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Abstract
Background: High density oligonucleotide tiling arrays are an effective and powerful platform for
conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling
arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of
the genome. Tiling arrays are increasingly used in chromatin immunoprecipitation (IP) experiments
(ChIP on chip). ChIP on chip facilitates the generation of genome-wide maps of in-vivo interactions
between DNA-associated proteins including transcription factors and DNA. Analysis of the
hybridization of an immunoprecipitated sample to a tiling array facilitates the identification of ChIP-
enriched segments of the genome. These enriched segments are putative targets of antibody
assayable regulatory elements. The enrichment response is not ubiquitous across the genome.
Typically 5 to 10% of tiled probes manifest some significant enrichment. Depending upon the factor
being studied, this response can drop to less than 1%. The detection and assessment of significance
for interactions that emanate from non-canonical and/or un-annotated regions of the genome is
especially challenging. This is the motivation behind the proposed algorithm.

Results: We have proposed a novel rank and replicate statistics-based methodology for identifying
and ascribing statistical confidence to regions of ChIP-enrichment. The algorithm is optimized for
identification of sites that manifest low levels of enrichment but are true positives, as validated by
alternative biochemical experiments. Although the method is described here in the context of ChIP
on chip experiments, it can be generalized to any treatment-control experimental design. The
results of the algorithm show a high degree of concordance with independent biochemical
validation methods. The sensitivity and specificity of the algorithm have been characterized via
quantitative PCR and independent computational approaches.

Conclusion: The algorithm ranks all enrichment sites based on their intra-replicate ranks and
inter-replicate rank consistency. Following the ranking, the method allows segmentation of sites
based on a meta p-value, a composite array signal enrichment criterion, or a composite of these
two measures. The sensitivities obtained subsequent to the segmentation of data using a meta p-
value of 10-5, an array signal enrichment of 0.2 and a composite of these two values are 88%, 87%
and 95%, respectively.
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Background
Eukaryotic gene/transcript expression is controlled by a
complex combination of ordered events [1-5] coordi-
nated by various regulatory elements. The primary regula-
tory elements associated with a transcript are: promoters,
enhancers, silencers and response elements. The pro-
moter, a cis-acting element, is located upstream in close
proximity to the transcript it controls. The enhancers and
silencers (negative regulatory regions) can act over signif-
icant distances to regulate gene expression. The response
elements are the recognition sites of certain transcription
factors (TFs); a majority of these are located within 1 kB of
the transcriptional start site. The interplay between tran-
scriptional activators/repressors, histone modifiers,
remodeling complexes and the basal transcription
machinery has been a subject of active research, and sev-
eral fundamental questions remain. For example, the
location and characteristics of the target regions, where
the transcriptional regulators are bound, are poorly
understood. DNA sequence motifs, which are considered
potential markers, are at times weak predictors of regula-
tory targets. While the promoters constitute the canonical
binding regions, the study of the dynamics of transcrip-
tional regulation remains incomplete without an under-
standing of non-canonical sites and a comprehensive
catalog of all possible enrichment sites. (Throughout this
publication the term enrichment site refers to a region of
ChIP enrichment in the immunoprecipitated sample,
with respect to a control or to genomic DNA. Specifically,
it could refer to TF binding sites (TFBS), RNA polymerase
II (RNA pol II) binding occupancy, chromatin or histone
modification sites, among others.) Another example is
transcriptional regulation in individual cell lines, the
details of which are also poorly understood. Depending
on the cell-line, it is possible that each individual gene or
transcript requires a different sequence of events to stimu-
late transcription. An understanding of the encoding of
regulatory information is critical for the comprehension
and codification of the functional roles of the protein-
coding and non-coding components. These inquiries have
prompted the development of various biochemical meth-
odologies [6-8] as well as computational frameworks and
models [9-11].

Generating a comprehensive catalog of enrichment sites
and mapping the connectivity that underlies the transcrip-
tional regulatory network mandates an unbiased genome-
wide mapping technology. High density tiling arrays [11-
17] are suitable, as they provide unprecedented base pair
(bp) coverage and probe sequences in an unbiased man-
ner, in both gene-rich and gene-poor regions of the
genome. Contiguous blocks of the genome are tiled sub-
sequent to the elimination of interspersed repeats and low
complexity DNA sequences [18]. The union of a classical
chromatin immunoprecipitation assay [14,19,20] with

genomic tiling arrays facilitates an unbiased study of tran-
scription factor binding and chromatin modification in
vivo. ChIP on chip [11,13,14,19-21] has enabled research-
ers to localize and characterize regulatory targets. Evi-
dence of TF binding to non-canonical sites, such as those
at the 3' ends of genes or internal to genes [11] has also
been shown. This category of TFBS can have weak array
signal and p-value enrichment profiles. In such cases,
reproducibility across replicate experiments, and charac-
terization of experimental noise, are critical to the assess-
ment of true positives [22]. While biochemical validation
is the litmus test for TFBS it is not feasible at a genome
wide level, underscoring the need for robust computa-
tional models and methods, such as the one proposed.

Methods
ChIP assay
Chromatin immunoprecipitation is a technique that ena-
bles mapping the in vivo enrichment sites of specific pro-
teins of interest. It employs formaldehyde treatment of
cells to covalently crosslink proteins to the DNA with
which they are associated. The proteins are then isolated
by immuno-affinity, which under ideal circumstances
also isolate the associated DNA fragments. DNA is then
recovered and analyzed by standard polymerase chain
reaction (PCR) analysis. A shortcoming of this assay, in its
standard form, is that it enables the study of a few target
DNA regions at best, and therefore requires some a priori
knowledge of appropriate regions for analysis. ChIP on
chip obviates this limitation, and is therefore particularly
effective for studying the dynamics of transcription factor
binding in a genome-wide manner.

Tiling arrays – The Affymetrix platform
These tiling arrays employ short oligonucleotide probe-
pairs, of length 25 bases (25 mers) to interrogate a speci-
fied genomic region. Each probe-pair includes a perfect
match (PM) and a mismatch (MM). The MM sequence is
identical to its corresponding PM sequence, except for the
central (13th) base. The objective of pairing a PM with a
MM is to adjust for optical background noise and non-
specific hybridization. A variety of tiling arrays with differ-
ent probe and feature resolution are used for genome-
wide transcription regulation studies. The probe resolu-
tion defines the center to center distance between two
adjacent probes, in genomic space. A 22 bp probe resolu-
tion for 25 mers implies a 3 bp overlap (on average)
between 2 adjacent probes. Currently, the probe resolu-
tion of the arrays encompasses a range from 5 bp-35 bp
with feature resolution at 5μ and 10μ.

Multi-factorial ChIP on chip experimental design
A generalized ChIP on chip experimental design for the
study of a single TF could have total information content
distributed across N arrays with J probes-pairs per array.
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The design could also include multiple cell lines (C), time
points (T), and replicates (R), where the replicates are
potentially of two types: biological (B) and technical (E).
In totality, the multi-factorial experiment encompasses M
arrays, where M = 2 × C × N × T × B × E. The multiplier, 2,
is indicative of a two-sample experiment comprising a
control (CO) and treatment (TR). The control is the pull-
down of genomic DNA or a non-specific antibody, and
the treatment is the chromatin immunoprecipitated sam-
ple.

Preliminary data analysis
The following fundamental steps in tiling array data
processing are applied across the entire ChIP on chip data-
set comprising M arrays. The steps include:

i) Background subtraction: PM-MM;

ii) Data normalization; [23-25]: median scaling and
quantile normalization;

iii) Estimation of signal expression, ChIP or signal enrich-
ment (SE), and p-value distribution. These distributions
are computed using the Wilcoxon signed rank test (for p-
value) and its associated Hodges Lehmann(HL) estimator
(for SE)[11,26,27]. These metrics are estimated for all
tiled probes per array. The SE and p-value distributions
constitute the inputs to the proposed algorithm.

ChIP on chip assays frequently suffer technical artifacts
due to reduced antibody specificity, variable reaction effi-
ciencies during cross-linking of the TF to the genomic
DNA, fragmentation of the bound DNA, immunoprecipi-
tation, amplification and sample hybridization [14].
These artifacts can introduce non-biological variations in
the scanned arrays and must be minimized in order to
enhance the accuracy of data comparison across multiple
replicates. Theoretically this should improve signal to
noise ratio (SNR) in the data, underscoring true biological
differences across samples. Therefore, prior to the genera-
tion of the p-value and SE distributions, a linear median
scaling and quantile normalization [24,25] are imple-
mented. These steps operate on feature-level signal inten-
sities. The median scaling operation regards all PM and
MM probes on arrays as equal entities. It is a two-step
process which includes:

i) Computation of a global chip median (GCM) across all
arrays;

ii) Linear scaling of each feature on an array such that the
chip median for a given array is equal to the GCM. (Eqn.
1–2).

Treatment and control feature intensities are quantile nor-
malized separately, and only within biological replicates.

GCM =
median((median(PM1...PMJ,MM1...MMJ))1...,(median(PM1
...PMJ,MM1...MMJ))M) where J: total # of probe – pairs on an
array  Eqn. 1

GCM = median(PM'1...PM'J,MM'1...MM'J)m =
median(α1PM1...αJPMJ,β1MM1...βJMMJ)m where 1 ≥ m ≥ M
and scale factors: αJ,βJ  Eqn. 2

The Wilcoxon signed rank test and its associated HL esti-
mator require knowledge of genomic alignment. Subse-
quent to normalization the probe-pairs are mapped to the
genome using an exact 25 mer alignment of the PM
sequence, and a probe-pair specific expression-level (Srj) is
estimated. Srj refers to feature intensity, and can be mod-
eled in terms of probe affinity, abundance, and multipli-
cative/additive noise components (Eqn. 3). Estimation of
ChIP-enrichment entails measurement of the relative
abundance of a nucleic acid sequence in an immunopre-
cipitated sample, with respect to a control sample. Srj is
computed as positive log (p-log) transformation, on a per-
replicate basis, individually for treatment and control
(Eqn. 4). Data truncation as in a p-log transform can be
avoided via a generalized log (g-log) transformation (Eqn.
5).

Srj ≈ Irj = ajArjηrj + φrj where a: probe affinity; A: abundance; η:
multiplicative noise; φ: additive noise  Eqn. 3

Srj = p log(PM - MM)jr = log2 (max((PM - MM)j,1))r where
1 ≥ j ≥ J and 1 ≥ r ≥ R  Eqn. 4

Srj = g log(PM - MM)jr  Eqn. 5

The null hypothesis for the Wilcoxon signed-rank test
states that two mutually independent sets of observations
derived from two different populations (TR and CO
respectively), have the same probability distribution; the
common distribution is not specified [26,27]. In a two
sample problem, the hypothesis is described by a loca-
tion-shift model. This states that the two populations are
the same, except that one is shifted from the other by an
amount Δ (Eqn. 6), referred to as the location-shift param-
eter. The alternative hypothesis would thus state that Δ is
either greater or less than 0. In the context of ChIP enrich-
ment the null hypothesis implies there is no shift in loca-
tion as a consequence of treatment. Since the focus of
inquiry in ChIP on chip experiments is positive enrich-
ment in treatment over control, a one-sided, upper-tail
test is performed to compute the Wilcoxon test statistic
(Eqn. 7). The p-value, estimated per probe, is restated as
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pScore (Eqn. 8) – negative log10 transformed p-value. The
HL estimator is given by Eqn. 9.

The statistical power of the test is derived from the use of
all non-redundant probe permutations across all treat-
ment and control sample-pairs, and encompassed within
a sliding window (W). The window, W = 2 x BW + 1, cen-
tered about the index probe-pair, is parameterized in
terms of bandwidth (BW). BW is computed in units of
base-pairs (not probes) and is a constant for a given anal-
ysis. It is initialized based on an estimated average chro-
matin fragment length in the ChIP assay. Based on gel
analysis, this length is estimated at 500 bp. Inclusion of
the enrichment pattern of probes neighboring the index
probe, but constrained within W, strengthens the analysis
and mitigates noise spikes that may arise when consider-
ing the behavior of a single probe (25 bp). As best prac-
tice, multiple window sizes should be tested
computationally to optimize for sensitivity and specifi-
city. Within a given window the presence of repeat-
masked probes may cause the distribution of probes
flanking the index probe to be asymmetric. The optimiza-
tion of a window based on the density of flanking probes
is not recommended, since even in a tiling array the inter-
rogation of the genomic sequence is semi-periodic and
noncontiguous.

Δ = p log(PM - MM)jrTR - p log(PM - MM)jrCO = SrjTR - Srjco
Eqn. 6

H0 : Δ = 0 and HA : Δ > 0 at the α level of significance  Eqn. 7

pScore = σp = -10(log10(pValue))  Eqn. 8

HL = SEj = median(p log(PM - MM)irT - p log(PM - MM)jrC)

where 1 ≥ i ≥ N; 1 ≥ j ≥ N; N = Total # of probe – pairs in W;
j: index probe Eqn. 9

Jeong et al have demonstrated, via spectral analysis in the
chromosomes of E. coli, a spatial pattern of transcriptional
activity [28]. The authors used the autocorrelation func-
tion (ACF) [28,29] to estimate the degree of transcrip-
tional similarity of individual transcripts along a
chromosome, as a function of intervening distance. The
ACF was approximated as a decaying function with statis-
tically significant regions corresponding to relatively short
inter-transcript distances. Let us make the assumption that
a putative binding site spans n contiguous probes, whose
intensities in the control and treatment (ChIP) are
denoted by C1...Cn and T1 ... Tn respectively. If these n
probes do not constitute a true binding site and are inde-
pendent, then the underlying noise should be stochastic.
This is not true for tiling array data, where auto-correla-
tion among neighboring probes can confound estimation

of the true underlying enrichment and its discrimination
from noise. The Wilcoxon does not test for spatial auto-
correlation, which can disguise itself as moderate p-values
[26,27]. The simplest means to correct for autocorrelation
is to establish a stringent (Wilcoxon) p-value threshold, to
minimize false positives. Another approach is to deter-
mine the auto-correlation factor from probe variance at
the putative site, and estimate statistical confidence by
comparing observed enrichment to a normal distribution
whose variance is modulated by the auto-correlation fac-
tor.

Binary segmentation for detection of enrichment sites
Common parametric approaches for the generation of
enrichment sites employ binary segmentation of signal
enrichment and/or p-value distribution computed across
the tiled probes [11]. A p-value-based threshold (τp) is
used for segmentation of positive probes (Pj = 1, j: probe
index, Eqn. 10). This is followed by the clustering of con-
tiguous – in genomic space – positive probes with a max-
imum gap (maxgap) of 500 bp between two adjacent
positive probes and a minimum probe run (minrun) of 25
bp. The resultant probe clusters are labeled as putative
enrichment sites.

Positive probe: Pj = 1, pValuej ≤ τp or pScorej ≥ σp  Eqn. 10

Non-Positive probe: Pj = 0, pValuej > τp or pScorej <σp

Threshold estimation is the critical component of binary
segmentation. The threshold can be derived from either
the pScore or the SE distribution. For multi-replicate data,
the threshold can be derived from a composite pScore
(SE) distribution generated by aggregating a probe-wise
pseudo-median [26] across replicates. Alternatively, it can
be derived from any one of the replicates selected at ran-
dom or from the replicate experiment with highest sensi-
tivity. The threshold can be a fixed value applied across all
replicates, or a replicate-specific distribution-based value
estimated from the 99th percentile (a user tunable param-
eter) of the pScore (SE) distribution. (The 99th percentile
is selected because approximately five percent of tiled
probes manifest IP enrichment). Each option introduces a
particular bias to the analysis, as discussed in the Results.

Non-parametric algorithm
The proposed rank-statistics-based enrichment site pre-
diction algorithm (RSSPA) is a non-parametric procedure
built upon the framework of rank and replicate statistics.

The elements of RSSPA are:

i) Seeding of sites based on binary segmentation of data

Δ̂
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ii) Optimization of sites based on centrality, variance,
error and enrichment distributions

iii) Final segmentation of sites based on a stringent signal
enrichment threshold

iv) Localization of site boundaries

Multi-replicate data is segmented based on their p-value
and/or array signal enrichment (SE) distributions and
putative ChIP sites are generated. Initially, the sites are
ranked on an intra-replicate basis. RSSPA then assigns an
overall rank to all ChIP-enriched sites based on co-optimi-
zation of intra-replicate rank and inter-replicate rank con-
sistency. Sites with superior intra-replicate rank and high
inter-replicate rank consistency dominate the population
of sites with a low false discovery rate (FDR). The crux of
this multivariate algorithm is the optimization combining
minimization of p-value-based covariates with maximiza-
tion of signal enrichment The outcome of RSSPA is three-
fold – detection of enrichment sites, ranking of these sites
based on intra-replicate rank and inter-replicate rank con-
sistency, and further segmentation of the ranked list of
sites based on a meta p-value and/or array signal enrich-
ment metrics. The performance of the algorithm is
affected more by the reproducibility than the absolute
number of the replicate experiments, combined in this
analysis.

Step 1 – Seeding of sites based on binary segmentation of data
ChIP-enrichment emanating from true regulatory targets
in the genome should be significantly higher than under-
lying noise. In this case a simple binary segmentation
based on a moderate SNR threshold should detect these
sites. Effective binary segmentation however requires
accurate estimation of noise and absolute ChIP-enrich-
ment profiles. Accurate noise estimation requires de-con-
volution of probe-level, array-level and assay-level effects
– a more complex task in whole genome tiling arrays,
where probes are not aggressively filtered to eliminate
cross-hybridization effects. ChlP-enrichment is a meas-
urement of the relative abundance of a specific nucleic
acid sequence in an immunoprecipitated sample, and in
the genomic DNA or non-specific control. Accurate esti-
mation of this enrichment is highly dependant on quanti-
fication of the probe affinities and additive and
multiplicative noise components in the experiment.

RSSPA does not incorporate estimation of absolute ChlP-
enrichment profiles. To account for variance in sensitivity
across replicates, RSSPA incorporates a ranked signifi-
cance of enrichment. It also does not estimate the under-
lying noise, but assumes the noise profile of a given
fragment of DNA remains approximately constant across
all replicates. The cumulative probe level effect and the

antibody specificity for a given fragment are assumed con-
stant across replicates; the potential sources of variable
noise are from fragmentation, amplification and array
hybridization. The impact of the variable noise (variable
across replicates) is mitigated via the optimization of the
variance based covariate in the model. The site-level noise
invariance across replicates assumes that the contribution
of stochastic noise is low and does not perturb the overall
prediction model (demonstrated in simulation results).
Finally, the approach does not explicitly compute the
auto-correlation effects, but mitigates false positives by
co-optimization of p-Value and SE based metrics in the
assignment of overall site rankings.

The initial stage of the algorithm comprises binary seg-
mentation by application of a low pScore (SE) threshold,
per replicate, yielding a minimum SNR of 1.1 (a user tun-
able parameter). pScore (p) and SE(s) thresholds, yielding
a SNR of ~1.1:

i) Fixed thresholds: (a) σp ≥ 20; (b) τs ≥ ln(2) = 0.693

ii) Distributional thresholds: (a) σp ≥ 25th percentile; (b)
τs ≥ 25th percentile.

This step obtains a set of the maximal number of seed
intervals or sites, per replicate, at albeit a high false posi-
tive rate (FPR). In experiments with high noise floors,
applying only a pScore threshold does have a tendency to
result in over-segmentation of the data due to spatial
auto-correlation. This can be mitigated by applying a
combined pScore-SE threshold. The thresholding coupled
with a maxgap and minrun of 500 and 25 bp are used to
cluster neighboring positive probes into seed sites (Eqn.
11–Eqn. 12). By considering the pScore and SE distribu-
tion over all probes comprising a given site, a κ-trimmed
mean (TrMeanκ) summary estimate of the respective dis-
tributions is generated per seed site and replicate, for opti-
mal κ = 0.20(Eqn. 13–Eqn. 14). Since seeding of sites
based on p-value is more prone to false positives, the
results have been discussed for this more nuanced
approach. To distinguish between the two approaches,
seed sites initialized via SE and p-value are labeled via α
and β respectively; these labels are mentioned explicitly
throughout the methods section but are omitted in the
results section, for simplicity.

αr = SeedSitessig,r = ℑ (τsig ,maxgap, minrun, TrMeanκ) r : rep-
licate; 1 ≥ r ≥ R  Eqn. 11

βr = SeedSitesp-value,r = ℑ(τpScore, maxgap, minrun, TrMeanκ)
Eqn. 12

SETMs = (TrMeanκ (SE)r)s  Eqn. 13
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PVTMs = (TrMeanκ (p – value)r)s  Eqn. 14

Step 2 – Optimization of sites based on centrality, variance and error 
distributions
In this stage, the seed site distributions are refined and sta-
tistical significance is assigned to each site. The site predic-
tion model tests the null hypothesis that rank ordering of
true targets across replicates is random. The rationale for
this hypothesis is: when multiple biological replicates,
which are aliquots of a population of cells (derived from
a specific cell-line) are treated under equivalent experi-
mental conditions, independent stretches of DNA which
constitute targets of transcriptional regulation have a high
probability of preserving the rank ordering of their signal
enrichment and significance across replicates, while
simultaneously manifesting a variance in enrichment
[30]. In order to test the hypothesis the pScore and SE
based covariates discussed below are computed across all
seed sites and replicates.

Mechanistically, subsequent to binary segmentation sites
are ranked individually in each replicate in descending
order of magnitude (Eqn.15). These rankings are accom-
panied by a site-level meta p-value and composite SE as
aggregated across replicates.  ρα,r = Rank(αr, order = 0) ρβ,r
= Rank(βr, order = 0)  (Eqn. 15) RSSPA follows a multi-
variate approach in which overall site rankings are
assigned based on co-optimization of individual rank of
sites within replicates and rank consistency and signifi-
cance across replicates. The following three distributions
computed based on the ranked pScore (β) across all seed
sites and replicates constitute the covariates of analysis:

i) μβ is the centrality measure in the model. It is an average
ranked pScore per site as aggregated across all replicates
(Eqn. 16).

ii) SADβ is the variance measure in the model. It is the
non-redundant sum of absolute pair-wise rank differences
for a site across all replicate-pairs (Eqn. 17).

iii) εβ is the error measure in the model. It is the reciprocal
of the meta p-value generated per site; the meta p-value is
computed via the Fischer χ2 transform of p-values across
replicate datasets (Eqn. 18).

μβ,s = average(  ... )s s : site; 1 ≥ s ≥ S; r : replicate; 1 ≥

r ≥ R  Eqn. 16

RSSPA is developed upon the framework of replicate sta-
tistics. The algorithm has a requirement of a minimum of
two replicates per treatment and control and the number
of replicates in the treatment and control must be bal-
anced. It does not require a minimum inter-replicate cor-
relation. It is however, important to underscore the
impact of the total number versus reproducibility across
replicates upon each of the above covariates. The central-
ity measure in this model is the average (not median) of
the ranked pScore; hence it is affected by outliers. The dis-
persion metric – SAD – ranks sites based on minimization
of pair-wise rank differences; for sites with maximal rank
consistency, the individual pair-wise rank-differences, and
hence SAD will approach 0. Thus independent of the total
number of replicates, discordance in ranked pScores will
result in the dilution of μ, and inflation in SAD, the con-
sequence being a reduced overall ranking of the putative
site. Fig. 1 shows the schematics of the site-level meta p-
value. Meta analysis [31,32] is a multiple comparison
approach in which the same (related) hypothesis is tested
independently as many times as the available number of
replicate experiments, generating a joint p-value (Eqn. 18)
and potentially offering more power. Hence for a putative
enrichment site even if individual tests are not significant,
the joint p-value might still be significant. This test high-
lights the fact that with increasing number of replicates,
the reduced significance obtained from any one compari-
son has less effect on the outcome of the joint signifi-
cance. The site-level PVTM (κ = 20%, trimmed mean site-
level summary of the Wilcoxon p-value) constitutes the
input to the meta analysis. The error value term is the
reciprocal of the negative log10 transformed meta p-value.
In summary, the performance of the algorithm might be
enhanced, if a pre-filtering of replicates is implemented.
An all versus all replicate, pair-wise Pearson's correlation
coefficient can be computed on the probe-level p-value
data and the replicates with lowest correlation coefficient
can be eliminated. As discussed, the ChIP on chip assay is
prone to artifacts from different noise sources and a
minority of probes on the array represents positive enrich-
ment; hence there is inherent noise in the data. In order to
demonstrate the effect of noise on RSSPA, results from all
replicate experiments irrespective of their degree of dis-
cordance have been included.

A cumulative site-likelihood distribution metric (λ) (Eqn.
19) is computed as the resultant of the three p-value based
covariates. Specifically, it is computed based on the above

three normalized covariates ( ), where each

has a [0, 1] bound. Site detection is optimized by simulta-

neous minimization of the covariates – μ, SAD and ε.
Ideal sites are those with high rank, rank consistency, sta-

tistical significance, λ approaching 0, and lowest FDR. In

ρβ1
ρβr

SAD m n r m ns s
m n

r

m nβ β βρ ρ,
,

, ; .= − ∈ ≠
=
∑1

2
17

1

 Eqn

χ ε
χ

βs r s
r

R

s
s

df r pValue2

1
2

2 2
1

10
( ) (ln( )) ,

log( ,
,= = − ∝

− ×=
∑  where  

110
18

)
.Eqn

′ ′ ′μ εβ β β, ,SAD
Page 6 of 24
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:434 http://www.biomedcentral.com/1471-2105/7/434
most experiments there is clustering of sites based on the
distribution of the covariates. A k-means clustering can be
employed in this multivariate model space to determine
the medoids, inter-cluster and intra-cluster distances.
These are useful metrics indicative of the degree of repro-
ducibility across replicates. Rank transformation of each
of the above covariates (Eqn. 20) yields overall site-level
ranking equivalent to the non-rank transformed case.

However, in rank transforming the λ distribution, the
inter-cluster distance as well as intra-cluster dispersion
data is normalized out and hence lost.

The λ distribution can be used for final ranking and seg-
mentation of the sites. If reproducibility is of primary con-
cern, maximally consistent and reproducible sites
belonging to the lowest percentiles of the λ distribution
can be selected for further investigation. If all sites are to
be considered for further investigation, the λ-based distri-
bution enables binning of sites based on detection enrich-
ment and confidence. In most cases, however, before
multivariate analysis can be performed the missing data
problem discussed below must be addressed.

The missing data problem
In an ideal model, following initial segmentation, identi-
cal site intervals should be detected across all replicates
(Eqn. 21). The rationale behind the ideal model is that in

λ μ εβ β βs s s sSAD= ′ ′( ) + ′( )⎛

⎝
⎜

⎞

⎠
⎟( ) ., , ,

2 2 2
19Eqn

ρ μ ελ β β β, , , ,( ) ( ) ( ) .s s s sRank Rank SAD Rank= + +( ) Eqn 20

Schematic demonstrating the computation of a χ2 based meta p-valueFigure 1
Schematic demonstrating the computation of a χ2 based meta p-value. A p-value distribution is generated per replicate follow-
ing the computation of the one-sided upper tailed Wilcoxon test statistic. A meta p-value is generated per site by using a chi-
square distribution across all the replicates.
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all biological replicate samples, any given enrichment site
should be identified by the exact same sequence; hence
the probe to site relationship should remain constant. In
reality there exists discordance in the distribution of site
intervals (Eqn. 22); this is expected in samples derived
from different biological replicates or cell growths, which
might not be in synchronized states, and/or in technical
replicates, due to hybridization variations. Cumulative
errors from sources of variation in the experimental pipe-
line result in variable degrees of immunoprecipitation,
which is the root cause of the site interval distribution not
conforming to the idealized model. In summary, the fre-
quency of the seed sites might not be identical and/or the
site intervals might not be equivalent across replicates.
While errors arising from partial overlap of sites could be
mitigated by estimating the peak position of the enrich-
ment activity, the complete absence of sites from some
replicates causes a missing data problem. This is addressed
by assigning the sites absent – in any replicate – with a sur-
rogate or missing data value (MDV). The MDV is a con-
stant for a set of replicate datasets and it corresponds to
the rank exceeding the maximum rank across all replicates
as shown in Eqn. 23. The MDV down-weights the surro-
gate site in the computational process.

S = S1 = S2 = ... = Sr = S1 ∩ S2 ... ∩ Sr where replicates: 1 ≥ r ≥
R and S: collection of sites in any given r  Eqn. 21

i) (S1 ∩ S2 ... ∩ Sr) ⊂ S and ii) (S1 ∪ S2 ... ∪ Sr) ≥ S.  Eqn.
22

MDV = 1 + max(max(ρ1),max(ρ2), ..., max(ρr))  Eqn. 23

Step 3: Final segmentation of sites based on a stringent signal 
enrichment threshold
The final parameter in this model, SE measures the rela-
tive enrichment in the treated sample with respect to the
control. The reported signal enrichment is a robust esti-
mate – site-level median as aggregated across all replicates
and is defined as: median(SETM)s. In the event of seeding
sites based on a p-value threshold (τp) there is no expected
minimum median(SETM) for any site. However, in the
event of seeding based on SE threshold (τs), the
median(SETM) for a site might be less than τs – the
expected minimum. This is primarily due to two reasons.
First, the seeding process occurs independently in each
replicate. But the ultimate ranking and prediction is based
on a consensus measure of the presence of any given site
in the majority of replicates. This implies that in a subset
of replicates (r < R), the measured SE for a given site could
approach 0, resulting in the median(SETM) less than τs.
Second, due to fragmentation in the site interval intro-
duced by the localization of site boundaries (discussed
below), the final site might encompass only a subset of
probes, in contrast to the original probe membership for

that site for a given replicate. To guard against over-frag-
mentation and also against false positives, sites belonging
to the λ distribution are filtered by median(SETM) ≥ τs/R.
This operation results in a final set of sites: λs ⊆ λ;

The final outcome of the algorithm is either a ranked list
of predicted sites based on the ranked λs distribution, or a
thresholded list of predicted sites based on the meta p-
value and/or median(SETM). An alterative method of seg-
mentation based on FDR which serves the dual purpose of
providing correction for multiple hypothesis testing, has
been applied. The FDRs are generated empirically from
the data based on the method published by Efron [33]. In
contrast to the more conservative Bonferroni correction
[34] FDR is more appropriate for analysis of ChIP on chip
data where non-canonical sites might exhibit reduced lev-
els of enrichment and significance in comparison to their
canonical counterparts. FDR-based segmentation is par-
ticularly useful for comparison of data generated across
different ChIP on chip platforms, where the stringency of
the FDR, as tuned to each individual platform, is main-
tained constant across all platforms.

Step 4: Localization of site boundaries
There are two contrasting approaches for generation of
final site-interval in genomic space. i) Greedy: For a given
site the union of the site-intervals across all replicates is
considered. (Eqn. 24).  ii) Conservative: For a given site
the intersection of the site-intervals across all replicates is
considered (Eqn. 25). Physically, this results in the locali-
zation of the enrichment peak rather than in exact deline-
ation of the change-points. Sitelntervals = (B1 (start, stop)∪
B2(start, stop)... ∪ ... Br (start, stop))s  Eqn. 24 Sitelntervals
= (B1(start, stop)∩ B2(start, stop)... ∩ ... Br (start, stop))s
Eqn. 25 At the seeding stage, the probe membership for a
given site can vary across replicates. At the site localization
stage, probes with a dominant pattern of co-regulation are
clustered together to generate the final site interval. The
SETM is evaluated subsequent to site localization. For sites
with diminishing reproducibility the final probe cluster
might be significantly reduced compared to the union of
the initial probe clusters; this could result in a SETM much
less than τs.

Results
Results of the application of RSSPA for detection of his-
tone acetylation and RNA polymerase II occupancy sites
are described here. The experiments performed in the HL-
60 – an acute myeloid leukemia – cell-line, explore the
interaction of DNA with (i) tetra-acetylated histone
(HisH4), and (ii) RNA pol II [35]. HL60 is stimulated
with all-trans-retinoic acid for distinct time periods, to
induce differentiation along the granulocytic lineage. 0, 2,
8 and 32 hrs constitute the time-course in this experimen-
tal design. The site prediction algorithm is applied per
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time-point and differential modification analyses (data
not presented here) are performed subsequently. HisH4 is
a histone modification factor associated with active genes.
RNA pol II is the nuclear RNA polymerase responsible for
mRNA transcription. In eukaryotes, unlike prokaryotes,
the normal or ground state of the chromatin is restrictive
to transcription. In the repressed state the enhancer and
promoter elements are covered by nucleosomes. This state
can be converted, via acetylation, methylation and recruit-
ment of chromatin remodeling factors, into a transcrip-
tionally poised state that is prepared for binding to RNA
pol II and TFIID proteins [36]. Both HisH4 and RNA pol
II are hybridized to Affymetrix ENCODE [26,27] tiling
arrays of 22 bp (average) probe resolution and 10μ feature
resolution. The ENCODE array samples approximately
1% of the human genome and does not include regions
from chromosomes 3 and 17.

RSSPA has been implemented for detection, ranking and
segmentation of enrichment sites across a spectrum of
ChIP on chip experiments. These range from chromatin
remodeling factor (Brg1), sequence-specific DNA binding
proteins (CTCF, CEBP/ε), histone modification factors
(HisH4: acetylation, H3K9K14D, H3K27T: methylation),
to factors with known 5' end biases (RNA pol II, TFIID).
Data on the above factors are being published as part of
the ENCODE Consortium effort [37,38]. The HisH4 and
RNA pol II data, a subset of the ENCODE data, are dis-
cussed here since they represent contrasting enrichment
profiles – in terms of the base pair coverage of their bind-
ing footprints. The results will focus on:

i) Common parametric approaches for detection of
enrichment sites

ii) The underlying mechanism and efficacy of the pro-
posed non-parametric RSSPA

iii) Simulation results

iv) Biological examples

v) Validation results derived from alternative computa-
tional and biochemical approaches

Binary segmentation for detection of enrichment sites
This simple, intuitive approach validated via quantitative
PCR (qPCR), is effective in the identification of sites with
relatively strong enrichment signal and statistical confi-
dence. While ensuring low false positive rates, this
method can suffer from a significant false negative bias,
especially in regions of diminished signal enrichment. A
span of DNA sequence is computationally labeled a non-
site (negative) if it fails the stipulated signal or p-value
threshold. This binary outcome does not reveal whether

the absence of a site is due to a potential false negative
caused by failing the threshold by a minor margin, or is a
true negative caused by a span of DNA with very low sig-
nificance and negligible IP enrichment.

The intrinsic noise in ChIP on chip can reduce the SNR in
the data and result in a globally lower p-value and/or sig-
nal enrichment distributions. In these circumstances, a
computationally determined negative might be positively
validated by qPCR and/or other biochemical means. Thus
in experiments with high variance and/or reduced bind-
ing efficiency, a significant false negative bias can be intro-
duced, resulting in inflated discordance across replicate
experiments, as demonstrated by Fig. 2. The figure shows,
for three replicates, the pScore profile across 43 contigu-
ous positive probes that constitute a putative site. At this
site only two thirds of the biological replicates exceed the
pScore threshold of 50(Wilcoxon p-value = 10-5) for a set
of contiguous probes, potentially indicating variable lev-
els of sensitivity in the experiments. The overall pScore
trend is consistent across replicates, hinting at the pres-
ence of a putative site. However, if the replicate with the
lowest pScore distribution (blue curve) were the only
dataset available and the binary segmentation with a
pScore threshold of 40, the method of choice then this site

Biases in the parametric binary segmentation method for detection of putative enrichment sites-IFigure 2
Biases in the parametric binary segmentation method for 
detection of putative enrichment sites-I. pScore distribution 
across 43 consecutive probes in three different biological 
(B1-B3) replicates, are shown. Probes belonging to B1 (black) 
and B2 (red) pass the pScore threshold of 50 while those 
belonging to B3 (blue) fail by a significant margin. The trend in 
the pScore distribution hints at potential enrichment but if B3 
were the only dataset available a false negative bias could 
have been introduced in the analysis.
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would become a false negative. In the absence of inde-
pendent corroboration it would be difficult to discrimi-
nate the putative target (in the lowest sensitivity
experiment) from an artifact of spatial auto-correlation.

Threshold estimation controls the sensitivity versus spe-
cificity of the binary segmentation approach. Each of the
thresholding mechanisms – whether of fixed or distribu-
tional type – introduces a different type of bias to the anal-
ysis, examples of which are shown in Fig. 3. The figure
shows box-plots of the pScore distribution of three bio-

logical replicates (B1-B3) and their replicate composite,
following binary segmentation. Fig. 3 (upper panel) con-
trasts site detection based on a fixed versus distributional
pScore threshold derived from replicate B1. The two
pScore thresholds used are: (a) fixed: 50 (pScore ≥ 50);
and (b) distributional: 99th percentile of the B1 distribu-
tion. Once the distributional threshold is derived from a
particular replicate, the same value is applied uniformly
across all replicates. The binary segmentation after fixed
thresholding show that the sites in B1 have a minimum
score of 50 (as expected), while the pScore distribution of

Biases in the parametric binary segmentation method for detection of putative enrichment sites-IIFigure 3
Biases in the parametric binary segmentation method for detection of putative enrichment sites-II. This demonstrates a com-
parison of site detection in B1-3 and replicate composite(C) based on the threshold selection. Depending on the threshold and 
which replicate it is determined from, there is significant variation in the detection of putative sites. (Top panel) Detection 
threshold is determined based on B1 but applied uniformly across B1-B3 and replicate composite (C); (left) Fixed pScore thresh-
old of σp ≥ 50; (right) A distributional threshold of σp ≥ 99th percentile of the pScore distribution. (Bottom panel) Detection 
threshold is determined based on replicate composite(C) but applied uniformly to all; (left) Fixed pScore threshold of σp ≥ 50; 
(right) A distributional threshold of σp ≥ 99th> percentile of the pScore distribution.
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these exact sites in replicates B2, B3, and the composite,
manifest a significant range from 0–200. For the distribu-
tion-derived threshold, the detected sites have a pScore
range of 170–230(B1), 0–50 (B2-B3), and 50–150 (com-
posite). This result highlights disparity in the score-distri-
bution across replicate biological samples and
demonstrates that fixed and distribution-derived thresh-
olds might not detect identical sites across replicates,
resulting in increased disparity among replicate experi-
ments. An alternative to using individual replicates is to
generate the fixed/distributional thresholds based on the
replicate composite. But, as shown in Fig 3 (lower panel),
this hardly mitigates the disparity. While the choice of a
composite over an individual replicate does not improve
the performance of the method, the choice of a distribu-
tional over a fixed threshold reduces the variance in the
pScore distribution of the putative sites. This is evident
from the maximal compression of the inter-quartile range
observed in Fig 3 (top-right panel).

Rank statistics based algorithm for detection of 
enrichment sites
A parametric binary segmentation paradigm has the
potential to introduce a significant false negative bias.
This bias discriminates against sites with moderate to low
binding-enrichment, or poor probe behavior. RSSPA
employs a rank and replicate statistics-based paradigm to
mitigate these biases. The following sections discuss the
results from each of the components of RSSPA.

Step 1 – Seeding of sites based on binary segmentation of data
Results have been generated based on both seeding
parameters – p-value and SE. The site seeding is poten-
tially more robust if based on signal enrichment, rather
than p-value distribution. Since the latter is affected more
significantly by spatial auto-correlation. The final results
summarize the correlation obtained between the two
seeding parameters. Fig. 4 shows an example of site-seed-
ing, based on a pScore threshold of 20, across five biolog-
ical replicates in the HisH4 data. The amplitude of the
graphs (blue) represents the pScore distribution in a spe-
cific genomic region where all replicates manifest similar
ChIP-enrichment (all graphs have been scaled to com-
mon maximum for clarity of visual representation). The
top-most track (green) represents the union of the site
intervals as derived from the individual replicates.

Step 2 – Optimization of sites based on centrality, variance and error 
distributions
The optimization based on the simultaneous minimiza-
tion of the p-value based covariates – μ, SAD and ε – and
maximization of SE forms the corner-stone of the algo-
rithm (Steps 2–3). Fig. 5 summarizes the rank consistency
distribution for putative sites. It demonstrates density
plots of pair-wise rank-difference distributions for repli-

cate data derived from chromosomal segments with con-
trasting gene density. Poor gene density (chromosome 1)
is shown at left, higher gene density (chromosome 10) is
shown at right. Based on triplicate experiments, the abso-
lute rank-difference distribution is computed for all six
pair-wise replicates – {Bi, Bj} and {C,Bi} – where, i and j
refer to replicates, l ≥ i(j) ≥ 3 and i ≠ j, and the replicate
composite (C). Data for the C-B1 pair is shown in black,
C-B2 in blue, C-B3 in red, B1-B2 in brown, B1-B3 in cyan and
B2-B3 in magenta. For visual clarity, the x-axis is scaled by
100, data-points are shown for one curve (C-B2) and for
others a spline-fit to the data has been represented. The
primary observations here are:

i) The absolute rank-difference curves do not trace a delta
function about 0 (ideal case) or even an exponential decay
with a peak at 0, but rather a gamma distribution with the
mode slightly greater than 0. This observation holds true
across all chromosomal regions. The off-zero mode indi-
cates that very few sites show perfect rank consistency.
This is due to inherent noise in the ChIP on chip process.
However, the bulk of the population of seed sites main-
tains very high rank consistency across replicates. This val-
idates a fundamental assumption of the model.

ii) The skewness of the distribution is attributable to the
population of sites whose rank order correlation across
replicates gradually diminishes. More than 95 percent of
these sites have a high likelihood of inherently poor intra-
replicate ranking (data not shown).

iii) The SAD distribution is estimated based on seeded
sites which include all possible ChIP enrichment intervals
that exceed a SNR of 1.1. Potentially a high percentage of
these sites could be false discoveries. The FDR could be
reduced by re-adjusting the parameters of the normal dis-
tribution (N(μ,σ2)) based on the underlying gamma dis-
tribution:

(a) Setting the estimated mean (μ) to the mode of the
gamma distribution;

(b) Estimating the variance (σ) by symmetrizing the left
tail of the gamma distribution.

The proposed modification in the estimation of the nor-
mal distribution would filter out sites with high SAD val-
ues. In order to explore the response of RSSPA to various
noise sources, results presented here do not incorporate
this correction.

iv) Independent of gene density – as observed from data
across both panels – there is a strong correlation (R2 ≥
0.87) across all pair-wise absolute rank difference distri-
butions considered. The contrasting gene density data
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demonstrates that the correlation in the rank-difference
profiles is maximal in the gene poor regions (R2 ≥ 0.94).
The reduced correlation in the gene rich regions is poten-
tially due to the fact that the variable sensitivity in ChIP
on chip experiments has maximal impact here. Overall,
the rank order preservation in sites is strongest for the
pair-wise combination of C-B1. This observation reflects
the fact that the pseudo-median replicate composite dis-
tribution is dominated by the B1 replicate profile, which is
the experiment with highest sensitivity.

Step 3: Final segmentation of sites based on a stringent signal 
enrichment threshold
RSSPA optimizes site-detection based on simultaneous
minimization of λ and maximization of SE, demonstrated
in Fig. 6. Sites in the λ distribution, that manifest at least
two-fold immunoprecipitated enrichment in at least one
of the replicates, are considered candidate sites, λs, for the
final ranking and segmentation. The two-fold IP enrich-

ment threshold is assessed based on the lowest detection
limits of qPCR. Sites with the highest enrichment gener-
ally populate the first quartile of the λ distribution (Fig.
6). qPCR validation results discussed below show that a
two-fold array enrichment threshold is indeed stringent,
since the dynamic range of a microarray measurement is
compressed in comparison to that of qPCR measure-
ments. The stringency of the SE threshold is user tunable
and can be altogether omitted, depending upon the spe-
cificity required. The algorithm performance subsequent
to the application of the above-mentioned filters has been
discussed under method validation.

Simulation results
The simulation results show a progression of RSSPA
response obtained from data with very high SNR to data
with artificially introduced noise (lower SNR). Fig. 7
shows a simulation result for 100 sites, derived from
quadruplicate datasets with significant reproducibility –

Seeding of sites using a pScore based thresholdFigure 4
Seeding of sites using a pScore based threshold. Representative data is shown for the site-seeding step based on a pScore thresh-
old of 20. A threshold of 20 results in an approximate minimum SNR of 1.1. Sites are generated individually in each of the rep-
licate datasets. In this example, the pScore graphs in blue represent five replicates of HisH4. The top-most track in green 
represents the union of the site-intervals as derived from each of the replicates.

LOC85865

89,605,000 89,610,000 89,615,000 89,620,000 89,625,000 89,630,000 89,635,000

Site union: pValue threshold=20
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Spearman's ρ of approximately 0.93. In this simulation
the sites are seeded based on the p-value distribution. The
three axes of the figure represent the covariates: μ, (x-axis),
ε or errval (y-axis) and SAD (z-axis). Following the mini-
mization optimization, a high-density cluster is observed
around the vertex (μ = 0, SAD = 0, ε = 0). The vertex cluster
represents the sites with maximal intra-replicate ranks and
inter-replicate rank consistency and highest statistical con-
fidence. Since the dataset is simulated for a high SNR con-
dition, the diminishing cluster density away from the
minima is expected.

In order to test the efficacy of the algorithm, variable levels
of outliers are simulated by the introduction of correlated
noise in the data. The results show that monitoring of
inter-cluster and intra-cluster metrics allow users to
dynamically assess reproducibility across replicate experi-
ments. With decreasing SNR the cluster density migrates
from the minima (vertex) to the top right where the errors
on covariates are maximized. Experiments with highest
reproducibility result in a vertex cluster with maximum
density and minimum intra-cluster variance. Based on
analysis of several ChIP factors, it has been determined
that for experiments with greater than one cluster, vertex
clusters with a density of 90 percent or higher (90 percent
or more of all sites detected occupy the vertex cluster) and

maximum vertex cluster radius of less than 1.5 times ver-
tex-cluster standard deviation, manifest a Spearman's ρ of
greater than 0.92 and generally have a FDR of less than or
equal to 5 percent. By maintaining the number of repli-
cates constant and varying reproducibility, there occurs a
migration of sites away from the vertex cluster and an
increase in the intra-cluster variance. This highlights the
consequence of reduced reproducibility in a ChIP on chip
experiment. This class of vertex-cluster sites can provide
anchor points for experimentalists to perform further bio-
logical validation including qPCR to investigate the
dynamics of transcriptional regulation. A study of change
in the membership of the vertex cluster, in a time course
experiment, is a powerful tool to probe the differential
changes in cells subject to external stimuli.

Biological examples
The first set of results is presented for the occupancy of
RNA pol II as determined in the HL60 cell line. The exper-
imental design comprises five biological replicates, each
with a single technical replicate (5 × 1), yielding a total of
ten datasets across IP (five replicates) and control (five
replicates). Wilcoxon-p-value and a HL-based signal esti-
mate distributions using a sliding window of 1 kb are
computed per replicate. The results of RSSPA for five rep-
licate pairs are shown in Fig. 8 (top and center panels).

Pair-wise distribution of absolute rank-differences across replicate datasetsFigure 5
Pair-wise distribution of absolute rank-differences across replicate datasets. The absolute rank-difference comparisons are 
shown for all pair-wise permutations of replicates (B1-B3) and replicate composite (C). C-B2(blue);C-B3(red);Bl-B2(brown);Bl-
B3(cyan);B2-B3(magenta) represent the different pairs. Distributions are shown for two different chromosomal segments with 
contrasting gene density: (left) Chromosome 1: poor gene density (right) Chromosome 10: high gene density.
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Each plot shows three axes representative of μ (x-axis), ε
(y-axis) and SAD (z-axis). The color map represents the
gradient of the site distribution based on λ (left panels)
and SE (right panels), with the maximum and minimum
denoted by blue and red respectively. Sites with lowest
FDR occupy the minimum end of the λ spectrum (left
panels) and the maximum end of the SE (right panels)
spectrum. The primary observations here are:

i) Site distribution is along a continuum, rather than in
isolated clusters.

ii) The ranking distributions in λ and SE show an overall
strong correlation of Spearman's ρ of approximately
0.812. However, there is also a distinctly aberrant cluster
(indicated by the arrow in the top right panel).

The following are two potential explanations of the above
observations. First – while the replicates are not perfect –

as evident from outliers in the λ distribution – their over-
all distributions are relatively similar. If the inter-replicate
distributions were significantly different they would sepa-
rate into discrete clusters highlighting the concordance
across some and discordance across others. Second – in
order to understand the origin of the aberrant cluster, the
continuum is segmented into percentiles based on SE. A
Euclidean distance metric is computed across the medoids
of the percentile bins; this localizes the aberrant cluster.
The aberrant cluster has maximal similarity to the cluster
with lowest SE but its p-value-based metrics ascribe it a
higher statistical confidence. This may be an artifact of
auto-correlation contamination of the p-value. This clus-
ter is eliminated (bottom panels) by applying the strin-
gent overall SE filter of median(SETMs) > 0.693/R (R:
maximum number of replicates). Following this elimina-
tion, the Spearman's ρ correlation between SE and λ
improves from 0.812 to 0.975. The power of this
approach is that it enables extraction of sub-optimal sites,

Distribution of λ versus signal enrichment (SE) for segmented sitesFigure 6
Distribution of λ versus signal enrichment (SE) for segmented sites. Sites with minimal λ (x-axis) show enhanced signal enrich-
ment or SE (y-axis). Sites with maximal signal enrichment are generally contained in the top 25th percentile of the λ distribu-
tion.
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albeit with a lower consistency score, whose presence
might not be reproducible across replicates.

The following analysis highlights the impact of reproduc-
ibility across replicate experiments on the assessment of
ChIP-enriched sites. In Fig. 8 (bottom panel), data for
three out of five replicates in RNA pol II is summarized.
The replicates are chosen on the basis of least pair-wise
reproducibility. The plot shows the components of the λ
distribution along the three axes: μ (x-axis), ε (y-axis) and
SAD (z-axis). The color-map shows the ranking based on

SE with blue and red corresponding to the maximum and
minimum respectively. The primary observations here
are:

i) Unlike the prior result, where the site distribution fol-
lowed a continuum, here there are three distinct clusters
generated primarily in response to the discordance across
replicates.

(a) Cluster I is the vertex cluster with μ, SAD and ε
approaching 0.

Simulation ResultsFigure 7
Simulation Results. A simulation demonstrating the distribution of the three p-value derived parameters: μ or average rank (x-
axis), SAD (y-axis) and ε or errval (z-axis) for 100 sites. The sites are generated based on four replicate datasets with significant 
reproducibility (Spearman's ρ = 0.93). The seeding is based on the p-value distributions. The ideal sites with maximal rank con-
sistency are represented by the vertex cluster at [μ, SAD, ε] = [0,0,0]. Scatter is introduced in the dataset via artificial intro-
duction of noise. This causes gradual migration of sites from the vertex cluster to the top right hand edge of the graph, where 
the sites represent the worst intra-replicate ranks, least inter-replicate rank consistency and lowest statistical significance. 
Despite the introduction of significant level of noise, the density of the vertex cluster remains the highest.
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Rank Statistics based site prediction algorithm outcome for RNA pol IIFigure 8
Rank Statistics based site prediction algorithm outcome for RNA pol II. Distribution of RNA pol II sites in 3 parameter p-value 
space (μ, SAD, ε) with the color-map indicating ranking of sites based on λ, distribution (left); SE distribution (right). This dis-
tribution is computed for data from 5 replicates. Color-map: blue and red represents the maximum and minimum bounds of 
the respective distributions. (Top panels) The p-value centric 3 component ranking has concordance with the SE based ranking, 
except for the cluster indicated by an arrow. (Center panels) Removal of sites belonging to the aberrant cluster increases the 
rank correlation from 81.2% to 97.5%. These sites are eliminated following the application of a SE based filter, where the SE 
threshold is based on the median (SETM) of the aberrant cluster. (Bottom panels) Unlike the prior distribution, this dataset 
reflect the presence of three distinct site clusters. This output is based on the maximally discordant triplicate experiments of 
the above five replicates.
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(b) Cluster II represents sites with ranks in the inter-quar-
tile range of each replicate and whose rank order may be
discordant in a subset (1/3 or 2/3) of replicates.

(c) Cluster III, the most distal one, reflects sites with ranks
in the uppermost quartile within each replicate. These
sites are those with maximum discordance in rank order
across replicates. The discordance in the rank ordering is
potentially introduced by variability in sensitivity, for
example, the case where a replicate IP array is significantly
more sensitive than the other two. This variability in sen-
sitivity has maximal impact on chromatin modification
sites that have an overall lower level of expression of mod-
ification.

ii) Increasing intra-cluster dispersion is observed in the
more distal clusters.

iii) The segmentation based on ranked p-value metrics has
> 99 percent concordance with the segmentation based on
ranked signal enrichment, as shown via the color-map.
This indicates that there is internal agreement for the
ordering of sites based on the three p-value-centric covari-
ates as well as with the ordering based on SE.

Fig. 9 (top panel) shows an example region contrasting
the array signal (top two tracks) and p-value enrichment
(bottom two tracks) profiles for RNA pol II. Data from
two biological replicates (generated with respect to ampli-
fied and non-amplified inputs) at the 00 hr are shown.
The x-axis represents the genomic coordinate and the y-
axes represent the amplitude of SE and pScore, with tracks
scaled to their respective distribution bounds to facilitate
visual data comparison. In this panel the distance
between tick marks on the x-axis is l0 kbp. The observa-
tions from the data are the following:

Comparison of the enrichment profiles for RNA pol II (top panel) and HisH4 (top panel)Figure 9
Comparison of the enrichment profiles for RNA pol II (top panel) and HisH4 (top panel). Data represents the signal (upper 
two tracks) and p-value (lower two tracks) enrichment for RNA pol II and p-value enrichment for HisH4.

DOLPP1

127,216,000 127,217,000 127,218,000 127,219,000 127,220,000 127,221,000 127,222,000 127,223,000 127,224,000 127,225,000

HisH4TetraAc pvalue B1

HisH4TetraAc pvalue B2

HisH4TetraAc pvalue B3

IFNAR1

33,610,000 33,620,000 33,630,000 33,640,000 33,650,000 33,660,000 33,670,000

RNAPol2 signal vs amplified Input

RNAPol2 signal vs non-amplified Input

RNAPol2 pvalue vs amplified Input

RNAPol2 pvalue vs non-amplified Input

>=50

>=50
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i) Visually, there exists a strong concordance between the
pScore and SE distributions. For the replicates the con-
cordance ranges between 0.97–0.99(data not shown).

ii) There is a strong concordance between the putative
sites independent of whether the seeding is based on
pScore or SE. Based on analysis across all five replicates an
89 percent bp intersection is observed between putative
sites seeded by pScore or SE.

iii) Two distinct sites (blue and red) are observed here.
One of the sites overlap with the 5' end of the IFNAR1
gene and the other is approximately 3000 bp downstream
of the 3'end. The span of the sites range from 800–1100
bp.

HisH4 with a broader distribution across the interrogated
parts of the genome presents a significantly different
enrichment footprint in comparison to RNA pol II. The
acetylation regions often span 1 kb-long (or longer)
genomic sequences, and are frequently observed as
enrichment plateaus rather than as peaks. Fig. 9 (bottom
panel) shows an example region contrasting the p-value
enrichment profile of HisH4 in three biological replicates
(B1-B3) at the 00 hr. The x-axis is representative of the
genomic coordinate and the y-axis or amplitude of the
graphs is representative of pScore with tracks scaled to the
same bounds to facilitate visual data comparison. Also in

this panel the distance between tick marks on the x-axis is
1 kbp. All three replicates show evidence of a pair of ChIP-
enriched sites, one slightly upstream and the other over-
lapping with the 5'end of the DOLPP1 gene on chromo-
some 9. The putative site upstream of the annotation has
a footprint of 750–850 bp, whereas the one overlapping
with the 5'end has a footprint of 1800–2000 bp. It is con-
ceivable that the fragmentation in the site is due to the
presence of interspersed repeat sequences that have not
been tiled; hence in truth it is a single site spanning over
3 kb. Nonetheless, the positive probes contributing to the
creation of the site exhibit a highly concordant ChIP
enrichment profile over a significant span of the sequence.
This represents a footprint very different from sequence
specific factors where motif identification might be
stronger predictors of target sites. HisH4 exhibits a basal
level of acetylation, with plateaus rising above the base-
line, representing longer periods of persistence in an
acetylated state. This is in contrast is to RNA pol II poten-
tially because the binding occupancy of RNA pol II emu-
lates a switch with two discrete states – bound and
unbound. The efficacy of RSSPA for detecting enrichment
profiles, irrespective of a site's span, is discussed in the
method validation. RSSPA's independence to the span of
binding activity is mainly because the model is not shape-
based; instead, it utilizes the concordant behavior within
a neighborhood of contiguous probes, and consistency of
probe behavior across replicate experiments.

Validation of RSSPA using annotation dataFigure 10
Validation of RSSPA using annotation data. Overlap of a set of RNA pol II sites with 5'ends of known annotation on both the 
sense and anti-sense strands. Representative data is shown for chromosome 1 where the overlap occurs with both PIP5K1A 
and PSMD4 and TCFL1 (VPS72) on the sense and anti-sense strands respectively. The 5'enrichment of RNA pol II is significant 
at p < 0.0001 as established by bootstrapping.
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Performance of RSSPAFigure 11
Performance of RSSPA. A pseudo ROC method is employed here for assessment of the performance of RSSPA versus binary 
segmentation. The x-axis corresponds to the FPR(1 – specificity) and the y-axis corresponds to sensitivity. The solid curves are 
representative of RNA pol II data derived from chromosome 1 (ENCODE array) and the dotted curve is representative of 
RNA pol II data derived from all chromosomes sampled by the ENCODE array. The solid curves exhibit the performance of 
RSSPA (orange) versus binary segmentation using a pScore of 50 (blue), 40 (red) and 30 (magenta). The dotted curve repre-
sents the performance of RSSPA across the entire ENCODE region. The positive regions in the pseudo ROC are derived from 
the known 5'ends (RefSeq) ± 500 bp of the first exon(and UTR). The negative regions are derived from intergenic regions as 
well as the inner-most introns of transcripts. While the true performances of the algorithms are not precisely determined in 
the pseudo ROC curves the estimation of their relative performance is accurate.
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Site predictions for both factors were segmented at 1, 5
and 10 percent FDR. The median overlap of predicted sites
of RNA pol II occupancy and HisH4 acetylation at 1 and
10 percent FDR was 42.7 and 50.89 percent respectively.
The median is generated from the time-course experimen-
tal dataset (time-points of 0, 2, 8 and 32 hours). The
standard deviation in the overlap across the time-course is
7 percent. These observations indicate that, despite the
differences in the enrichment profiles, there is significant
recapitulation of sites across both factors – this in itself is
a validation of the performance of RSPPA. Approximately
84 percent of the site overlap that occurs is significant at 1
percent FDR. The qPCR validation results (below) show
significant concordance with site prediction at the level of
5 percent FDR.

Method validation
Two types of validation data are presented. In the first
type, the performance characterization of RSSPA is based
upon statistical techniques and in the second type it is
based upon validation with respect to qPCR. In the statis-
tical approaches, knowledge of RNA pol II enrichment for
the 5' ends of transcripts has been utilized. The signifi-

cance of the overlap of RNA pol II sites with the 5'ends of
known annotation (RefSeq and VEGA) is estimated via
boot-strapping. The significance of the 5' enrichment is
computed to be p < 0.000l. Fig. 10 shows the overlap of a
subset of RNA pol II sites, of span 500–1400 bp, with the
5'ends of known annotation. The x-axis refers to genomic
coordinates with the four tracks representing annotation.
The track in red is representative of the predicted site inter-
vals; the tracks in blue are representative of RefSeq anno-
tations along the sense and anti-sense strands indicated by
RefSeq(+) and RefSeq(-) respectively. The RefSeq(+) track
is aligned along the 5' to 3' direction with the RefSeq(-)
track being vice-versa; the track in green is representative
of the coverage of the ENCODE region on the array. This
particular visualization shows RNA pol II sites overlap-
ping the 5'end of transcripts – PIP5K1A, PSMD4 – on the
sense strand and TCFL(alias: VPS72), PIK4CB on the anti-
sense strand. Sites are also found internal to transcripts,
and in intergenic space (data not shown). The presence of
these sites can be validated with qPCR, but ascertaining
their biological significance – whether they hint at poised
or paused states of RNA pol II transcription machinery –
requires further biological experimentation.

A pseudo receiver operating characteristic (ROC) curve
method [39,40] has also been employed to characterize
the performance of RSSPA. In the absence of a gold stand-
ard, for this analysis the positive regions are derived from
the known 5' ends (RefSeq) ± 500 bp of the first exon(and
UTR). The negative regions are derived from intergenic
regions as well as the inner-most introns of transcripts
provided their bounds do not overlap with the positive
regions. Since RNA pol II occupancy sites, internal to tran-
scripts and/or in intergenic space have been validated by
qPCR the above definition of the negative regions might
include true positive sites. Similarly, the definition of pos-
itive regions might include true negatives. Therefore, there
is some degree of contamination in the delineation of the
positive and negative regions, hence the pseudo nature of
this analysis. The pseudo-ROC curves provide an accurate
estimation of the relative performances of the various
algorithms. Fig. 11 compares the performance of RSSPA
versus binary segmentation via ROC curves; the x-axis cor-
responds to the FPR (1 – specificity) and the y-axis corre-
sponds to sensitivity. The solid curves are representative of
RNA pol II data derived from chromosome 1 as sampled
by the ENCODE array. The performance of RSSPA
(orange) has been contrasted with that of binary segmen-
tation using pScore thresholds of 50 (blue), 40 (red) and
30 (magenta). At low FPR (≤ 0.1) a greater than 4x
improvement in sensitivity is observed in the RSSPA over
the latter. As expected, within the binary segmentation
approaches, the sensitivity improves with increased
pScore threshold; this comes at a price of increased false
negative rate. The dotted curve is representative of RNA

Validation of RSSPA using qPCR data – IFigure 12
Validation of RSSPA using qPCR data – I. This plot shows the 
percentage of positive validation of HisH4 acetylation sites by 
qPCR (x-axis) as a function of the meta p-value, represented 
as pScore (y-axis). A random sampling of RSSPA-predicted 
sites comprising the entirety of the rank spectrum was vali-
dated by qPCR. The data shows that at a minimum meta 
pScore of ~56, 95% of the predicted sites were validated by 
qPCR.
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Validation of RSSPA using qPCR data – IIFigure 13
Validation of RSSPA using qPCR data – II. qPCR validation data is shown for HisH4 sites generated via RSSPA. (Top panel): Raw 
qPCR enrichment (fold over background) for each site tested. Two qPCR enrichment thresholds corresponding to 5 SD (yel-
low) and 10 SD (red) above negative sites are shown. The sites validated were selected at random from two distributions: (i) 
meta p-value (ii) signal enrichment. (Center panel): The qPCR enrichment of the sites validated has been binned against their 
meta p-value distribution. The results attest to a positive correlation between the two variables. Data-points in blue represent 
tested sites which are selected without any SE filter and the ones in red indicate sites selected following the application of a SE 
= ln(2) filter. The strong correlation between p-value and SE observed in the computational analysis is validated by qPCR. (Bot-
tom panel): A summary of the sensitivity of RSSPA as obtained with different combination of p-value and signal enrichment fil-
ters employed in final segmentation.
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pol II data derived from all chromosomes sampled by the
ENCODE array. Use of the partial area under the curve
(pAUC) [41] metric yields a recovery of approximately
83.6 and 95.09 percent of true positive occupancy sites at
1 and 5 percent FPR respectively.

Fig. 12, 13 summarizes the HisH4 qPCR validation data.
A random sampling of n = 72 RSSPA-predicted sites com-
prising the entirety of the rank spectrum is validated by
qPCR. Negative controls are designed from regions on the
array which are not predicted as sites. These controls
establish a baseline to ascertain whether a site's qPCR
enrichment is positive and hence determine the sensitivity
and specificity of the proposed algorithm. Fig. 12 illus-
trates the association of a qPCR based FPR with the statis-
tical significance estimated by RSSPA. This in effect is a
biological characterization of the performance of the algo-
rithm. The plot represents the percentage of predicted
acetylation sites that are validated by qPCR (y-axis) as a
function of the meta p-value (y-axis). The qPCR based true
positive rate is estimated by considering the number of
validated sites as a fraction of the total number of sampled
sites at a given pScore threshold. The range of the tested
pScore is from 0–390. A pScore threshold of approxi-
mately 56 corresponds to a 95 percent FPR. Aside from
providing a methodology to characterize the performance
of the algorithm, this also enables an experimentalist to
generate an initial ranked list of enrichment sites then fur-
ther segment sites based on an experimentally derived
pScore threshold. Fig. 13 (top panel) delves into the dis-
cussion of how true positives are determined based on
qPCR validation. qPCR enrichment values for the 72 sites
are shown (top panel) and thresholds are set based on 5σ
(yellow) or 10σ (red) above the mean of the negative and
non-sites(m = 3). Sites with enrichment above these
thresholds are considered true positives. Fig. 13 (center
panel), summarizes the data discussed in Fig 12, and fur-
ther classifies sites into two groups based on whether they
meet a 0.2 SE threshold (red) or do not (blue). The pri-
mary conclusions here are:

(i) There is a trend of positive correlation between p-value
and qPCR enrichment, with R2 = 0.45 (data not shown);
the reduced concordance is partially attributable to the
fact that the qPCR experiments are conducted using an
un-amplified sample whereas the arrays are hybridized to
an amplified sample.

(ii) With increasing p-value, there is a higher percentage of
overlap with sites that pass the stipulated array enrich-
ment threshold. While true positives are observed in the
lower p-value bins, there is a higher degree of contamina-
tion due to auto-correlation artifacts, the majority of
which are eliminated by the SE filter. Additionally, with

the exception of a few outliers, the higher order p-value
bins tend to have higher qPCR enrichments.

The primary conclusion therefore, is that in order to
achieve a low percent FDR in site prediction, both p-value
and SE thresholds need to be employed. A five percent
FDR is optimal for most factors studied here (data not
shown). The sensitivities (Fig 13: bottom panel) obtained
subsequent to the segmentation of data using the filters:
(a) meta p-value of 10-5 (b) array signal enrichment of 0.2
(c) the composite of (a) and (b) are 88%, 87% and 95%
respectively.

Discussion
Positive probe thresholds coupled with the stringency of
the maxgap and minrun control the degree of initial data
fragmentation, affecting the sensitivity and specificity of
the subsequent analyses. Increasing the stringency of the
parameters introduces a potential bias towards false nega-
tives and vice-versa. While a false negative bias is conserv-
ative, it obscures identification of sites with low
enrichment profiles. Conversely, a false positive bias
results in lower SNR. This compromise is partially dictated
by the biological investigation at hand. In an exploratory
mode, a false positive bias might be preferred. Alteration
in any of these analysis strategies and parameters results in
different, but overlapping transcription-regulation maps.
The analysis goal is to strike a balance via co-optimization
of sensitivity and specificity.

RSSPA does not incorporate explicit corrections for the
following: (a) probe affinity; (b) auto-correlation. In the
ideal model, the probe to site relationship should remain
constant across replicates. Therefore cumulative probe
affinity for a given site should be a constant across all rep-
licates and have no impact on the assessment of inter-rep-
licate rank consistency. In reality, the probe to site
relationship varies across replicates; hence a correction
factor for this covariate might improve the sensitivity of
the analysis. Sites impacted by auto-correlation are inher-
ently ranked lower and cannot be validated by qPCR.
However, if the algorithm is used to both rank sites and
segment them, based on λ and/or SE estimates, then spe-
cificity can be improved by modeling the underlying auto-
correlation. Mechanisms for facilitating the estimation
and/or de-convolution of autocorrelation have been dis-
cussed in the methods section. It should be emphasized
that the sources of error in a ChIP assay are manifold. The
primary ones are antibody specificity, fragmentation vari-
ance and amplification errors. Accurate estimation of the
site span and enrichment requires a rigorous approach
such as propagation of error, estimated at each stage of the
ChIP on chip experimental procedure. Nonetheless, the
proposed algorithm provides a high-sensitivity and high-
specificity predictive mechanism to corroborate known
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elements, and catalog putative and novel elements of the
regulatory network.

Replicate-statistics is a critical element of RSSPA. The
experimental design must include at least two replicates
and the number of replicates in the treatment and control
samples must be balanced. The algorithm does not
enforce a minimum correlation across replicates,
although from the discussion of the covariates it should
be clear that a lack of reproducibility across experiments
will adversely affect the sensitivity and specificity of the
outcome. Finally, disparity within the control experi-
ments, to the extent they generate sites of spurious enrich-
ment, can have adverse effects on the outcome. While the
data normalization mitigates this significantly, a pre-fil-
tering of the control data based on the outcome of least-
squares linear fit can further improve the outcome. In
summary, it is the reproducibility rather than the absolute
number of replicates that has a stronger impact on the per-
formance of RSSPA.

Since RSSPA is a non-parametric technique it is worth-
while to compare it with site prediction based upon the
Hidden Markov Model (HMM). HMM is fundamentally
suited to a problem of this nature, but its efficacy depends
upon the appropriateness of the state transition matrix
employed. HMM applications do not consider an explicit
state duration density. They assume the fundamental state
duration is exponential. For sequence specific factors such
as p53, Sp1, this exponential model is appropriate, in
most circumstances. For histone modification factors,
however, variance in the binding footprints might actually
require a Hidden semi-Markov Model approach, to pre-
vent a significant false positive bias.

Conclusion
RSSPA circumvents several sources of error common to
parametric methods of ChIP on chip enrichment detec-
tion. It is based on a simple set of assumptions which have
been validated by experiments, resulting in simplicity of
implementation that allows users to choose whether ini-
tial estimates from the data are based upon metrics of sta-
tistical confidence (p-value) or signal enrichment.
Independent of this initialization, the underlying multi-
variate optimization makes use of both metrics – this is
where the power of the method lies. The requirement of
replicate experiments should not be construed as a limita-
tion, since prediction of regulatory targets based upon sin-
gle data-points is a highly flawed approach due to the
significant source of variance in the experiments them-
selves. By using a rank consistency approach across repli-
cates, RSSPA actually utilizes the biological variance to
associate statistical confidence to site prediction. The algo-
rithm also allows flexibility of output type. The output can
be a ranked list of predicted sites or a segmented list of

sites following the application of a threshold. In sum-
mary, RSSPA is not microarray platform specific and does
not require the presence of both PM and MM probes. The
FDR associated with the predicted site-list provides correc-
tion for multiple hypothesis testing and enables compari-
son of results across microarray platforms.
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