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N-methyl-D-aspartate (NMDA) receptors belong to the family

of ionotropic glutamate receptors (iGluRs) that mediate the

majority of fast excitatory synaptic transmission in the

mammalian brain. One of the hallmarks for the function

of NMDA receptors is that their ion channel activity is

allosterically regulated by binding of modulator compounds

to the extracellular amino-terminal domain (ATD) distinct

from the L-glutamate-binding domain. The molecular basis

for the ATD-mediated allosteric regulation has been enig-

matic because of a complete lack of structural information

on NMDA receptor ATDs. Here, we report the crystal struc-

tures of ATD from the NR2B NMDA receptor subunit in the

zinc-free and zinc-bound states. The structures reveal the

overall clamshell-like architecture distinct from the non-

NMDA receptor ATDs and molecular determinants for the

zinc-binding site, ion-binding sites, and the architecture of

the putative phenylethanolamine-binding site.
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Introduction

L-glutamate is the major excitatory neurotransmitter in the

mammalian brain and is critically involved in brain develop-

ment and function. Fast excitatory neurotransmission is

mediated by release of L-glutamate from nerve terminals

followed by activation of a class of ligand-gated ion channel

called ionotropic glutamate receptors (iGluRs) in the post-

synaptic membrane (Kandel et al, 1995). The iGluR family is

divided into three subfamilies based on pharmacological

sensitivity to the synthetic compounds, a-amino-3-hydroxy-

5-methyl-4-isoxazole propionic acid, kainate, and N-methyl-

D-aspartate (NMDA). Each subfamily comprises multiple

genes encoding subunit proteins that assemble as tetrameric

ion channels within the same group (Dingledine et al, 1999).

NMDA receptors are unique ligand-gated ion channels,

which require multiple events for activation, including the

binding of two agonists, L-glutamate and glycine, and the

relief of a Mg2þ block by membrane depolarization (Mayer

et al, 1984; Johnson and Ascher, 1987). In agreement with the

requirement of both glycine and L-glutamate for activation,

NMDA receptors are heterotetrameric ion channels composed

of two copies each of the obligatory glycine-binding NR1

subunit and the L-glutamate-binding NR2 and/or the glycine-

binding NR3 subunits (Cull-Candy et al, 2001). The four

distinct NR2 subunits (A–D) combine with the splice variants

of the NR1 subunit to convey multiple subtypes with distinct

ion channel properties and spatial and temporal expression

patterns (Monyer et al, 1994). The opening of NMDA receptor

ion channels results in influx of cations, including Ca2þ into

the postsynapse and activates signal transduction cascades

that control synaptic strength (MacDermott et al, 1986). This

coincidental integration of chemical and electrical information

into a Ca2þ signal is crucial for activity-dependent synaptic

plasticity underlying neuronal development and memory for-

mation (Kerchner and Nicoll, 2008; Sudhof and Malenka,

2008). In contrast, dysfunction of NMDA receptors is impli-

cated in numerous neurological diseases and disorders, in-

cluding seizure, stroke, Parkinson’s disease, Alzheimer’s

disease, and schizophrenia (Cull-Candy et al, 2001).

The architecture of NMDA receptors, like the other sub-

family members of iGluRs, is modular and is composed of

multiple domains with distinct functional roles (Figure 1A)

(Kuusinen et al, 1995). The large extracellular region of

iGluRs is partitioned into two domains, an amino-terminal

domain (ATD) and a ligand-binding domain (LBD) (S1S2).

The S1S2 LBD binds glutamate and glycine and elicits open-

ing of the ion channel pore formed by the transmembrane

domains (TM) in the heterotetrameric assembly. In the S1S2

domain, NMDA receptors and non-NMDA receptors have

rather high sequence similarity (B50% similar) and similar

overall architectures as revealed by recent crystallographic

studies (Armstrong and Gouaux, 2000; Furukawa and

Gouaux, 2003; Furukawa et al, 2005; Mayer, 2005; Yao

et al, 2008). In contrast, ATDs of NMDA receptors and non-

NMDA receptors have little or no sequence homology. Most

importantly, although there is no ATD-targeted ligand or

evidence for the ATD-mediated functional regulation in

non-NMDA receptors, there is a rich spectrum of small

ligands that bind the ATD of NMDA receptors and allosteri-

cally modulate ion channel activity (Paoletti and Neyton,

2007). These ligands are small molecules and ions including

polyamines, phenylethanolamines, or Zn2þ that bind to ATD

in a subunit-specific manner; that is, polyamines and protons

bind NR1 (Traynelis et al, 1995; Masuko et al, 1999), Zn2þ

binds both NR2A (Paoletti et al, 1997, 2000; Choi and Lipton,

1999; Fayyazuddin et al, 2000; Low et al, 2000) and NR2B

(Rachline et al, 2005), and phenylethanolamine compounds

bind NR2B (Perin-Dureau et al, 2002). In particular, zinc is

found at many excitatory synapses in the brain and thus is

likely to be a natural ligand of ATD (Paoletti et al, 2009).

From the clinical perspective, the ATD-mediated allosteric

modulation of NMDA receptors has evoked considerable
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interest because the effect of allosteric modulator compounds

is highly subtype specific (Gogas, 2006). In particular, the

phenylethanolamine compounds that target NR2B ATD have

high efficacy and specificity and show some promise as

neuroprotective agents without adverse side effects usually

observed with antagonists targeting the S1S2 LBDs (Gogas,

2006). However, despite a great deal of enthusiasm, knowl-

edge about the mechanism of the ATD-mediated allosteric

inhibition in NMDA receptors remains incomplete because of

lack of structural information on the NMDA receptor ATD.

Thus, to gain insight into the basic mechanisms underlying

recognition of allosteric modulator compounds at the NMDA

receptor ATD, we have obtained crystal structures of

the NR2B ATD in the zinc-free and zinc-bound states.

The structures reveal an overall clamshell-like architecture in

the closed conformation that is robustly different from the ones

observed in non-NMDA receptor ATDs (Clayton et al, 2009; Jin

et al, 2009; Kumar et al, 2009), and pinpoint the molecular

determinants for the zinc-binding site and the putative pheny-

lethanolamine-binding site at the clamshell cleft.

Results and discussion

Function of NR2B ATD

The NR2B NMDA receptor subunit has a modular molecular

organization like other members of the iGluR family

(Figure 1A), which allows the ATD to be isolated and

expressed recombinantly. Together with a signal peptide

from human placental alkaline phosphatase, the rat NR2B

ATD, defined as a peptide from Ser 31 to Met 394, can be

expressed as a secreted protein in the insect cell/baculovirus

system.

One of the hallmarks of NR2B-containing NMDA receptors

is that the ATD binds both Zn2þ or phenylethanolamine and

inhibits the ion channel activity in a non-competitive manner

(Perin-Dureau et al, 2002; Rachline et al, 2005). To examine

whether the recombinantly expressed NR2B ATD proteins

retain an ability to bind Zn2þ , we measured heat changes

resulting from an incremental addition of Zn2þ to the pur-

ified NR2B ATD protein by isothermal titration calorimetry

(Figure 1B). Fitting of the isotherm shows the presence of one

Zn2þ -binding site per protein molecule with Kd of 5.5 mM,

which is roughly comparable to the IC50 value for the Zn2þ -

mediated allosteric inhibition of the NR1/NR2B NMDA

receptor ion channel activity (Rachline et al, 2005). Similar

NR2B ATD constructs expressed in Escherichia coli (Wong

et al, 2005; Han et al, 2008) are reported to bind ifenprodil

and related compounds as assessed by circular dichroism and

radio ligand-binding assay. Thus, the NR2B ATD proteins

studied here retain a functional characteristic of the intact

NR1/NR2B NMDA receptors.

Structure determination

To reveal the atomic structure of an NMDA receptor ATD, we

conducted a crystallographic study on NR2B ATD. The fol-

lowing manipulations were critical for obtaining a sufficient

quantity of the NR2B ATD protein suitable for crystallo-

graphic studies: (1) use of an amino-terminal octa-histidine

tag for purification with metal-chelating chromatography,

(2) mutation of one of the three putative N-linked glycosyla-

tion sites, Asn348 to Asp, and (3) use of a baculovirus strain

with deletion of viral genes, V-cath and chiA (Fitzgerald et al,

2006), together with the High Five cell-line. The combination

of the above manipulations improved the expression level by

five-fold and resulted in a yield of B0.5 mg of the homo-

geneously purified NR2B ATD protein per litre of insect cell

culture. Unlike non-NMDA receptors that form dimers in

solution with Kd of B150 nM (GluR2) and B10mM (GluR6),

the NR2B ATD proteins are monomers at 5 mg/ml (B120mM)
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Figure 1 Isolated NR2B ATD proteins bind zinc. (A) Domain organization of the NR2B subunit. ATD in cyan (R1 domain) and yellow (R2
domain) binds allosteric modulators including zinc and phenylethanolamine, S1S2 binds neurotransmitter L-glutamate, the transmembrane
domain (TM) and the P-loop (arrow) form the ion channel pore, and the C-terminal domain (CTD) binds postsynaptic molecules and mediates
intracellular signalling. NR2B ATD can be isolated and recombinantly expressed in insect cells. (B) ITC analysis of zinc binding to the NR2B
ATD protein. Upper panel, calorimetric titration of 0.8 mM ZnCl2 into 0.02 mM NR2B ATD. Lower panel, integrated heat as a function of Zn2þ/
protein molar ratio with experimental data (filled squares) and the best fit (solid line). The Kd of zinc binding is calculated to be 5.5mM.
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as analysed by sedimentation velocity using analytical ultra-

centrifugation (Supplementary Figure S1).

To understand the molecular mechanism underlying zinc

recognition, the NR2B ATD proteins were crystallized in the

presence and absence of Zn2þ . In both cases, the NR2B

ATD proteins crystallized in space group P3121 with similar

unit cell dimensions and with one NR2B ATD protomer

per asymmetric unit. Despite the unusually high solvent

content of the crystals (77%), the x-ray diffraction limit of

the zinc-bound and zinc-free crystal extended to 3.2 and

2.8 Å, respectively (Supplementary Table SI), which was

sufficient to unambiguously model most of the amino-acid

backbones and side chains starting from Pro 32 to Met 394

except for a disordered region between residues 208 and 214

(Figure 2; Supplementary Figure S2). The structure of the

zinc-free form was solved by multiple isomorphous replace-

ment with anomalous scattering (MIRAS) using single anom-

alous diffraction (SAD) datasets from crystals incorporated

with Ta6Br14, ErCl3, K2AuBr4, and L-selenomethionine

(SeMet) (Supplementary Table SI). The use of the above

four heavy atoms for phasing was necessary to obtain an

interpretable electron density map (Supplementary Figure S3).

Subsequently, the structure of NR2B ATD in the zinc-bound

state was obtained by molecular replacement using the zinc-

free structure as a search probe. After iterative rounds of

refinement, the final structures had acceptable conventional

R-factor and Rfree and stereochemical statistics (Supplementary

Table SII).

Overall architecture of NR2B ATD

The NR2B ATD has an overall clamshell-like architecture

composed of two domains, R1 and R2, which are tied

together by three well-structured loops (Figure 2). The crys-

tals grown in the presence and absence of zinc both contain

one NR2B ATD molecule per asymmetric unit. Consistent

with the result from sedimentation velocity, there is no

apparent evidence for a formation of physiological dimers.

This is in contrast to GluR2 and GluR6 ATDs, which form

dimers in solution as well as in crystals (Clayton et al, 2009;

Jin et al, 2009; Kumar et al, 2009). The packing pattern of the

NR2B ATD protomers in the P3121 crystal does not share any

common feature observed in GluR2 ATD or GluR6 ATD.

The NR2B ATD contains two types of posttranslational

modifications, N-linked glycosylation and a disulfide bond.

Clear electron density for N-acetyl-glucosamine is present at

the two N-linked glycosylations sites, Asn 74 and Asn 341,

both of which are located within the R1 domain. The first

ordered residue, Pro 32, is at the ‘top’ of R1, whereas the last

residue of the protein construct, Met 394, is at the ‘bottom’ of R2.

Thus, our NR2B ATD structure suggests that the beginning of

the S1S2 LBD in the NMDA receptor subunits is located at the

‘bottom’ portion of the R2 domain far away from the N-

terminus. The architecture of the R1 domain is further orga-

nized by the presence of a disulfide bond formed between two

conserved cysteine residues, Cys 86 from Helix 1 and Cys 321

from a ‘hypervariable loop’ (HVL; Figure 2). Similar disulfide

bonds are also observed in GluR2 and GluR6 ATDs. Thus, the

disulfide bond formation between Helix 1 and HVL is most

likely a conserved feature of all iGluR ATDs. The HVL (L1

‘flap’ and Loop 3 in GluR2 and GluR6, respectively) is formed

by the 15–20 amino-acid long linker between Helix 8 and 9 in

NR2B whose primary sequence is conserved within each

subfamily but is highly variable between the three subfamilies

(Supplementary Figure S2). In GluR2 and GluR6 ATDs, HVLs
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Figure 2 Overall architecture of NR2B ATD. (A) Ribbon representation of the NR2B ATD structure in complex with zinc. The clamshell-like
architecture of NR2B ATD is composed of two domains, R1 (cyan) and R2 (yellow), defined as residues 32–147 and 287–359 and residues
148–286 and 360–394, respectively. Hypervariable loop (HVL; in magenta) is oriented by a disulfide bond so that it covers the ‘top’ of the R1
domain. The disordered region (residues 208–214) between b7 and a5 is indicated with a dashed line. Stick representations are used to show
the disulfide bond (Cys 86–Cys 321), and sugar molecules attached to Asn 74 and Asn 341. Residues involved in zinc inhibition,
phenylethanolamine inhibition, and ion binding are represented by balls and sticks in blue, orange, and green, respectively. (B) View of
the NR2B ATD structure from the ‘entrance’ of the clamshell.
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protrude towards the homodimer interface, thus, they have

been suggested to have a function in a subtype-specific

assembly of iGluRs (Clayton et al, 2009; Jin et al, 2009;

Kumar et al, 2009). Because of the structural conservation

around the region, it is plausible that HVL also has a function

in subunit assembly in NMDA receptors.

The cleft of the NR2B ATD clamshell can be partitioned

into three different regions based on their chemical properties

and functional roles (Figure 2). First, the ‘hydrophilic pocket,’

which contains a cluster of polar residues including His 127

and Glu 284 involved in zinc binding (blue sticks). Second,

the ‘hydrophobic pocket’ at the inner core of the clamshell,

which contains a cluster of hydrophobic residues including

Ile 133, Ile 150, Phe 176, Tyr 231, and Leu 261 critical

for ifenprodil sensitivity (orange sticks). And third, the ‘ion-

binding site’ located in between the ‘hydrophilic’ and ‘hydro-

phobic’ pockets, which contains residues including Ser 131,

Phe 146, and Gln 153 and accommodates Na and Cl ions

(green sticks). In both zinc-bound and zinc-free structures,

Na and Cl ions are present at this ion-binding site.

Distinct architecture of NR2B ATD from non-NMDA

receptor ATDs

The overall fold of NR2B ATD has an approximate similarity to

non-NMDA receptor GluR2 ATD (Clayton et al, 2009; Jin et al,

2009) or GluR6 ATD (Kumar et al, 2009), but, with a signifi-

cantly distinct conformation. The root-mean-square deviation

of the entire ATD is high with values of 4.3 Å over 276 Ca
positions and 3.6 Å over 245 Ca positions between NR2B and

GluR2 and NR2B and GluR6, respectively. However, when the

R1 and R2 domains are individually superimposed, the root-

mean-square deviation values are significantly lower: 2.4 Å

over 158 Ca positions (R1) and 2.2 Å over 145 Ca positions

(R2) between NR2B ATD and GluR2 ATD and 2.2 Å over 152

Ca positions (R1) and 1.9 Å over 142 Ca positions (R2)

between NR2B ATD and GluR6 ATD (Figure 3A). This major

difference is caused by the distinct R1–R2 domain orientation,

which in NR2B ATD, is ‘twisted’ by a striking rotation of B45

and 541 compared with the R1–R2 orientation in GluR2 ATD or

GluR6 ATD (Figure 3C).

What could be a potential cause for this ‘twisted’ confor-

mation in NR2B ATD? The structural overlay shows a lack of

B30 residues between b-strand 10 and Helix 8 in NR2B ATD

compared with non-NMDA receptors (Figure 3A and C;

Supplementary Figure S2). These 30 residues in non-NMDA

receptors form a motif with an a helix that couples R1 and R2

(Jin et al, 2009; Kumar et al, 2009) and potentially stabilizes

the closed conformation of GluR2 and GluR6 ATD clamshell.

Thus, it is plausible that the lack of the helical motif in NR2B

ATD provides a structural freedom to orient the R1 and R2

domains in the ‘twisted’ conformation. The absence of this

structural motif is a general feature of all of the NMDA

receptor subunits, and therefore we suggest that the ‘twisted’

conformation observed in the current NR2B ATD structure

is a unique aspect of NMDA receptor ATD structures.

Furthermore, it is important to point out that this large

structural difference prevents the NR2B ATD protomers to

form a homo dimer in a similar protomer arrangement to that

observed in GluR2 or GluR6 ATD. For example, when two

copies of the NR2B ATD protomers are superimposed onto

the GluR6 ATD dimer at R1, most of the R2 residues from the

two protomers clash against each other (Supplementary

Figure S4). Thus, we suggest that the dimeric arrangement

of NMDA receptor ATDs is substantially different from that of

non-NMDA receptor ATDs.

The NR2B ATD also has distinct surface properties from

non-NMDA receptor ATDs. Of note is the presence of the large

hydrophobic patch at the ‘bottom’ of the R2 domain that is

only present in NR2B ATD (Figure 4). We propose that the

large hydrophobic patch may be a region that has a function

in inter-domain and/or inter-subunit interactions, which is

crucial for the ATD-mediated allosteric regulation. Overall,

the distinct structural features of NR2B ATD compared with

non-NMDA receptor ATDs described above may be critical in

eliciting the ATD-mediated regulation of the ion channel

activities, which is observed only in NMDA receptors but

not in non-NMDA receptors.

Structural comparison of NR2B ATD with mGluR LBD

The NR2B ATD structure also has a similar overall fold to the

LBDs of metabotropic glutamate receptors (mGluRs) and

atrial natriuretic peptide (ANP) receptors, and bacterial leu-

cine/isoleucine/valine-binding protein (LIVBP) as predicted

earlier by O’Hara et al (1993) although sequence identity of

the aligned region is only 11–16%. The most homologous

structure is the LBD of mGluR1 (PDB code: 1EWK)

(Kunishima et al, 2000), with a root-mean-square deviation

of 3.4 Å but over only 251 out of 365 possible Ca positions.

When the structures of the R1 and R2 domains are individu-

ally superimposed to the mGluR1 LBD structure, the root-

mean-square deviation is significantly lower with 2.4 Å for R1

and 2.0 Å for R2 over 150 and 143 Ca positions, respectively

(Figure 3B). This difference in the root-mean-square devia-

tion values, as in the case of the structural difference between

NR2B ATD and non-NMDA receptor ATDs, is due to the

‘twisted’ R1–R2 orientation of NR2B ATD (Figure 3D). The

R1–R2 orientation of GluR2 and GluR6 ATDs is similar to that

of mGluR LBDs, ANP receptor LBDs, and LIVBP. Thus, the

‘twisted’ conformation of NR2B ATD is unique among the

iGluRs and other families of receptors derived from LIVBP.

Zinc binds to NR2B ATD clamshell cleft

To reveal the molecular determinant for a zinc-binding site in

NR2B ATD, we solved the structure in complex with ZnCl2.

The crystallographic analysis of NR2B ATD shows that

the molecular determinants for the zinc-binding site are

distinct from those proposed for the hydrophobic pocket that

is implicated in phenylethanolamine sensitivity. Five zinc-

binding sites (Zn1–5) within the NR2B ATD protomer

are unambiguously identified by calculating the anomalous

difference Fourier map (Figure 5A). No anomalous peak is

observed when difference Fourier map at the zinc peak

wavelength (1.28 Å) is calculated from data for zinc-free

crystals, indicating that zinc does not remain bound during

protein purification and that the zinc anomalous peak ob-

served in the zinc-bound NR2B ATD structure is derived from

zinc added to the crystallization solution. Among the five

zinc sites identified, Zn2, Zn3, and Zn5 are on the protein

surface, whereas Zn4 is at the crystallographic contact that is

likely to be non-physiological and Zn1 is at the inter-domain

cleft of the NR2B ATD clamshell containing residues

implicated in zinc sensitivity. Although binding of zinc ions

to the Zn2, 3, and 5 sites in the physiological condition

cannot be ruled out, there seems to be no functional role
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for these zinc ions because mutations of residues His 359, His

60, and His 311 to alanine, at the respective sites, do not cause

any major change in zinc sensitivity as assessed by dose–

response analyses by two electrode voltage-clamp (TEVC)

(Supplementary Table SIII). Consistent with this, earlier

electrophysiological studies have suggested the presence of

one zinc-binding site in NR2A ATD and NR2B ATD owing to

the observation that the zinc dose–response curves fit well

with single-binding site isotherms with a Hill coefficient

value of B1 (Paoletti et al, 1997; Rachline et al, 2005).

Thus, for the above reasons, we attribute Zn1 to be the

zinc-binding site responsible for the voltage-independent

zinc inhibition.

Zn1 is situated at the ‘hydrophilic pocket’ at the outer end

of the R1–R2 inter-domain cleft and is in close proximity to

the polar residues Glu 47, Asp 102, His 127, Asp 265, Asp

283, and Glu 284. Binding of Zn1 involves direct contact of

His 127 from R1 and Glu 284 from R2, which stabilizes the

closed clamshell conformation. Although involvement of His

127 has been shown earlier (Rachline et al, 2005), the critical

function of Glu 284 was not predicted from the mGluR1 LBD-

based homology model (Marinelli et al, 2007) because of a

large difference between the model and the current crystal

structure derived from the unexpected B501 twist between

R1 and R2 as described above. Other polar residues including

Glu 47 and Asp 265 face the Zn1 site, however, with no direct

contact with Zn1; the distances between the side chains of

Glu 47 and Asp 265 and Zn1 are 6.1 and 6.3 Å, respectively.

Mutations of both Glu 47 and Asp 265 to alanine have been

shown earlier to reduce zinc sensitivity by four-fold (Rachline
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et al, 2005). Thus, although we cannot assign water mole-

cules at the current resolution (3.2 Å), it is plausible that the

function of Glu 47 and Asp 265 may be to facilitate binding of

Zn1 indirectly by placing water molecules at the coordination

position through hydrogen bonds. Asp 101, Asp 102, and Thr

103 are on the loop that extends from b3 and towards the Zn1

site (Figure 5B). Among those residues, Asp 102 is facing the

Zn1 site but is distant from the zinc ion (46 Å). Consistently,

the Asp102Ala mutation has been shown earlier to have no

effect on zinc sensitivity (Rachline et al, 2005). In contrast,

Asp 101 and Thr 103 are the residues that affect both

ifenprodil and zinc sensitivities when mutated to alanine

(Rachline et al, 2005). In the current crystal structure, both

Asp 101 and Thr 103 face the opposite direction to Zn1 and

form a hydrogen bond network with the main chain nitrogens

of Gly 129 and Ser 130 (Figure 5B). Thus, Asp 101 and Thr

103 are critical residues required to maintain the architecture

of the Zn1 pocket and the NR2B ATD clamshell structure as a

whole.

To test the physiological relevance of the current crystal

structure, we have mutated newly identified residues around

the Zn1 site, including Asp 283 and Glu 284, to alanine and

quantified zinc inhibition by measuring IC50 using TEVC.

Consistent with the current crystal structures, removal of the

zinc coordinating carboxylate groups by the Glu284Ala mu-

tation causes approximately a five-fold increase in the IC50

value (Figure 5C; Supplementary Table SIII). In contrast, an

alanine mutation of Asp 283, a residue that does not partici-

pate in the coordination of Zn1, only shows minor effect.

The His127Ala/Asp283Ala/Glu284Ala mutant has a similar

degree of change in IC50, indicating that disruption of either

His 127 or Glu 284 is sufficient to hamper the coordination of

Zn1. In all of the cases above, the mutants are only able to

shift the IC50 values to 5–6 mM. A similar effect has been

observed for the analysis of the high-affinity zinc inhibition

site in NR2A where mutations of the binding residues were

only able to shift the IC50 values to the low micromolar range

(Fayyazuddin et al, 2000). This is most likely attributed to the

presence of the low-affinity Zn2þ inhibitory site conserved

across the NR2 subtypes as suggested earlier by Neyton and

colleagues (Fayyazuddin et al, 2000).

Furthermore, mutation of all of the above residues has

little or no effect on ifenprodil sensitivity indicating that the

residues involved in Zn1 binding are distinct from those

involved in ifenprodil binding (Figure 5D). Earlier work has

shown that binding of zinc and ifenprodil compete with each

other (Rachline et al, 2005). Although a structural mechan-

ism cannot be established at present because of the lack of an

NR2B ATD structure in the ifenprodil-bound form, one pos-

sible explanation for the observation is that zinc blocks

ifenprodil from binding to the NR2B ATD clamshell by

keeping the clamshell conformation closed. Taken together,

the current crystal structure and electrophysiological data

clearly shows the direct involvement of His 127 and Glu

284 and indirect involvement of Glu 47 and Asp 265 in the

coordination of Zn1.

The NR2A-containing NMDA receptors are also allosteri-

cally inhibited by extracellular zinc (Paoletti et al, 1997) but

with much higher sensitivity than NR2B-containing NMDA

receptors; IC50 values of zinc inhibition are 16 and 760 nM for

NR2A and NR2B, respectively (Rachline et al, 2005). As the

ATDs of NR2A and NR2B are 56% identical, we predict that

the architecture around the Zn1 site is similar. Therefore, the

current structure of NR2B ATD along with an amino-acid

sequence alignment allows us to propose a potential mechan-

ism underlying the difference in zinc sensitivity between the

two subunits. The most notable difference between NR2A

and NR2B is on the loop that extends from b strand 1 and

90° 90°

NR2BA

B

GluR2 GluR6

R1

R2

R1

R2

Figure 4 Surface presentation of NR2B ATD and non-NMDA receptor ATDs. Surface presentation is coloured by hydrophobicity. (A) The R1
domains of NR2B, GluR2, and GluR6 ATDs are superimposed and viewed onto the dimer interface from the same angle. GluR6 ATD has a
notable hydrophobic patch composed of five hydrophobic residues in R2, whereas NR2B ATD has a smaller hydrophobic patch formed by Tyr
175, Tyr 179, and Leu 204. (B) The surface presentation viewed from the ‘bottom’ of the R2 domain. Unlike non-NMDA receptor ATDs, NR2B
ATD contains a large hydrophobic patch composed of Tyr 164, Trp 166, Ile 168, Phe 194, Val 195, Pro 226, Ile 227, Tyr 389, Val 390, and Trp 391.
Hydrophobicity was calculated using the hotpatch server (http://hotpatch.mbi.ucla.edu/). The surface was coloured from hydrophobic to
hydrophilic in a dark orange to white gradient.
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contains Glu 47 (Figure 5B). The equivalent region of NR2A

has additional two amino-acid residues and contains two

histidine residues, His 42 and His 44, which are critically

involved in zinc sensitivity (Fayyazuddin et al, 2000).

Consequently, His 42 and His 44 may be able to position

themselves in close proximity to Zn1 and form more ideal

coordination along with His 128 (His 127 in NR2B), and Asp

283 (Glu 284 in NR2B). Although the architecture of the zinc-

binding site between NR2A and NR2B may be distinct from

each other, we propose that a difference in the number of

direct coordination (four for NR2A and two for NR2B) may be

one of the factors underlying the large difference in zinc

sensitivity between the two subunits.

NR2B ATD in zinc-free form

The structure of NR2B ATD in a zinc-free form also captured

the closed cleft conformation in the current crystallographic

study (Figure 6A). Except for the Zn1-binding site where

there is a major structural rearrangement, the overall con-

formation of NR2B ATD in the zinc-free and zinc-bound

forms are similar to each other with a root-mean-square

deviation of 0.56 Å over 356 Ca positions (Supplementary

Figure S5). This observation is in contrast to LIVBP, which

undergoes a robust B501 clamshell closure on binding of

amino-acid ligands (Trakhanov et al, 2005) or to the mGluR1

LBD that also experiences significant clamshell closure on

binding of L-glutamate (Kunishima et al, 2000). Careful

inspection of the crystal structures in both the zinc-bound

and zinc-free forms reveals the presence of electron density

that represents one Na ion and three Cl ions deep in the

middle of the clamshell cleft between the zinc-binding site

and the hydrophobic pocket (Figure 6A and B). The presence

of Na and Cl ions are further confirmed by calculating

anomalous difference Fourier maps using data collected on

rubidium and bromide soaked crystals, respectively (Figure

6C and D). Rubidium, in general, binds better to sites, which
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are selective for potassium. However, in the current structure,

it is able to replace the Na ion-binding site at the identical

position indicating that the cation-binding site is not highly

specific for Na ion. This observation is in parallel with Na ion

binding in the LBD of GluR6 where Na ions can be substi-

tuted with other monovalent cations, including Liþ , Kþ ,

Rbþ , and Csþ (Plested et al, 2008). Binding of the Na and

Cl ions involves residues from both R1 and R2 domains

(Figure 6B). Cl1 is located proximal to the hydrophobic

pocket and coordinated by main chain nitrogens of Ile 133,

Leu 261, and side chain of Gln 153, whereas Cl2 is proximal

to the zinc-binding site and is coordinated by side chains of

Ser 131 and Arg 292. Cl3 is located at the back side of the Zn1

site, which involve the main chain nitrogens of Trp 285, Asp

286, and Tyr 287 and the side chain of Arg 292 (Figure 6B).

The Na ion is located in between Cl1 and Cl2 and is

coordinated by main chain oxygen of Ser 131 and Phe 146

with the coordination distance of 2.2 and 2.3 Å, respectively

(Figure 6B). These values are within an appropriate range of

the mean carbonyl-Naþ and carboxylate-Naþ distance ob-

served in the Protein data bank (2.42 Å) (Harding, 2002).

Sodium ions are most commonly coordinated by six ligands

(Harding, 2002), thus, we anticipate that several water

molecules are also involved in the Naþ coordination even

though they are not clearly visible in the current structure

because of insufficient resolution. Can physiological concen-

tration of Naþ and Cl� induce clamshell closure? To date,

there has not been any known mechanism for a functional

modulation of NMDA receptors by monovalent ions such as

Naþ and Cl� like the ones observed in kainate receptors

(Plested and Mayer, 2007; Plested et al, 2008). Indeed, we

have not observed any significant change in the current–

voltage relationship by substitutions of Naþ by Liþ or Rbþ

or Csþ and Cl� by NO3
� at 150 mM salt concentration (data

not shown). Thus, although binding of Naþ and Cl� can take

place at the NR2B ATD clamshell cleft, it is likely not a driving

force for the clamshell closure.

It has recently been suggested that the NR2B ATD clamshell

can go through spontaneous oscillation between the open-cleft

and closed-cleft conformations favouring channel opening and

closing, respectively, and that binding of modulators including

zinc and phenylethanolamine shifts the conformational equili-

brium of ATD to the closed-cleft (Gielen et al, 2009). One of the

hallmarks of the NR2B NMDA receptors is its low ion channel

open probability and it has been shown that ATD is critically

involved in this process (Gielen et al, 2009). This implies that
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Figure 6 Structure of NR2B ATD in the zinc-free form. (A) The crystal structure of NR2B ATD in the absence of zinc at 2.8 Å. The structure is
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NR2B ATD is favoured to be in the closed conformation even in

the absence of zinc and phenylethanolamine. Thus, it is plau-

sible that the current crystallographic study on the zinc-free form

may have simply captured the closed conformation—a more

favourable conformation than the open conformation in NR2B.

Residues at the R1–R2 interface have a significant function

in controlling the activity of NMDA receptors containing

NR2B. One notable residue is, Tyr282, a residue from R2

located deep in the middle of the clamshell cleft (Figure 6B).

Mutating Tyr 282 to cysteine and modifying it with methane

thiosulfonate (MTS) derivatives has been shown to dramati-

cally increase the open probability by locking the clamshell

open (Gielen et al, 2009). Furthermore, the alanine mutation

of Arg 292 from R2, which forms an inter-domain hydrogen

bond with the main chain oxygen of Tyr 282 and indirect

inter-domain interactions through Cl2 and Cl3, lowers po-

tency for zinc and ifenprodil inhibitions (Supplementary

Table SIII). On the basis of our current crystal structure, it

seems possible that the MTS modification of Tyr 282 or the

Arg292Ala mutation perturbs the architecture around the

clamshell cleft and destabilizes the closed conformation,

thereby shifting the conformational equilibrium of ATD to

the open-cleft form and favouring the opening of the ion

channels or the lowering potency of allosteric inhibition.

Taken together, the cleft residues at and around the ion-

binding site are important structural motif that controls the

opening and closing of the NR2B ATD clamshell and the ion

channel activity.

Hydrophobic pocket

The NR2B ATD clamshell contains a hydrophobic pocket at

the inner core of the cleft, which is formed by a cluster of

hydrophobic residues including Ile 133, Ile 150, Phe 176, Phe

182, Tyr 231, and Leu 261 (Figures 2, 6 and 7 in orange

sticks). Among these residues, mutations of the residues from

the R2 domain including Ile 150, Phe 176, Phe 182, Tyr 231,

and Leu 261 to alanine have been shown earlier to reduce

ifenprodil sensitivity significantly (Perin-Dureau et al, 2002;

Alarcon et al, 2008; Mony et al, 2009). Ile 133 is a residue

from the R1 domain, which extends towards the core of the

hydrophobic pocket. Indeed the side chain of Ile 133 is in van

der Waals contact with Ile 150, Phe 176, Tyr 231, and Leu 261.

To test whether this newly identified residue in the hydro-

phobic pocket, Ile 133, is involved in ifenprodil sensitivity,

we have mutated Ile 133 to alanine and serine and tested for

an ifenprodil dose–response using TEVC. Consistent with the

crystal structure, the Ile133Ala or Ile133Ser mutation has a

significant effect on ifenprodil sensitivity (Figure 7B). For

both Ile133Ala and Ile133Ser, data points can be fitted to two-

site model, but not one-site model Hill equation. It has been

shown earlier that the NR2B subunit contains two ifenprodil-

binding sites: a voltage-independent high-affinity site at ATD

and voltage-dependent low-affinity site at the ion channel

pore (Williams, 1993; Perin-Dureau et al, 2002). Thus, the

high- and low-affinity components in the Ile 133 mutants

likely represent the ATD-mediated inhibition and the ion

channel block present at �20 mV holding potential, respec-

tively (Figure 7B). The efficacy of the ATD-mediated ifenpro-

dil inhibition is 40% of the peak current in these mutants,

whereas the efficacy is B90% in wild type. Of interest to note

is the two modes of ifenprodil binding suggested recently by

homology modelling of NR2B ATD and docking of ifenprodil

(Mony et al, 2009). One possible explanation for the half

reduction of the ATD-mediated inhibition is that the mutation

may have hampered one of the two binding modes.

Furthermore, consistent with the crystal structure, mutations

of residues distant from the core of the hydrophobic pocket

including Pro148Gly, Pro148Ser, and Tyr356Ala, have little or

no effect on ifenprodil sensitivity (Figure 7B; Supplementary

Table SIII). Taken together, the hydrophobic pocket in the

NR2B ATD cleft is a key locus for ifenprodil sensitivity and

contains residues from both the R1 and R2 domains.

Unfortunately, despite extensive crystallization trials, we

have not been able to obtain the structure of the NR2B

ATD-ifenprodil complex.

Conclusion

This study provides the first molecular view of an NMDA

receptor ATD. The novel ‘twisted’ conformation of the NR2B

ATD maps previously unpredicted residues in the zinc-bind-

ing site and the putative phenylethanolamine-binding site.

Together with structure-based mutagenesis and electrophy-

siology, the study provides a molecular insight into the

recognition of zinc and elements that contribute to inhibition

by phenylethanolamines. Furthermore, this study has identi-

fied sodium- and chloride-binding sites at the clamshell cleft,

I133

H127
E284

Y356

I150

P148

F176

Y231
F182

D283

α6

α4

α3

α2

L261

1.0

0.8

0.6

0.4

0.2

0.0

0.001 0.01 0.1 1 10 100

R
el

at
iv

e 
re

sp
o

n
se

[Ifenprodil] (μM)

A B

I133S
I133A

Y356A

η2

Figure 7 Hydrophobic pocket is the critical structural locus for ifenprodil sensitivity. (A) Hydrophobic residues responsible for ifenprodil
sensitivity are clustered at the inner core of the NR2B ATD clamshell (in orange). Residues that have been mutated but had only minor effect are
coloured in grey. (B) Dose response of ifenprodil showing the critical involvement of Ile 133 in ifenprodil inhibition. Mutation of Ile 133 to
alanine or serine causes dramatic shift in ifenprodil sensitivity, whereas mutation of Tyr 356 to alanine has only minor effect. Data points for
both wild type and Tyr356Ala are fit to a single-site model, whereas those for the Ile 133 mutants are fit to a two-site model described in
‘Materials and methods.’ The IC50 values calculated by the fits are listed in Supplementary Table SIII. The wild-type response is shown as a
dotted line. All the currents were measured at the holding potential of �20 mV to minimize voltage-dependent pore block by ifenprodil.

Crystal structure of NR2B ATD
E Karakas et al

The EMBO Journal VOL 28 | NO 24 | 2009 &2009 European Molecular Biology Organization3918



the function of which remains to be established. The struc-

tural information obtained in this study may be applicable to

understand the function of other NMDA receptor subunits.

Materials and methods

Expression, purification, and crystallization of NR2B ATD
The ATD of the rat NR2B (Ser 31 to Met 394) containing the
Asn348Asp mutation was N-terminally fused to human placental
alkaline phosphatase signal peptide followed by an octa-histidine
tag and a thrombin cleavage site. The NR2B ATD proteins were
expressed as secreted proteins using the High Five (Trichoplusia
ni)/baculovirus system (DH10multibac) (Fitzgerald et al, 2006).
The High Five cell culture (1.5�106 cells/ml) grown in ESF921
medium (Expression System) was infected with the recombinant
virus harbouring NR2B ATD at multiplicity of infection of 5. After
48 h, the cell culture medium was collected, concentrated, and
dialysed against 200 mM NaCl and 20 mM Tris–HCl (pH 8.0) using
tangential flow filtration (Pall Corporation). NR2B ATD protein was
purified by metal chelate chromatography, cleaved by thrombin to
remove the N-terminal octa-histidine tag, and further purified by
size-exclusion chromatography.

To produce SeMet-incorporated NR2B ATD protein, the culture
medium was substituted with methionine-free ESF921 media 24 h
after viral infection. After 4 h, DL-SeMet (Sigma) at 50 mg/l was
added to the culture and the media was harvested 72 h after
infection. The proteins were purified as described above in the
presence of 2.5 mM methionine in all buffers to minimize oxidation
of the SeMet residues.

Both the native and the SeMet incorporated NR2B ATD proteins
were crystallized by hanging-drop vapour diffusion at 301C by
mixing the protein (8 mg/ml) with a reservoir solution containing
3.1–3.5 M NaCl, 2% PEG 400, 0.1 M MgCl2, and 0.1 M acetate (pH
5.5) in 2:1 ratio. Crystals were cryoprotected in 4.6 M NaCl, 2%
PEG400, and 0.1 M acetate (pH 5.5). Heavy atom derivatives for
phasing were obtained by soaking native crystals in the cryosolu-
tions supplemented with 0.2 mM Ta6Br16, 0.2 mM K2AuBr4, or 1 mM
ErCl3 for 1–5 h.

The NR2B ATD-zinc co-crystals were grown in a similar
condition but in the presence of 0.1 mM ZnCl2. The crystals were
further soaked against a solution containing 3 M NaCl, 1 mM ZnCl2,
and 0.1 M MES (pH 6.0) for 2 h and cryoprotected in 4.7 M NaCl,
1 mM ZnCl2, and 0.05 M MES (pH 6.0). To obtain bromide and
rubidium derivatives, the zinc-free NR2B ATD crystals were soaked
against 2 M Li2SO4, 1 M NaBr, and 0.1 M acetate (pH 5.5) for 2 h or
2 M RbCl and 1 M Mg-acetate (pH 5.0) for 1 min, respectively, and
crystals were flash frozen in the soaking solutions.

Data collection and structural analysis
All x-ray diffraction data were collected at the X25 and X29
beamlines at National Synchrotron Light Source and processed
using HKL2000 (Otwinowski and Minor, 1997). Diffraction data for
heavy atom derivatives was collected at their respective peak
wavelengths (Supplementary Table SI). Initially, three Ta6Br16

cluster sites were found by an SAD experiment at 6 Å resolution
using SOLVE (Terwilliger, 2004). The phase information from the
Ta6Br16 sites was used to calculate sites for Er, Au, and SeMet.
MIRAS was done using the program SHARP (de La Fortelle and
Bricogne, 1997). At this stage, a readily interpretable electron
density map was obtained (Supplementary Figure S3). A poly-
alanine model was built for 296 out of 365 residues using the

program RESOLVE. The rest of the model was built manually using
O (Jones and Kjeldgaard, 1997) and COOT (Emsley and Cowtan,
2004). Structural refinement was performed using the program
PHENIX (Adams et al, 2002) and REFMAC (Murshudov et al, 1997).

The structure of the zinc derivative was solved by molecular
replacement using coordinates of the R1 and R2 domains of NR2B
ATD as search probes and by conducting a multi-domain search in
the program PHASER (McCoy et al, 2007). Prime and Switch
phasing was carried out to remove model bias using the program
RESOLVE (Terwilliger, 2004). The zinc atoms were unambiguously
identified based on the anomalous difference Fourier map.

Isothermal titration calorimetry
NR2B ATD protein purified as above was extensively dialysed
against a buffer containing 20 mM Tris–HCl (pH 7.4) and 150 mM
NaCl and concentrated to B20 mM. Calorimetric titrations were
conducted on VP-ITC (MicroCal) and by successive injections of the
zinc titrant (0.8 mM ZnCl2) in 5ml increments for 40 times at 271C.
Data analysis was done using the software ORIGIN 7.0 (OriginLab).

Electrophysiology
Recombinant NR1/NR2B NMDA receptors were expressed by co-
injecting 0.1 ng of the rat NR1-1a and NR2B cRNAs at a 1:2 ratio
(w/w) into defolliculated Xenopus laevis oocytes. The two-electrode
voltage-clamp recordings were performed using agarose-tipped
microelectrodes (0.4–1.0 MO) filled with 3 M KCl at a holding
potential of �40 and �20 mV for zinc dose–response and ifenprodil
dose–response analysis, respectively. The bath solution contained
5 mM HEPES, 100 mM NaCl, and 0.3 mM BaCl2 at pH 7.3 (adjusted
with KOH). Peak currents were measured by adding 100mM each of
the agonists, glycine and L-glutamate, and NR2B ATD-mediated
inhibition was monitored in the presence of agonists and various
concentrations of ifenprodil or ZnCl2. For all of the zinc containing
buffers, pH was readjusted. The data were acquired and analysed by
the program Pulse (HEKA). Dose–response curves were plotted and
fit using the program IgorPro (Wavemetrics).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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