis of the endocytic pathway of EGF and transferrin 
receptors in A431 cells shows a close similarity of localiza- 
tion throughout the endosomal compartment (1, 18-20, 33) 
and suggests common recycling pathways for these ligand- 
receptor complexes. In fact, the existence of rapid and slow 
transferrin recycling pathways in A431 cells has been pro- 
posed by Hopkins and Trowbridge (19). 

Studies of the turnover of EGF receptor protein have re- 
vealed a relatively slow rate of EGF-induced receptor degra- 
dation in A431 cells compared with that in human fibroblasts 
(36, 37). Even saturating concentrations of EGF fail to 
downregulate the surface EGF receptors efficiently (24, 36). 
Wiley (42) has proposed that EGF internalization is a satura- 
ble process in A431 cells. This might explain the anomalous 
properties of the EGF receptor endocytic system in these 
cells. Our finding of recycling of EGF-RC raises the possibil- 
ity that saturation in the routing of EGF-RC to the degrada- 
tive pathway occurs and that recycling of EGF-RC contrib- 
utes significantly to the inefficient downregulation of EGF 
receptors in A431 cells. 

The molecular mechanism of intracellular sorting of EGF 
receptors so far remains unclear. Failure of EGF receptors 
to enter the degradative pathway has been demonstrated 
when internalization was initiated without activation of the 
EGF receptor kinase (3, 17, 38). Therefore, a correlation be- 
tween the kinase activity of the receptors and their routing 
to the degradative pathway might be proposed. Although it 
has been demonstrated that internalized EGF receptors can 

display kinase activity in A431 cells (7), a significant pool 
of internalized, as well as surface, EGF receptors appears to 
lose its kinase activity because of protein kinase C-depen- 
dent phosphorylation of the receptors on Tre-654 (8, 40). 
Therefore, the presence of two pools of internalized EGF- 
RC, different in terms of the receptor kinase activity, might 
be responsible for the sorting of EGF-RC to recycling vs. 
degradative pathways in A431 cells. Isolation of the recycling 
pool of EGF-RC in A431 ceils, together with subsequent ex- 
amination of receptor kinase activity, would answer the 
question of whether tyrosine kinase activity is important for 
intracellular sorting of EGF receptors. 
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