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Internal representations of smell in the Drosophila brain
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Abstract

Recent advances in sensory neuroscience using Drosophila olfaction as a model system have revealed brain
maps representing the external world. Once we understand how the brain’s built-in capability generates the
internal olfactory maps, we can then elaborate how the brain computes and makes decision to elicit
complex behaviors. Here, we review current progress in mapping Drosophila olfactory circuits and discuss
their relationships with innate olfactory behaviors.

Introduction

All animals are born with a priori capabilities that
are hardwired into the nervous system for instinc-
tive behaviors independent of experience. The
internal representation of the external world is
then evolved as a result of the brain’s built-in
capability to derive meaning from information in
the surrounding environment. A cognitive map is
therefore established through the experience-
dependent modifications in the prewired brain
circuits. To elicit adaptive behavioral responses,
the spatiotemporal pattern of sensory stimuli
perceived by an animal must be ultimately trans-
lated into neural codes in the brain. How infor-
mation of the outside world is transmitted to the
inside of the brain? This big question has been
extensively addressed in a small but functional
neural circuit: the olfactory system of the fruit fly,
Drosophila  melanogaster.  Drosophila  exhibits
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many complex behaviors controlled by an olfac-
tory system that has been proven to be genetically
and anatomically similar to those in the verte-
brates [1-5]. Amenability of the genetic toolbox in
the Drosophila allows manipulation of identified
brain neurons with such a spatial and temporal
precision that results in unprecedented insight into
the design and function of the brain. Advances in
Drosophila sensory neuroscience are clarifying
information processing mechanisms that underlie
a response in the brain to a stimulus [6]. Here, we
limit our discussion on the current progress in
mapping brain circuits involved in the Drosophila
olfactory behaviors. Understanding the neural
maps representing olfaction will have a great
impact on the insight of molecular and cellular
mechanisms involving in the olfactory memory
formation [7, 8].

Organization of the Drosophila olfactory circuitry

Figure 1 shows the organization of the Drosophila
olfactory circuitry. Odors are detected by a large
family of odorant receptors (ORs) expressed in
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Figure 1. Organization of the Drosophila olfactory system.
Odorants are detected by the olfactory sensory neurons
(OSNs) located on the antenna (Ant, green) and maxillary
palp (MP, magenta) sending their axons via the antennal
nerve (AN) and the labial nerve (LN), respectively, to the
antennal lobe (AL, orange); where the projection neurons
(PN, red) receive the information and relay to the mushroom
body (MB) and the lateral horn (LH). This picture is a mon-
tage of four sets of confocal images taking from the whole
head (grey), brain (blue), antenna (Ant), and maxillary palp
(MP) separately from different flies. The head image is de-
rived from auto-fluorescence excited with 633 nm laser. MB
and AL (orange) are segmented from the whole brain stained
by nc82 antibody. OSNs in the antenna and MPs are labeled
by ORS83b-GFP. The single PN image is derived from
MARCM visualization of GH146-GALA4.

olfactory sensory neurons (OSNs) on the maxillary
palp and the antenna [9]. Individual OSNs express
only one, or a few, but rarely, OR on the ciliated
endings of OSN dendrites [10-12]. The axons of
OSNs expressing the same OR converge to a single
glomerulus in the ipsilateral antennal lobe (AL)
[13—15], where they synapse with projection neu-
rons (PNs) that project to the mushroom body
(MB), the lateral horn (LH) [9] and inhibitory and
excitatory local neurons (LNs), that might mod-
ulate the information among glomeruli [9, 10, 16].

The OR-to-OSN map

Drosophila has a family of 60 OR genes that
encode 62 odorant receptors determining the odor-
response profile of the OSNs [14, 17-20]. Each OR
gene expresses in a subset of OSNs except Or83b
that acts as a co-receptor in ca. 70% OSNs [20—
23]. Flies lacking OR83b display severe defects in
many different olfactory behaviors but with their

lifespan extended [22, 24]. In Drosophila larva,
each of the paired olfactory dorsal organs houses
21 OSNs. Each OSN expresses a single OR in
addition to ORS83Db, including 11 ORs that are not
expressed in the adult [25-27]. In Drosophila adult,
the recognition of odors is accomplished by
sensory hairs distributed over the surface of the
third antennal segment and the maxillary palp.
There are about 2600 OSNs housed inside three
different types of hair-like sensilla: the club-shaped
basiconic, the long-pointed trichoid and the short
coeloconic sensilla [28-31]. The OSNs housed
inside the distal-lateral trichoid and the proximo-
medial basiconic sensilla project their axons to
lateral-anterior and proximo-medial AL glomerul-
1, respectively [32—34]. In the maxillary palp, OSNs
projecting via the labial nerve to the AL are all
contained in the basiconic sensilla. Every individ-
ual flies has about 1000 sensilla, each contains 1-4
OSN:ss [35]. The bipolar OSNs project dendrites in
sensillar lymph interacting with odorants and
project axons to the AL, where olfactory infor-
mation is processed. In the sensillar lymph, olfac-
tory binding proteins secreted by the support cells
may act as transport vehicles for the odorants to
bind with the OR. Odorant-OR binding then
activates a heterotrimeric G-protein that influence
the action potentials transmitted via axons to the
AL [36-38]. Intriguingly, a single ORN can exhibit
both stimulatory and inhibitory responses to
different odorants [39]. A chemotopic map of OR
responses to 110 odorants indicates that OSN
responses are chemical class-dependent [39, 40].

The OSN-to-PN map

In the ALs, the axons of OSNs project to about 50
glomeruli, where they synapse with dendrites of
intrinsic LNs and output PNs. Axons of OSNs
with the same OR expression converge to the same
AL glomerulus suggesting stereotypic connectivity
with PNs [15, 41-43]. Co-convergence to VAG6
glomerulus from two different classes of OSNs
labeled by different OR Gal4 lines is an exception
[32, 33]. Therefore, a topographic map of OR
responses in the peripheral sensory organs is
further represented in the ALs [44]. Stereotypic
connectivity between the OSNs and PNs has been
confirmed by functional calcium imaging [20] and
2-deoxy glucose mapping [45, 46] showing that



different odorants elicit defined glomerular activ-
ities. In the ALs, odor responses of the PNs are
modulated by local neurons that form widespread
intra- as well as inter-glomerular connections
among many glomeruli [16, 47-50]. It has been
proposed that odor coding is sharpened at ALs by
GABAergic LNs that inhibit background signals
from adjacent glomeruli [49]. However, this can
not explain why PNs are more broadly tuned to
different odors than OSNs [20]. A newly discov-
ered population of cholinergic LNs with multi-
glomerular processes responds broadly to odors
[16] suggesting that PNs receive information from
a combination of glomerulus-specific OSN affer-
ents and “diffused” LN excitation [16].

The PN-to-LH map

PNs convey olfactory information from paired
ALs to high brain centers, MB and LH, via three
different tracks: the inner antenna-cerebrum track
(iIACT), the medial ACT (mACT), the outer ACT
(0ACT). One AL has about 50 glomeruli, each
innervated by dendrites of 3—7 PNs [44, 51, 52]. As
a general principle, one PN sends dendrites into
only a single glomerulus. PN axons may directly
project to LH via mACT and oACT. Most PNs,
however, project in parallel via iACT to the LH en
route MB calyx. A typical PN usually gives 1-4
branches in the calyx and has many termini in the
LH. How do the PNs carry olfactory information
to the high brain centers? Using genetic mosaic
FLP-out technique, visualization of individual
PNs has revealed that the axonal branch patterns
of PNs coming from the same AL glomerulus
display stereotypy in the LH among different flies
[51, 52]. These axonal termini of PNs in the LH
appear to segregate into three distinct spatial
domains: anterior ventral, posterior dorsal and
lateral ventral regions [53]. Visualization of gene
expression patterns from more than 4000 GAL4
lines have revealed three different classes of LH
local neurons that have projection patterns corre-
sponding to the distribution of PN axonal termini
[53]. These results suggest a stereotypic connectiv-
ity between specific PNs and specific LH neurons
via iIACT and mACT. If so, a topographic map of
olfactory responses in the ALs is further repre-
sented in the LH [53]. It has not been addressed if
PNs via oACT also give stereotyped termini in the
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LH and if their types are different from those via
1ACT and mACT.

The PN-to-KC map

The spatial distribution of PN axon branching
patterns is highly stereotyped in the LH but less
clear in the MB [51, 52]. The paired MBs play an
essential role in insect olfactory behaviors [54].
One MB in adult Drosophila consists of ~2500
intrinsic Kenyon cells (KCs) derived from four
neuroblasts [55, 56], each of which sequentially
generates five distinct classes of KCs: y, o'ff,
pioneer «f}, early off and late aff respectively [57,
58]. KCs give dendrites exclusively in the calyx,
where they synapse with PN axonal termini. KC
axons constitute a massive parallel tract called
peduncle that extends ventral-frontally and splits
at its distal end: one projecting dorsally and the
other medially. The dorsal projection is composed
of o and o lobes, and the medial projection is
composed of 5, f” and 7y lobes [59]. Stereotyped
odor-evoked activity occurs both in the AL
glomeruli [20, 60] and the MB calyx [61]. As odor
concentration increase, more glomeruli are acti-
vated in the AL and more KCs are activated in the
calyx [20, 61]. PN axonal termini appear to form
three concentric zones in the MB calyx [53].
Analysis of topographic connectivity between
PNs and KCs in the MB calyx has been hampered
due to insufficient optical resolution and lack of
anatomical landmarks. The dual MARCM tech-
nique allowing visualization of individual PNs and
KCs in two different colors may help to answer
this question [62].

Olfactory information processing for innate
behaviors

Innate behaviors, such as courtship ritual, are
instinctive actions of an animal without prior
experience. These inherited programs offer a
unique opportunity to use genetic and anatomic
analysis to dissect and characterize the neural
substrates of complex behaviors. In insects, avoid-
ance or attraction to different odors is essential for
the exploitation of food sources, selection of mates
and escaping from harmful situations. A central
question in olfaction is how the brain discriminates
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different odors to elicit an appropriate behavioral
response. In Drosophila, stereotypic connectivity
maps of OR-to-OSN [39], OSN-to-PN [32, 33],
PN-to-LH [51, 52] and PN-to-KC [61] begin to
reveal a hierarchy of information processing with
increasing convergence, which enable higher-order
centers to integrate information relayed separately
from lower-order neurons. Although stereotypic
connectivity maps from OSNs to PNs to KCs give
the impression of a straight and simple path,
neural computation for odor discrimination
clearly requires multiple steps of information
integration as it makes its way through the brain.
A single OSN can exhibit both excitatory and
inhibitory responses to different odorants [40]. In
the ALs, odor responses of the PNs are modulated
by inhibitory as well as stimulatory local neurons
[16, 50]. In the MBs, KCs may receive both
stimulatory and inhibitory stimuli from PNs since
some of them are cholinergic but others are
GABAergic [49]. Immunohistochemical labeling
and GFP expression patterns in Cha-GAL4 and
GAD-GAL4 lines indicate that KCs are also
composed of both cholinergic and GABAergic
neurons (Lin and Chiang, unpublished observa-
tion). Such complexity of odor representations and
information integration hierarchies greatly reduces
the possibility of overlap between spatiotemporal
patterns elicited by two different odorants, making
them easier to be discriminated or memorized and
recalled [63].

A Drosophila uses CO, released by other
stressed flies as an alarm signal [64]. CO, is sensed
by antennal OSNs via a pair of chemosensory
receptors, Gr2la and Gro63a [65]. CO,-responsive
neurons relay information to only a single glo-
merulus in the AL, the V glomerulus [64]. Inhibi-
tion of synaptic transmission in  the
CO,—responsive neurons, using a temperature-
sensitive shibire gene, blocks the avoidance re-
sponse to CO,. It remains unclear how the brain
sense and apply the CO,—induced signals in
computation. Chemical ablation of the MBs abol-
ishes olfactory attraction but not repulsion behav-
iors suggesting that the computation center for the
attractive odors is likely at the MB and for the
repulsive odors is likely at the LH [66]. Consis-
tently, blocking neurotransmitter release from
MBs using the temperature sensitive shibire has
no effect on CO, avoidance behavior [64], implying
that LH may involve in computing the CO,—induced

signals. However, this hypothesis remains to be
verified since PNs connecting V glomerulus to
higher brain centers have not been mapped and
LH specific drivers are still unavailable for the
manipulation of its biological functions.

Drosophila courtship represents the most com-
plex innate behavior. A courting male performs a
stereotypical sequence of ritual activities beginning
with attracting to a receptive female and then he
orients, taps, sings, licks and finally bends his
abdomen to copulation [67]. Males exhibit homo-
sexual courtship if a transcription factor gene
called fruitless (fru) has defect. Although the roles
of fru remain unclear, neurotransmission from
brain neurons expressing fru is essential for normal
courtship behavior [68]. Intriguingly, fru-express-
ing neurons appear to interconnect with each
other, as indicated by that fru-expressing OSNs
and PNs innervate the same set of AL glomeruli
(VL2a, DAL, VA1 and VAG6). fru expresses also in
the MBs of the y and «/f lobes, and courtship
conditioning is impaired when the expression of
male-specific fru transcript is disrupted in MB y
neurons [69]. A recent study indicates that fru is
also associated with patterns of aggressive behav-
ior that is sex-specific and with the formation of
dominance rank in a group of flies [70]. These
finding suggest that, aggression and mating are
closely intertwined in Drosophila, as also in
mammals [71, 72].

Concluding remarks

How the olfactory circuitry executes various dif-
ferent programs of innate behaviors? Olfactory
information converges from OSNs to PNs in the
AL and then diverges from PNs to KCs of the MB
and principle neurons of the LH suggesting that
information processing must perform in the AL to
translate peripheral odor stimuli into a neural
coding intelligible to neurons of high brain centers.
Where the MB and LH send the processed
information to execute specific behavior outputs?
Are there other higher brain centers involving
olfactory information processing? Screening mu-
tants with defects in olfactory behaviors have
identified a set of genes involving in particular
olfactory innate behaviors [65, 68]. Mapping the
expression of these olfactory behavior essential
genes should reveal additional, if any, brain



circuits involving in the computation of olfactory
information. Each step of information processing
in the hierarchy can then be characterized by the
manipulation of neuronal activities and gene
expressions with various genetic tools available.
Identification of genes (intracellular hierarchy) and
circuits (intercellular hierarchy) involving in par-
ticular olfactory behaviors promises to reveal the
secret of the brain’s operations in the information
acquisition, processing, transmission, storage, and
retrieval.
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