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Background. Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor
growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results
in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations
with geometry uniquely suitable for selectively killing neovasculature. Methodology and Principal Findings. Actinium-225
(225Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is
capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and
blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In
a mouse-model of prostatic carcinoma, 225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate
specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of
paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in 225Ac-E4G10 treated
tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following
225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following 225Ac-E4G10 therapy.
Conclusions. The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential
chemotherapy, is an effective approach to cancer therapy.
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INTRODUCTION
Inhibition of tumor angiogenesis is an emerging treatment strategy

for solid tumors [1]. Endothelium-targeting peptides, antibodies,

antibody fragments and nanoparticles have been used to target the

tumor vasculature in various preclinical and clinical studies

[2,3,4]. The ultimate goal of these anti-angiogenic strategies is to

inhibit endothelial cell proliferation in tumors via either targeted

delivery of toxins, cytotoxic drugs or radiation to endothelial cells,

interference with intercellular signaling pathways in endothelial

cells (e.g. anti-VEGF therapies) [5,6,7,8,9] or disruption of endo-

thelial cell interaction with the extracellular matrix (e.g. avb3

integrin inhibitors) [10]. Endothelial cells, unlike cancer cells, are

generally genetically and phenotypically stable and do not mutate

readily; therefore, development of drug-resistance is not a major

concern in therapies directed against endothelial cells [11].

Tumor growth inhibition via anti-angiogenic therapy has certain

practical limitations to its implementation [12]. A second wave of

angiogenesis initiated by the residual tumor cells can ensue when an

anti-angiogenic treatment is discontinued, leading to a late re-

surgence in tumor growth [13,14]. Therefore, a combination of anti-

angiogenic therapy and cytotoxic therapy that targets the tumor cells

directly has been suggested to prevent tumor recurrence. However,

destruction of tumor vasculature following anti-angiogenic therapy

can decrease blood flow to tumors and potentially prevent the

delivery of anti-tumor therapeutics to the tumor cells [12]. Recently,

Jain et al have shown that anti-angiogenic therapies may transiently

increase the efficiency of the tumor vasculature, and that adminis-

tration of cytotoxic therapy in that period may result in enhanced

cytotoxic drug delivery to tumor cells [15]. Therefore, optimal

scheduling of anti-angiogenic and chemotherapy may be required to

overcome the pharmacokinetic barriers and could potentially result

in long-term tumor remissions.

Vascular endothelial (VE) cadherin is a vascular endothelial cell

specific molecule that is expressed constitutively throughout the

entire vasculature and takes part in the formation of adherens

junctions between adjacent endothelial cells [16]. It is required for

the assembly of vascular structures during angiogenesis and main-

tenance of vascular integrity. The monoclonal antibody E4G10

specifically binds to an epitope exposed only on the monomeric,

unengaged form of VE cadherin; the epitope gets masked on

transdimerization to form inter-cellular junctions (Figure S1). This

allows for selective targeting of endothelial cells in nascent tumor

vasculature as well as of VE cadherin positive endothelial
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progenitor cells (EPCs) in bone marrow and peripheral circulation.

Since E4G10 does not bind established vasculature, no vascular

leak and hemorrhage is observed in normal organs of mice after

E4G10 administration [17]. The described properties make

E4G10 antibody an excellent targeting moiety for anti-angiogenic

therapy.

Alpha particles are extraordinarily potent, short-ranged radia-

tions with geometry uniquely suitable for selectively killing

neovasculature. A single alpha particle track through the nucleus

can kill a cell [18]. Therefore, we coupled E4G10 to chelated

Actinium-225 (225Ac, an atomic-sized generator of an alpha

particle-emitting isotope cascade [19,20]), to produce an agent

that could potently and selectively kill neovascular endothelium as

well as the endothelial progenitors in the bone marrow and blood.

Here we demonstrate, in a mouse model of prostatic carcinoma,

the safety and efficacy of the 225Ac-E4G10 construct as a selective

anti-angiogenic agent. Treatment with 225Ac-E4G10 suppressed

tumor growth, enhanced tumor cell apoptosis and prolonged

animal survival, without gross or histopathological toxicity in

normal tissues or their vasculature. Synchronized administration

of 225Ac-E4G10 and paclitaxel resulted in enhancement of the

anti-tumor response.

METHODS

Animals
Male BALB/c and athymic nude mice (NCr nu/nu), 4–12 weeks

of age, were obtained from Taconic, Germantown, NY. All animal

studies were conducted according to the NIH Guide for the care and

use of laboratory animals and were approved by the Institutional

Animal Care and Use committee at Memorial Sloan Kettering

Cancer Center.

Flow cytometry
Flow cytometric analysis of H5V and LNCaP cells was performed

with anti-CD31 (Pharmingen, San Diego, CA), E4G10, J591 (anti-

prostate specific membrane antigen) or isotype control antibodies

(R&D systems, Minneapolis, MN) and fluorochrome-labeled

secondary antibodies. Samples were acquired on an FC500 flow-

cytometer (Beckman Coulter, Fullerton, CA) and analyzed with

FlowJo software (Tree Star Inc., Ashland, OR).

Preparation, quality control and administration of

Radioimmunoconjugates
225Ac (Oak Ridge National Laboratory, Oak Ridge, TN) and

Indium-111 (111In; Perkin Elmer, Boston, MA) were conjugated to

E4G10 or non-specific rat IgG2a isotype antibody using a two-step

labeling method, as described [21]. Routine quality control of the

labeled antibody was performed using instant thin layer chroma-

tography to estimate the radio-purity and cell binding assay to

determine the immunoreactivity. Mice were anesthetized and then

injected intravenously (in retro-orbital venous plexus) with the

radioimmunoconjugate. The injected volume was 100ml and the

antibody dose was 0.6–0.7 mg per 50 nCi injection. Typical

radiochemical purity was 95–99%.

Gamma Camera imaging and biodistribution
For gamma-imaging, anesthetized animals were imaged (in prone

position) on X-SPECTTM scanner (Gamma Medica, Northridge,

CA), a dedicated rodent imaging device, at specified time-points

post-injection with 230mCi of 111In-E4G10. Images were acquired in

a 56656616 image matrix using photopeak energy windows of

172 keV610% and 273 keV610% and no zoom. For organ

distribution studies, mice were sacrificed at indicated time-points

post-injection with 111In-E4G10 (3mCi) and their blood and the

specified organs were harvested. The organs were washed in distilled

water, blotted dry on gauze, weighed and the activity of 111In (15–

550 keV window) was measured using a gamma-counter (COBRA

II, Packard Instrument Company, Meriden, CT). Samples of the

injectate (100ml) were used as decay correction standards. Percentage

of injected dose of 111In per gram of tissue weight (%ID/g) was

calculated for each animal and the mean %ID/g was determined at

each time-point, as described previously [22,23].

Tumor implantation in mice
LNCaP prostate tumor cell line was obtained from the American

Type Culture Collection (Rockville, MD). The LNCaP cells were

grown in RPMI 1640 medium supplemented with L-glutamine,

10% fetal bovine serum and penicillin-streptomycin in an

atmosphere of 5% CO2 and air at 37 degrees C. The cells were

harvested and 1 million or 5 million cells were injected in 200mL

matrigel (BD Biosciences, Palo Alto, CA) into the right flank of the

animal. Animals were checked twice weekly for the development

of palpable tumors at the site of injection.

Tumor therapy studies
In the first 225Ac-E4G10 monotherapy study, mice were engrafted

with 1 million LNCaP cells. The test group received 50 nCi of
225Ac labeled E4G10. Controls included vehicle (received 1%

human serum albumin), unlabeled E4G10 (received 7 mg E4G10),
225Ac labeled isotype control (received 50 nCi [0.6 mg] of 225Ac

labeled irrelevant rat IgG2a). Treatments were administered at 3,

5, 7 and 10 days post-implantation of xenografts. In the second
225Ac-E4G10 monotherapy study, mice were injected with 5

million LNCaP cells and treated on days 3, 5, 7 and 10 days post

xenograft implantation with either vehicle (received 1% human

serum albumin), 50 nCi of 225Ac labeled irrelevant isotype control

IgG mixed with 7 mg of unlabeled specific E4G10 (dual control) or

50 nCi of 225Ac labeled E4G10. For the combination therapy

study, 225Ac labeled E4G10 or isotype control antibody (50 nCi)

was administered at 16, 18, 21 and 23 days post-implantation with

5 million LNCaP cells. Paclitaxel (20 mg/kg i.p.) was administered

to the specified groups on days 27, 30, 34 and 37. Tumor size was

measured with calipers, and tumor volume was calculated by the

formula 0.526d1
26d2, where d1 is the smaller diameter and d2 is

the larger diameter. Animals were followed over long term for

survival advantage. Mice were bled retro-orbitally on described

days and serum prostate specific antigen (PSA) was determined

using an immunoassay kit (Alpco diagnostics, Windham, NH).

Histopathologic toxicity studies
BALB/c mice (n = 5) were injected four times with 100 nCi 225Ac-

E4G10 (twice the dose at same schedule as the tumor therapy

experiments). Animals were sacrificed 10 days after last injection

and their lungs, kidneys, heart, liver and spleen were excised, fixed

and examined by light microscopy.

Anatomic Pathology and Immunohistology
Tumors or normal organs from mice were harvested, formalin-

fixed and paraffin-embedded. Three micron sections were stained

with hematoxylin and eosin (H&E), Periodic–acid Schiff (PAS) and

Masson’s trichrome, and evaluated with an Olympus BX45 light

microscope, as described [24]. Eight micron tumor-sections were

immunostained with goat anti-CD31 (Santa Cruz Biotechnology,

Santa Cruz, CA) and mouse anti-smooth muscle actin (a-SMA;

Sigma, St. Louis, MO) as primary antibodies, biotinylated
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secondary antibodies and streptavidin-fluorophores as tertiary

reagents. Images were acquired on a Leica TCS SP2 AOBS

confocal laser-scanning microscope. Apoptosis was detected in

8 mm tumor-sections using the TUNEL assay (In situ cell death

detection kit; Roche). Immunoperoxidase staining was performed

for von Willebrand factor and caspase-3, using rabbit anti-von

Willebrand factor (vWF; Dako, Carpinteria, CA) and rabbit anti-

cleaved caspase-3 (Cell signaling technology, Beverly, MA), and

imaged on a Zeiss Axiovert 200M microscope. Acquired images

were evaluated using ImageJ software (http://rsb.info.nih.gov/ij).

For each of the four random fields (5716428um) of tumor sections

stained with vWF, the number of pixels of positive staining was

divided by the total number of pixels, and expressed as

a percentage. The degree of apoptosis was estimated in each

randomly selected field (11426857um) by calculating the

percentage of TUNEL positive cells out of the total number of

cells (as measured by nuclear counterstaining).

Electron Microscopy
Pieces of tumor tissue were fixed in 4% paraformaldehyde, post-

fixed in 1% Osmium tetroxide and later embedded in epon. Ultra-

thin sections (200–400 Å) were cut on nickel grids, stained with

uranyl acetate and lead citrate and examined using a transmission

electron microscope (Hitachi H-7500, Pleasanton, CA).

Statistical analyses
Graphs were constructed using Prism (Graphpad software Inc.,

SanDiego, CA). Statistical comparisons between the experimental

groups were performed by either the Student’s t-test (two-group

comparison) or one-way ANOVA with Bonferroni’s multiple

comparison post-hoc test (three-group comparison). All statistical

comparisons were two sided and the level of statistical significance

was set at p,0.05.

RESULTS

E4G10 binds to cultured endothelial cells but not to

established vasculature
The binding specificity of the monoclonal antibody E4G10 for

endothelial cells of the neovasculature was determined in vitro and

in vivo by its binding to H5V mouse endothelioma cells, and by the

lack of specific uptake in normal tissues by imaging and

biodistribution studies (Fig. 1). In flow cytometric studies, E4G10

bound with high affinity to H5V cells (Fig 1A). X-SPECT gamma

camera images at various time-points post-injection with 111In

trace-labeled E4G10 showed no organ-specific uptake of the

radioactivity in BALB/c mice (Fig. 1B). The radioactivity

gradually cleared from the blood pool and other vascularized

organs such as heart and lungs. At later time-points, the

radioactivity remained only at the sites of IgG catabolism such

as the liver and spleen. Detailed quantitation of the biodistribution

was performed by sacrificing animals at defined time-points post-

injection with 111In-E4G10 and measuring the radioactivity in

harvested organs (Fig. 1C). Therefore, the post-mortem data

confirmed the lack of specific uptake of E4G10 in normal tissues

seen in whole body imaging study.

Figure 1. Characterization of E4G10. A, Flow cytometric analysis showing the binding of E4G10 to H5V cells, a mouse endothelioma cell line, in
comparison to binding of the positive control anti-CD31 or isotype control antibody. B, X-SPECT gamma camera images of mice (prone, nose at top)
at 24, 48 and 72 hours post-injection with 111In labeled E4G10. C, Biodistribution of 111In labeled E4G10 at specified time-points post-injection. Data
are mean 6 S.E.M. %ID/g = percentage of injected dose per gram of tissue.
doi:10.1371/journal.pone.0000267.g001
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225Ac-E4G10 inhibits the growth of prostate cancer

xenografts in mice
E4G10 did not bind the human LNCaP prostate tumor cells in

flow cytometric studies (Fig. 2A). The therapeutic efficacy of the
225Ac generator labeled E4G10 was tested in two separate

experimental trials in athymic male mice that were xenografted

with human LNCaP prostate tumors. 225Ac-E4G10 was thera-

peutically effective and significantly inhibited the growth of

tumors. None of the control treatments had any significant effects

on tumor growth (Fig. 2B & C; Fig. S2). Serum PSA, a surrogate

marker for total body prostate tumor cell burden [25], was used to

confirm the anti-tumor effects and was significantly lower (

p,0.001 vs. dual control; One way ANOVA and Bonferroni’s

post-hoc analysis) in 225Ac-E4G10 treated animals as compared to

the controls (Fig. 2D). As a consequence of the anti-tumor effect,

the median survival of 225Ac-E4G10 treated animals was longer

relative to the control groups (Fig. 2E). Therefore, even though

E4G10 did not bind to the LNCap tumors directly, treatment with
225Ac-labeled E4G10 resulted in an inhibition of tumor growth,

lower serum PSA and enhanced survival in prostate cancer

xenograft-bearing mice.

Effects of 225Ac-E4G10 treatment on tumor histology
To dissect the mechanism of growth inhibition by 225Ac-E4G10,

dual control and 225Ac-E4G10 treated animals were sacrificed at

14 and 22 days after tumor implantation (four animals per group

at each time-point), and their tumors were excised and analyzed.

The tumors in control animals were grossly hemorrhagic and on

light microscopy, displayed infiltration of tumor cell masses by

a network of markedly dilated, poorly defined, anastomosing

vascular spaces filled with extravasated RBCs (Fig. 3A; Fig. S3). In

contrast, 225Ac-E4G10 treated tumors showed groups of cohesive

tumor cells separated by bands of acellular hyalinized stroma

containing small, discrete and well-formed capillary vessels, which

were lined by endothelial cells resting on a basement membrane

(visualized with trichrome stain). Immunostaining for vWF, an

endothelial cell marker, was significantly greater in the control

tumors (p = 0.0002; Student’s t-test) relative to the 225Ac-E4G10

treated ones (Fig. 3B & C). Additionally, TUNEL assay showed

a significantly greater percentage of apoptotic cells in the 225Ac-

E4G10 treated tumors (p = 0.0125; Student’s t-test) relative to the

control tumors (Fig. 3B & D). The TUNEL assay data was

confirmed by cleaved caspase-3 immunohistochemistry (data not

shown).

225Ac-E4G10 treatment leads to a relatively

normalized tumor vasculature
To investigate whether treatment with 225Ac-E4G10, in addition

to inhibiting tumor angiogenesis, also resulted in normalization of

the residual tumor vasculature, tumor cross-sections were dual

Figure 2. 225Ac-E4G10 therapy inhibits the growth of LnCap prostate tumors. A, Flow cytometric analysis depicting the lack of E4G10 binding to
LnCap cells; J591, mouse-anti prostate specific membrane antigen is the positive control. Mouse and rat isotype controls were also evaluated. B,
Photographs of in situ (left) and excised tumor (right) in a representative dual control and 225Ac-E4G10 treated animal. C, Tumor volume in various
treatment groups at described time-points. D, Serum prostate specific antigen (PSA) levels in the three treatment groups at 22 days post-
implantation with 5 million LnCap cells. E, Kaplan Meier curve showing enhancement of survival with 225Ac-E4G10 treatment. Data in C, D are mean
6 S.E.M. Scale bar, 1 cm.
doi:10.1371/journal.pone.0000267.g002
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immunostained with CD31 (endothelial cell marker) and a-SMA

(mural cell marker). The majority of the vascular endothelial cells

in 225Ac-E4G10 treated tumor had pericyte coverage, whereas

little coverage was observed in the tumor treated with the control

agents (Fig. 4A & Movie S1). Transmission electron microscopy

revealed sinusoid like blood vessels in dual control tumor, which

were lined by tumor cells and filled with extravasated erythrocytes

(RBCs, Fig. 4 B). In contrast, most vessels in 225Ac-E4G10 treated

tumors appeared mature and were lined by a continuous layer of

endothelial cells resting on a basement membrane and surrounded

by a pericyte.

Sequential administration of 225Ac-E4G10 and

paclitaxel enhances the anti-tumor response
The structural normalization of residual tumor vasculature

following 225Ac-E4G10 treatment prompted us to ask whether

administration of a cytotoxic drug in that time-period would

enhance the overall anti-tumor response via greater accessibility of

the drug to tumor cells. Monotherapy with 225Ac-E4G10 signifi-

cantly inhibited tumor growth and enhanced animal survival

compared to controls as was observed in previous experiments

(Fig. 5A & B). However, subsequent bi-weekly administration of

paclitaxel for two weeks, starting four days after the last 225Ac-

E4G10 injection resulted in a significant enhancement of the

anti-tumor response compared to 225Ac-E4G10 monotherapy.

Median survival for the specific combination treatment group

was 182 days versus 113 days for the animals that received

225Ac-E4G10 alone or 84 days for animals that received 225Ac

labeled isotype antibody and paclitaxel. Three animals each from

the 225Ac-E4G10 and 225Ac-isotype control (IgG2a) group were

sacrificed before commencement of paclitaxel therapy for

histopathologic analyses of the tumor vasculature. As observed

earlier (Fig. 3A), the tumor vasculature in 225Ac-E4G10 treated

animals, though less extensive than that seen in 225Ac-isotype

treated animals, displayed a relatively greater structural maturity

(data not shown).

225Ac-E4G10 is not toxic at therapeutically active

doses
The animals that received 225Ac labeled E4G10 or the isotype

control antibody initially lost body weight (,10%), which was

recovered within 2 weeks. Histopathologic toxicity was studied in

animals (n = 5) that received twice the dose of 225Ac-E4G10 at

same schedule as in the therapy experiments. No evidence of

vascular leakage or hemorrhage was observed in any of the

examined normal organs (Fig. 5C). Additionally, the organs did

not reveal any other gross or histopathologic abnormality.

DISCUSSION
We describe a novel cancer therapy of unusual potency and

selectivity and elucidate its mechanism. Collectively, our data

demonstrate the safety and effectiveness of specific delivery of

short-ranged alpha particles to endothelial cells in inhibiting

endothelial cell proliferation and tumor new vessel formation,

Figure 3. Effect of 225Ac-E4G10 therapy on tumor histology, vascularity and apoptosis. A, Light microscopy depicting numerous RBC-filled vascular
spaces (arrows) in dual control tumor and fewer, but relatively normal-looking vessels (arrowheads) in the 225Ac-E4G10 treated tumor. B, Top:
Immunohistochemical staining of tumor-sections for vWF, an endothelial cell marker (top). TUNEL staining of tumor sections to detect apoptosis
(bottom). Quantification of vWF staining (C) and apoptosis (D) in 4 randomly selected fields. Data are mean 6 S.E.M.
doi:10.1371/journal.pone.0000267.g003
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resulting in suppression of tumor growth. Additionally, the

treatment resulted in a relatively mature remaining tumor

vasculature and an enhanced overall anti-tumor response when

combined with subsequently administered chemotherapy.

Most anti-angiogenic therapies that are being developed or have

been approved target cytokines, growth factors or their receptors.

However, tumors may circumvent therapies aimed at a single

signaling pathway via up-regulation of alternate pathways and

therefore, targeting of multiple angiogenic pathways has been

suggested [26,27,28]. Selective killing of endothelial cells in the

tumor neovasculature or their progenitors with a cytotoxic agent is

an attractive alternative approach to overcome the acquired

resistance. We exploited the exclusive binding specificity of the

antibody E4G10 for the endothelial cells of the neovasculature as

well as VE Cadherin positive EPCs in the bone marrow and blood

via its proposed targeting of an epitope exposed only on the

monomeric, unengaged form of VE cadherin, which gets masked

on the formation of adherens junctions between adjacent

endothelial cells (Fig. S1). Therefore, based on the proposed

mechanism, the antibody should not target established vascula-

ture. Our in vivo imaging and post-mortem biodistribution data

confirm the proposed selectivity of the antibody for neovasculature

and EPCs. The uptake of radioactivity seen in the lungs and the

heart was due to the presence of radiolabeled antibody in the

blood pool in these organs and it declined in proportion to the

blood clearance of radiolabeled antibody. As a consequence of

selective targeting of a minor subpopulation of cells, in conjunction

with the short range of the alpha particles, no discernible toxicity

was seen in therapy studies with 225Ac-E4G10. Additionally,

administration of supra-therapeutic doses of 225Ac-E4G10 in mice

did not result in any histopathologic abnormality, vascular leak or

hemorrhage in normal organs as has been seen with other VE-

cadherin-binding antibodies that disrupt adherens junctions in

established vessels [17]. This result further validated the

pharmacokinetic data that E4G10 did not specifically accumulate

in normal tissues with established blood vessels as the target VE-

cadherin epitope for EG410 is masked in those vessels.
225Ac was considered as a suitable cytotoxic agent for coupling

to E4G10 because of its four alpha particle emissions per decay of

a 225Ac atom, which contributes to the enhanced the potency of
225Ac labeled constructs. 225Ac labeled antibodies have been

shown to be safe and potent anti-tumor agents in mouse models of

solid prostatic carcinoma, disseminated lymphoma, intra-perito-

neal ovarian cancer and in a rat model of meningeal neuroblas-

toma [20,21,23,29]. The high energy (5–8 MeV) and short path-

length (50–80 mm) makes alpha particles the most appropriate

form of radiation for targeting of individual endothelial cells [21].

Even though EG410 did not bind to the LNCaP cells, treatment

with 225Ac labeled E4G10 resulted in an inhibition of tumor

growth, lower serum PSA and enhanced survival in prostate

cancer xenograft-bearing mice, accompanied by a decrease in

tumor blood vessel density (as evidenced by vWF immunostain-

ing). Although 225Ac-E4G10 inhibited tumor growth, it did not

eradicate tumors when used as a single agent. The result is

consistent with the vascular-targeting mechanism of action of
225Ac-E4G10. Since the tumor cells are not targeted, the residual

tumor cells (as seen in Fig. 3a) can initiate a second phase of

angiogenesis which results in a resurgence in tumor growth.

Figure 4. 225Ac-E4G10 treatment results in a relatively normal remaining tumor vasculature. A, Greater coverage of tumor blood vessels (CD31
positive) by pericytes (a-SMA-positive cells) in 225Ac-E4G10 treated tumor relative to dual control. B, Transmission electron micrographs of blood
vessels in dual control and 225Ac-E4G10 treated tumor. The dual control tumor contains extravasated RBC-filled vascular spaces that are not lined with
endothelial cells, whereas blood vessels in 225Ac-E4G10 treated tumor display a continuous endothelial lining (arrow) resting on a basement
membrane (BM) that is shared with the surrounding pericyte. Scale bar, 50 mm
doi:10.1371/journal.pone.0000267.g004
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Specific depletion of VE-cadherin positive endothelial cells of the

tumor neovasculature with 225Ac labeled E4G10 is one explana-

tion for the observed decrease in tumor blood vessel density.

Recently, it has been shown that hypoxic stress can enhance the

release of endothelial progenitors from the bone marrow and their

recruitment and incorporation into tumor vasculature [30].

Selective alpha particle-mediated killing of the VE-cadherin

positive late endothelial progenitors in the bone marrow or

circulating endothelial progenitor cells in the blood stream (which

are readily accessible to the radiolabeled antibody) is another

mechanism via which 225Ac-E4G10 may have inhibited tumor

angiogenesis. Our related manuscript (Nolan et al, submitted)

describes, in a Lewis lung cancer model, the mobilization of VE

cadherin positive EPCs from the bone-marrow into the peripheral

circulation and their incorporation into tumor neovessels.

Treatment with 225Ac-E4G10 resulted in a significant decrease

in the bone-marrow derived endothelial cell progenitors in the

tumor and a lower tumor vessel density. Another plausible

contribution to the pronounced inhibition of tumor growth,

besides direct cytotoxicity to tumor neovascular endothelial cells or

their progenitors, can be from the local release of a-particle

emitting daughters of 225Ac (francium-221, astatine-217 and

bismuth-213[19] in the tumor microenvironment as a result of
225Ac decay following binding of 225Ac-E4G10 to VE cadherin

positive endothelial cells in nascent tumor vasculature.

Histopathologic examination of control tumors revealed

a network of dilated, anastomosing vascular spaces that formed

between tumor cell nests and were filled with extravasated RBCs.

Although these tumors displayed significantly greater staining for

vWF as compared to 225Ac-E4G10 treated ones, most of these

vascular channels were not lined by endothelial cells and therefore,

did not stain for vWF. Moreover, most vWF positive structures in

the control tumors did not possess a lumen and may represent

endothelial sprouts growing into the tumor [31]. These findings

are consistent with previous data on this tumor model [32,33]. A

transient breach in vessel wall integrity secondary to growth factor-

driven active endothelial cell proliferation and sprouting may have

resulted in the extravasation of RBCs and the resultant intra-

tumoral hemorrhage [31].

Blood vessels in tumors are abnormal in structure (dilated and

torturous with abnormal basement membrane and inadequate

pericyte coverage) and function (hyperpermeable; [11]. Tumor

Figure 5. A combination of 225Ac-E4G10 with paclitaxel enhances the anti-tumor response. A, Tumor volume in the four treatment groups over
time. Data are mean 6 S.E.M. B, Kaplan Meier survival curve of treated animals showing significant enhancement of animal survival when 225Ac-
E4G10 therapy is followed by a course of paclitaxel. C, Absence of histopathologic damage in normal organs, assessed 10 days after cessation of
225Ac-E4G10 treatment.
doi:10.1371/journal.pone.0000267.g005
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vessel leakiness correlates closely with histologic tumor grade [34].

A functionally compromised vasculature also precludes efficient

delivery of oxygen and chemotherapeutics to the tumors.

Furthermore, tumor hypoxia makes cancer cells resistant to

radiation damage [35]. Previous studies have shown that in-

hibition of VEGF signaling can ‘‘normalize’’ the blood vessels and

therefore, overcome these pharmacokinetic barriers to drug and

oxygen delivery [15,35]. An interesting finding in our study was

that treatment with 225Ac-E4G10, in addition to reducing tumor

blood vessel density, also resulted in a structurally mature residual

tumor vasculature wherein a greater proportion of vascular

endothelial cells had pericyte coverage as compared to control

tumors. This could be attributed to pruning of immature tumor

vessels via killing of excess endothelial cells or EPCs by treatment

with 225Ac-E4G10. Therefore, inhibition of abnormal endothelial

cell proliferation and the resultant vessel leak may possibly be the

reason for the relatively normal residual tumor vasculature seen in

our studies. The role of pericyte coverage in inhibiting metastasis

in a murine pancreatic cancer model has been shown recently

[36]. An inverse correlation between pericyte coverage and

hematogenous spread has also been observed in colorectal cancer

patients [37]. The effects of 225Ac-E4G10 treatment on tumor

metastasis and invasiveness are currently being investigated.

Combination therapy wherein 225Ac-E4G10 treatment was

followed by a course of paclitaxel resulted in an enhancement of

the overall anti-tumor response. One plausible explanation for that

effect is that the structural normalization of tumor vasculature by
225Ac-E4G10 treatment resulted in increased efficiency of the

vessels in delivering the chemotherapeutic to the tumor cells,

thereby leading to synergy. Alternatively, the two treatments may

also have an additive effect by killing two distinct populations of

cells (endothelial and tumor cells). Paclitaxel has also been shown

to possess anti-angiogenic properties [38] but recent data by

Kerbel et al suggests that the cremophor-based paclitaxel

formulation (which was used in our experiments) does not have

a significant impact on the tumor vasculature or viability of

circulating endothelial progenitors [39]. Nonetheless, killing of

tumor cells by a cytotoxic agent can possibly decompress blood

vessels in a tumor and therefore, increase blood flow. The exact

mechanism of the enhanced overall response is currently being

investigated.

Our results allude to the development of an integrative

approach to cancer therapy wherein 225Ac-E4G10 therapy is

precisely timed with chemotherapy or radiation to maximize the

delivery of the chemotherapeutic and to improve radiation

sensitivity of tumors. Delivering the two treatment modalities in

a carefully planned temporal fashion can potentially result in

a synergistic effect on tumor-cell killing. Importantly, our data

suggest that targeting the tumor cells or their microenvironment

may not be necessary to slow cancer growth if the angiogenic

progenitors, a relatively small but possibly sensitive cell population,

can be selectively depleted.

SUPPORTING INFORMATION

Figure S1 Schematic depicting the selectivity of E4G10 for the

unengaged form of VE-cadherin molecule and the effect of 225Ac-

E4G10 therapy on tumor vasculature.

Found at: doi:10.1371/journal.pone.0000267.s001 (2.79 MB TIF)

Figure S2 225Ac-E4G10 therapy inhibits the growth of LnCap

prostate tumors. A, Tumor volume in various treatment groups

(n = 5) at 30 days post-implantation with 1 million LnCap cells in

Matrigel. B, Serum prostate specific antigen (PSA) levels in the

different treatment groups at 42 days post-implantation C, Kaplan

Meier survival curve showing enhancement of survival with

225Ac-E4G10 treatment. Data in A, B are mean 6 s.e.m.

Asterisk, P,0.05 vs. [Ac-225] IgG2a isotype control (One way

ANOVA and Bonferroni’s post-hoc analysis).

Found at: doi:10.1371/journal.pone.0000267.s002 (2.30 MB TIF)

Figure S3 Effect of 225Ac-E4G10 therapy on tumor histology at

14 days post-tumor implantation. Light microscopy revealing

numerous dilated, anastomosing, RBC-filled vascular spaces in

dual control tumor and fewer, but relatively normal-looking vessels

in 225Ac-E4G10 treated tumor.

Found at: doi:10.1371/journal.pone.0000267.s003 (5.03 MB TIF)

Movie S1 Treatment with 225Ac-E4G10 leads to relatively

mature remaining tumour vasculature. Three dimensional re-

construction stack of serial Z-plane slices (z-stack) through the

225Ac-E4G10 treated tumor section, immunostained for endo-

thelial cells (CD31, green) and pericytes (SMA, violet). The

endothelial cells display significant pericyte coverage. Image

dimensions, 1406140 mm; 72 sections in z-dimension; total

thickness, 12 mm.

Found at: doi:10.1371/journal.pone.0000267.s004 (6.94 MB AVI)
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