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Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the
area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic
scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is
thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in
vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms
underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon
microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel
cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with
photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines.
Synaptic PSD-95 turned over rapidly (median retention times sr ; 22–63 min from P10–P21) and exchanged with PSD-
95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines
captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual
PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times
increased with developmental age (sr ; 100 min at postnatal day 70) and decreased dramatically following sensory
deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD
molecules and PSDs are tuned to regulate PSD size.
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Introduction

Most excitatory synapses terminate on dendritic spines
[1,2], tiny membrane protrusions that contain the postsynap-
tic density (PSD). In the rodent neocortex, spines begin to
develop during the first postnatal week and increase in
number during the first month of life [2–4], coincident with
the development of synapses [5] and functional circuits [6,7].
Spine stability increases with developmental age [8–10]. In the
adult brain, a subset of spines and their synapses can persist
for months and maintain their size [11–14]. Spines vary in
size, and their volumes are proportional to the area of the
PSD [15] and synaptic strength [16–18]. The PSD is a
proteinaceous complex composed of receptors, adhesion
molecules, and signaling complexes [19–21]. In cultured
neurons, PSD proteins exhibit turnover, degradation, and
trafficking over hours [22–25]. How can synapses maintain
their size and strength over months with unstable constitu-
ents?

To begin to address this question, we studied the dynamics
of PSD-95 in single PSDs in vivo [26]. We focused on PSD-95
because it is a major organizer of the PSD. PSD-95 is part of a
family of multi-domain PDZ-domain scaffolding proteins
[21]. It is the most abundant PSD component [20,27,28] and
has multiple binding partners in the synapse [21]. PSD-95
binds NMDA-Rs [29,30] and also interacts with AMPA-Rs via
TARPs [31,32]. PSD-95 multimerizes [33] and appears very
early at nascent synapses [34,35] where it clusters NMDA-Rs
[30,36]. PSD-95 is thought to provide ‘‘slots’’ for AMPA-Rs,
and PSD-95 levels at individual synapses could thus deter-
mine synaptic strength [37–40]. Despite its important
structural role, biochemical measurements in dissociated

cultures have suggested that PSD-95 and other associated PSD
proteins have short half-lives [23,40–42].

Here we used optical methods to probe the turnover of
PSD-95 in single PSDs in vivo. PSD-95 was bound to
individual PSDs for approximately 30 min before diffusing
into the dendrite and to other synapses. The synaptic
retention time was developmentally regulated and experi-
ence-dependent. We further analyzed the trafficking of PSD-
95 at individual synapses and found that the kinetic
parameters are intricately tuned so that larger spines hold
onto PSD-95 for longer and are also more efficient at
capturing diffusing PSD-95. Therefore, the kinetic interac-
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tions between PSD-95 and the PSD may help to determine
PSD size.

Results

Stable PSDs in the Developing Neocortex In Vivo
To probe the dynamics of PSD-95 clusters, we transfected

layer (L)2/3 pyramidal neurons with the red fluorescent
protein mCherry [43] and PSD-95-GFP [44] using in utero
electroporation [45,46] (Figure 1A). An imaging window was
implanted above the somatosensory cortex, allowing for daily
high-resolution in vivo imaging [47]. It has been shown that
the overexpression of PSD-95 can enhance synaptic strength

[38,39] and spine size [48]. However, analysis of spine
morphology and synaptic strength in brain slices harvested
from the experimental mice revealed that, under our
conditions, the expression of PSD-95-GFP in vivo did not
change synaptic strength or spine size (Figure S1). Using dual-
laser two-photon laser scanning microscopy, we imaged the
structure of dendrites and their spines (red mCherry
fluorescence, R) and the distribution of PSD-95 (green GFP
fluorescence, G) (Figure 1B–1D). Green fluorescence was
concentrated in puncta, with negligible diffuse fluorescence
[44,49]. Most PSD-95-GFP puncta were in the tips of dendritic
spines.
During the second week of life, L2/3 circuitry undergoes

rapid experience-dependent development [5–8]. Long-term
imaging revealed that spines appear and disappear [8] from
day to day, consistent with high rates of synapse formation
and elimination (Figure 1C). The fraction of spines gained or
lost decreased with developmental age (fractional daily
turnover: postnatal day (P)10–P13, 0.48 6 0.06, n¼ 5 animals,
335 spines; P14–P16, 0.39 6 0.05, n ¼ 5 animals, 523 spines;
P17–P21, 0.33 6 0.04, n¼ 4 animals, 257 spines). Despite this
rapid turnover of dendritic spines, some developing spines
and their PSDs exhibited considerable stability. The PSD-95-
GFP signal intensity in individual spines fluctuated little over
imaging sessions lasting 90 min ((G� �G)/ �G¼ 14 6 11%, n¼ 9
spines; (R � �R)/ �R ¼ 18 6 14%, n ¼ 9 spines) (Figure 1E).
During these imaging sessions, we did not observe clear
movements of PSD-95-GFP clusters in the dendrite, nor
transitions of apparent shaft clusters to spine clusters and
vice versa.
Spines that persisted over days typically had stable PSD-95-

GFP clusters: over imaging sessions separated by one day,
large (bright) PSD-95-GFP clusters were likely to remain
large, whereas small (dim) PSD-95-GFP clusters remained
small. Therefore the relative brightness of individual PSD-95-
GFP puncta was highly correlated from day to day (Figure 1F
and 1G) (R¼ 0.71, p , 0.01). These measurements show that a
subpopulation of dendritic spines and their PSDs are
remarkably stable as early as the second postnatal week of life.

Rapid Redistribution of Synaptic PSD-95
To explore the mechanisms that contribute to the

maintenance of PSD-95 puncta, we tagged PSD-95 with
photoactivatable GFP (paGFP) [50]. Under baseline condi-
tions, paGFP showed negligible fluorescence (excitation
wavelength k ; 1,030 nm) (Figure 2A–2C, pre-pa). Brief
two-photon excitation at k ; 810 nm irreversibly converted
the dark paGFP into a bright fluorophore (paGFP*) (Figure
2B and 2C, pre-pa vs. 0 min), revealing green puncta in
photoactivated spines. Within photoactivated spines, PSD-95-
paGFP* fluorescence decayed with an exponential time
course over tens of minutes, followed by a long tail (Figure
2D). The exponential component reflects escape of PSD-95-
paGFP* from individual spines; the long tail after the
exponential decay is expected for trapped diffusion along
the dendrite (proportional to t�½; Equation S1, Protocol S1).
One day after photoactivation, green fluorescence was
undetectable (Figure 2B and 2C; 24 h).
The retention time (sr), defined as the apparent time

constant for the exponential component of the fluorescence
decay (see Materials and Methods), measures the average time
over which PSD-95 molecules are associated with individual

Figure 1. A Subpopulation of PSD-95 Clusters Is Stable over Several Days

(A) Transfection of L2/3 pyramidal neurons by in utero electroporation.
At E16, DNA was injected into the lateral ventricle (LV) and an electrical
current was applied. At P8, imaging windows were implanted above the
barrel field. High-resolution chronic imaging was performed from P10 to
P21.
(B) Dendritic segment transfected with PSD-95-GFP (green) and mCherry
(red).
(C) Time-lapse images showing turnover of PSD-95 clusters (box C, from
[B]). Red arrows indicate gains; blue arrows indicate losses.
(D) Time-lapse images showing stable PSD-95 clusters (box D, from [B]).
(E) Fractional changes in PSD-95-GFP (green) and mCherry (red)
fluorescence from four representative spines. Lines were offset for clarity.
(F) Relative brightness of three PSDs (from [D]) over days. (Gtotal ¼
fluorescence summed over all spines).
(G) Brightness of individual PSDs is correlated across two imaging
sessions 1 d apart (n¼ 3 animals, 51 spines).
DOI: 10.1371/journal.pbio.0040370.g001
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spines. Although the initial phase of the fluorescence decay
could be fit with a single exponential, multiple time
constants, reflecting the complex and heterogeneous behav-
ior of PSD-95 in single spines, likely shape the fluorescence
decay. These measurements demonstrate that PSD-95 is
retained by individual PSDs for 1 h or less, much shorter
than the lifetime of dendritic spines and their PSDs and
shorter than the half-life of PSD-95 (approximately 36 h)
[23,41].

With increasing developmental age, PSD-95 became less
dynamic. The retention time increased gradually (P10–P30; R
¼0.50, p , 0.0002) (Figure 2E), resulting in approximately a 3-
fold increase from early postnatal development (P10, smedian¼
22 min) to adulthood (.P60, smedian ¼ 105 min). The short
retention times early during development could reflect the
high plasticity potential of young cortical synapses during the

barrel cortex critical period [7,8]. Note that at particular
developmental ages, retention times were broadly distrib-
uted, with values spanning over one order of magnitude
across spines (Figure 2E).

The Retention Time Reflects Interactions of PSD-95 with

the PSD
What mechanisms keep PSD-95-paGFP* in the spine and

thus determine sr? The retention time of PSD-95-paGFP*
could reflect unbinding of PSD-95 from the PSD (with time
constant soff¼ 1/koff). Alternatively, PSD-95 could be trapped
in the spine head because of diffusional compartmentaliza-
tion by the narrow spine neck (with time constant sesc ¼ Vsp

<n/Do, where Vsp is the spine volume, <n the diffusional
resistance of the spine neck, and Do the free diffusion
coefficient of PSD-95-GFP) [51,52]. To distinguish between

Figure 2. Rapid Turnover of PSD-95 in Individual PSDs

(A) Schematic of the experimental setup. One laser (k ; 1,030 nm, magenta) was used to excite mCherry and photoactivated paGFP (paGFP*). A second
laser (k ; 810 nm, blue) was used for photoactivation within a region of interest (blue box) within the field of view (magenta box). BS, beam-splitting
cube; DM, dichroic mirror; OB, objective; R, G, photomultiplier tubes; SM, scan mirror.
(B) Schematic of the experiment. Spines were selected for photoactivation (pre-pa, blue box), followed by time-lapse imaging.
(C) Images collected before, and after (0 min, 90 min, and 24 h) photoactivation of two spines on different dendrites (age, P17).
(D) Time course of PSD-95-paGFP* fluorescence (same as in [C]). The initial portion of the decay (inset) was used to extract the retention time (sr) of PSD-
95-paGFP*.
(E) Retention times. Circles represent single spines and the horizontal bars indicate the medians (smedian). (P10–P12: smedian¼ 30 min, range 4–77 min, n
¼ 6 animals, 74 spines; P13–P15: smedian ¼ 34 min, range 5–108 min, n ¼ 6 animals, 108 spines; P16–P18: smedian ¼ 37 min, range 9–194 min, n ¼ 8
animals, 95 spines; P19–P30: smedian¼43 min, range 11–291 min, n¼8 animals, 59 spines; .P60: smedian¼106 min, range 20–289 min, n¼4 animals, 25
spines).
DOI: 10.1371/journal.pbio.0040370.g002
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these possibilities, we measured retention times for other
proteins that are not known to be concentrated in the PSD.
The retention time of cytoplasmic paGFP* (spaGFP) is

determined by spine geometry alone (Protocol S1), whereas
the retention time of paGFP*-actin (spaGFP-actin) in addition
depends on the cycling of actin in dendritic spines [53,54].
Since the diffusion coefficient is only a weak function of
molecular weight (;MW1/3) [55], paGFP*, paGFP*-actin, and
PSD-95-paGFP* are expected to have similar (within a factor
of 2) values for sesc. The retention times for paGFP* were
about 1,000 times shorter than for PSD-95-paGFP* (median
spaGFP ¼ 0.47 s) (Figure 3A and 3B) and was independent of
developmental age (Figure 3C), but increased with spine
volume (Figure S2) [52]. The retention time for paGFP*-actin
was intermediate (median spaGFP-actin ¼ 0.98 min) (Figure 3A
and 3B) [56]. Therefore the magnitude of sr is set primarily by
the interactions of PSD-95 with its binding partners in the
PSD and only modulated by compartmentalization of diffus-
ing PSD-95-paGFP* by spine necks (see Equation 1 in
Discussion).

Synapses Share a Common Pool of Diffusing PSD-95
We wondered if PSD-95 could exchange between PSDs in

different spines. After photoactivating PSD-95-paGFP in a
single spine, fluorescence appeared in neighboring spines as
fluorescence decreased in the photoactivated spine (Figure
4A). Degradation of PSD-95 (half-life ; 36 h) is negligible
over the time course of single imaging sessions (90 min)
[23,41]. The spread of PSD-95 was bidirectional and did not
involve obvious transport particles. Furthermore, diffuse
PSD-95 in the dendrite spread rapidly over short distances
(Protocol S1). These observations argue that PSD-95 spreads
from PSD to PSD by diffusion and individual PSDs share a
common pool of diffusing PSD-95.

Synapse-Specific Capture and Retention of PSD-95
What governs the diffusional exchange of PSD-95 between

spines? After PSD-95 unbinds from the PSD, it diffuses
rapidly (inter-synapse diffusion times ; 50 ms, Protocol S1)
along the dendritic shaft until it is captured by other PSDs.
PSD-95 content is roughly proportional to PSD area [57,58].
Therefore large PSDs contain large PSD-95 clusters and are
prominent sources of PSD-95, and the resulting concen-
tration gradients along the dendrite will drive net PSD-95
flux from large PSDs towards small PSDs. Diffusion therefore
tends to dissipate differences in the sizes of PSD-95 clusters.
How can PSD size be maintained in the presence of diffusion?
Stable sets of PSD-95 binding sites at individual PSDs could
explain the stability of PSD-95 clusters. However, this
explanation is likely not sufficient because PSD-95 binding
partners are also unstable [23,59], with half-lives at synapses
on the order of minutes to hours [60,61]. We therefore
analyzed the parameters governing the exchange of PSD-95
between synapses to determine if synapses of different sizes
have kinetic mechanisms to maintain the sizes of their PSD-
95 clusters.
We examined the capture of PSD-95 by individual PSDs.

Capture could be dominated by the spine neck: less-
restrictive spine necks allow for more flux of PSD-95 between
the dendrite and spine, facilitating the capture of diffusing
PSD-95. PSD size should also play a role, since the number of
binding sites for PSD-95 in the PSD is likely proportional to

Figure 3. The Magnitude of the PSD-95 Retention Time Is Determined by

Its Interactions with the PSD

(A) Examples of the time course of paGFP* (black), paGFP*-actin (red),
and PSD-95-paGFP* (blue) fluorescence after photoactivation in single
spines (age, P10).
(B) Retention times for paGFP*, paGFP*-actin, and PSD-95-paGFP* (age,
P10) (circles indicate individual spines; bars indicate medians) (median
spaGFP ¼ 0.47 s, range, 0.28–1.28 s, n ¼ 2 animals, 11 spines; median
spaGFP-actin ¼ 0.98 min, range, 0.45–6.42 min, n ¼ 3 animals, 26 spines;
median sPSD-95-paGFP¼ 22 min, range, 4–59 min, n¼ 2 animals, 15 spines).
(C) Escape time for paGFP* from individual spines (circles) as a function
of age. (P10–P30: smedian ¼ 0.72 s, range 0.28–2.38 s, n ¼ 4 animals, 35
spines; . P60: smedian ¼ 0.58 s, range 0.24–1.78 s, n ¼ 1 animal, 105
spines).
DOI: 10.1371/journal.pbio.0040370.g003
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PSD size, larger PSDs could capture more PSD-95. We
estimated the relationship between PSD-95 capture and
PSD size. We photoactivated all but two spines on a small
dendritic branch (spines a and b; Figure 4B and 4C). Spines a
and b were chosen to be near each other and thus
experienced similar concentrations of diffusing dendritic
PSD-95-paGFP*. By measuring the green fluorescence accu-
mulating in spines a and b (Ga and Gb), we estimated how
efficiently these spines captured PSD-95-paGFP* (Figure 4B
and 4C,þ60 min). We measured PSD-95-paGFP* fluorescence
again after photoactivating spines a and b (Ga,max and Gb,max).
The green fluorescence immediately after photoactivation
(Ga,max and Gb,max) was used as a measure of the size of the
PSD-95 cluster and hence as an estimate of PSD area [57,58].

The ratio of PSD-95-paGFP* capture (Ga,60min/Gb,60min) and
PSD size (Ga,max/Gb,max) were highly correlated (R¼ 0.86, p ,

0.0001) (Figure 4D). Therefore, PSDs captured diffusing PSD-
95-paGFP* in proportion to their size.
We next studied the relationship between PSD size and the

PSD’s retention time for PSD-95-paGFP*. We compared
retention times for pairs of spines (sa and sb). The green
fluorescence immediately after photoactivation (Ga,max and
Gb,max) was again used as a measure of PSD size. Both spines
shared the same parent dendrite and thus also the same PSD-
95-paGFP expression levels and imaging conditions. How-
ever, spines were chosen to lie on different dendritic
branches to minimize mixing of PSD-95-paGFP* between
spines (Figure 5A). In most cases the larger in a pair of PSDs

Figure 4. Individual PSDs Share a Common Pool of PSD-95

(A) Photoactivation of PSD-95-paGFP in a single spine (square) is followed by an increase in green fluorescence in neighboring spines (circle and cross).
Top, image. Bottom, corresponding fluorescence time course. Green fluorescence was normalized to red fluorescence in the spine.
(B) Measuring the relationship between PSD-95 capture and PSD size. All but two (pa 1, a and b) ‘‘probe’’ spines were photoactivated. The fluorescence
intensity within the probe spines was quantified (Ga and Gb) after 60 min. Subsequently the probe spines (a and b) were also photoactivated to estimate
the sizes of their PSDs (post-pa 2, [Ga, max and Gb, max]).
(C) Time-lapse images corresponding to (B). Insets show the probe spines a and b. Note, the last image was acquired after the probe spines were fully
photoactivated.
(D) Larger PSDs capture more PSD-95. Comparisons were performed for pairs of spines, a and b. The PSD size ratio (Ga,max/Gb,max) was proportional to
the ratio of capture (Ga,60min/Gb,60min) (orange circle corresponds to the spine pair in [C]).
DOI: 10.1371/journal.pbio.0040370.g004
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retained PSD-95 longer (Figure 5B) (p , 0.02, Wilcoxon
signed rank test). Therefore spines with larger PSDs capture
more diffusing PSD-95 and retain PSD-95 for longer. At
steady state, the size of individual PSD-95 clusters is expected
to scale with the PSD’s capture rate and retention time
(Protocol S1).

Changes in PSD Size over Time Predict Changes in
Retention Time

Our measurements suggest that kinetic mechanisms tuned
at the level of individual synapses could help maintain PSD
size with dynamic PSD components. Larger PSDs hold onto
PSD-95 for longer and capture PSD-95 more efficiently than
smaller PSDs. Therefore, if sr partially determines the size of
the PSD-95 cluster, then changes in retention time should co-
vary with changes in the PSD-95 cluster. We measured PSD-95

clusters (Gmax of photoactivated PSD-95-paGFP) and sr for
groups of PSDs on the same dendritic tufts over several days
(Figure 6A and 6B). For pairs of spines, the ratio of their
retention times across imaging sessions (Figure 6C, black line)
tracked the ratios of the PSD-95-paGFP* cluster brightness
(Figure 6C, blue line). Over populations of spine pairs,
changes in sr over time were highly correlated with changes in
PSD-95 clusters (R ¼ 0.66, p , 0.0001) (Figure 6D). These
measurements show that the retention time for PSD-95 and
the size of the PSD-95 cluster are tightly coupled at the level
of single synapses.

PSD-95 Stability Is Modulated by Sensory Experience
Studies in cultured neurons suggest that the stability of PSD-

95 at synapses can bemodulated by synaptic activity [40–42,44].
We therefore tested if the turnover of synaptic PSD-95 is
influenced by the level and pattern of network activity in vivo.
The sensory input to the barrel cortex can be altered by
trimming themystacial whiskers that provide themain sensory
input to the barrel cortex. Deprivation was initiated in adult
mice (age.60d) and involved the clippingof the largewhiskers
on both sides of the snout. Retention times were measured in
the sameanimals beforeandafterwhisker clipping, 1–30d after
clipping. Whisker clipping dramatically reduced the retention
times of synaptic PSD-95 (median sr unclipped ¼ 106 min;
median sr clipped¼49min; p , 0.002, Wilcoxon rank sum test)
(Figure 7), demonstrating that the stability of synaptic PSD-95
is activity- and experience-dependent.

Discussion

Rapid Redistribution of Synaptic PSD-95 In Vivo
We used dual laser two-photon microscopy [56,62] and two-

photon photoactivation of paGFP [52] to study the dynamics
of PSD-95 in L2/3 dendrites in vivo. Our data show that PSD-
95 is retained by individual PSDs for 1 h or less. This is
approximately 50-fold shorter compared to the half-life of
PSD-95 (;36 h) [23,41] and more than 1,000-fold shorter than
the lifetime of persistent spines and their synapses (months)
[9,11,13,14]. After PSD-95 unbinds from a PSD, it diffuses
rapidly within the dendrite and binds to other PSDs (Figure
4A). The diffusion time of free PSD-95-paGFP between
synapses (;50 ms, Protocol S1) is rapid compared to the
retention time. We estimate that at most, 1% of PSD-95 is
unbound at any given time. Therefore individual PSD-95
molecules effectively hop from spine to spine, visiting dozens
of PSDs before being degraded. As a consequence, synapses
share dendritic PSD-95.
Calculations and detailed simulations (unpublished data),

constrained by the observed behavior of PSD-95, suggest that
the concentration of PSD-95 binders exceeds the total
concentration of PSD-95. Thus individual PSDs compete for
a limiting pool of PSD-95; an increase in the size of the PSD-
95 cluster in one spine occurs at the expense of neighboring
PSDs (Figure S3).
PSD-95 levels may determine synaptic strength [38,39,63]

and, together with other PSD molecules, set synapse size
[48,64–66]. Redistribution of synaptic PSD-95 by diffusion
could play a role in synaptic plasticity by rapidly reallocating
synaptic resources to potentiated synapses within hours,
before translational and transcriptional programs have time
to respond [22,67]. Such redistribution of synaptic PSD-95 (or

Figure 5. Larger Spines Retain PSD-95 Longer

(A) Image of two photoactivated spines, a and b, on two branches of the
same dendrite. Ga,max and Gb,max are the fluorescence intensities of PSD-
95-paGFP* immediately after photoactivation, a measure of PSD size. sa,
and sb are the corresponding retention times.
(B) Comparison of retention times and PSD sizes for pairs of spines. Each
line corresponds to a pair of spines, a and b (black, positive slope, n¼ 64;
gray, negative slope, n¼18, 6 animals; orange, example from [A]). Spines
with larger PSDs have longer retention times.
DOI: 10.1371/journal.pbio.0040370.g005
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other PSD molecules, such as CaMKII [68], SAP97 [69], or
Shank [60]) may underlie interactions between nearby
synapses in the induction and maintenance of long-term
potentiation [70].

Kinetic Factors Contributing to Synapse Stability
In vitro studies suggest that most, if not all, proteins at an

excitatory synapse exhibit half-lives similar to that of PSD-95
or shorter [60,61,71]. How, therefore, can stable synapses be
maintained with unstable constituents? The synapse-specific
regulation of PSD-95 capture and retention provides a case
study on how synaptic stability could be achieved with highly
dynamic synaptic proteins.

Large PSDs are large sources of diffusing PSD-95, and a net
diffusional flux is expected to carry PSD-95 from large to
small synapses. Without synapse-specific regulation of kinetic
parameters, the interactions between PSD molecules and
PSDs are identical in all spines; large PSDs would therefore
lose material and size at the expense of small PSDs, until all
PSDs have a similar size. Our data indicate that these
parameters are tuned at the level of individual synapses to
counteract these dissipative effects of diffusion. First, larger
PSDs are more effective in capturing diffusing PSD-95 (Figure
4D). Second, larger PSDs retain PSD-95 for longer than
smaller PSDs (Figure 5B), which helps maintain differences in
the sizes of PSD-95 clusters. Interactions between PSD-95
molecules in the PSD are also likely required to maintain
stable PSD-95 clusters [72]. Similar mechanisms may apply to
other PSD proteins to set the PSD content for these proteins.

What could be the mechanisms underlying synapse-specific
retention times? Although the interactions of PSD-95 with its
binding partners in the PSD set the magnitude of sr (Figure
3), compartmentalization of PSD-95 by the spine can still
influence the value of sr. sesc (¼ Vsp <n/Do) measures the
compartmentalization by the spine neck [51,52]. After
unbinding from the PSD, PSD-95 is trapped in the spine
head for time sesc before escaping into the dendrite through
the spine neck [51]. Trapping in the spine (for time sesc)
drives rebinding of PSD-95 to the PSD (with time constant
son) before escape into the dendritic shaft. The retention time
can be estimated as (Protocol S1):

sr ’ soffð1þ sesc=sonÞ ¼ soffð1þ ðVsp< nÞ=ðDosonÞÞ ð1Þ

Therefore the retention time depends on sesc and, therefore,
on spine geometry. Since sesc is expected to be on the same
order as son (Protocol S1), spine geometry can modulate the
retention time (see also simulation, Figure S4); the retention
time is expected to increase with spine volume (Figure S2)
and spine neck resistance.
Spine geometry could explain the dependence of sr on PSD

size. According to Equation 1, retention times are longer for
spines with larger spine volumes (Vsp). Since PSD size is
proportional to spine volumes [73,74] (Figure S5), retention
times are also expected to be longer for larger PSDs based on
spine geometry alone.
Differences in retention times between spines could in

addition be tuned by the biochemical time constants son [72]
and soff (Equation 1). Several mechanisms could contribute to

Figure 6. PSD Size and PSD-95 Retention Time Vary Together from Day to Day

(A) Schematic of the experiment. Spines (i and j) on the same dendrite were photoactivated to measure PSD-95 fluorescence (Gi,j) and the PSD-95
retention times (si,j). The ratios Gi/Gj and si/sj were compared across imaging sessions.
(B) Example of repeated imaging and photoactivation of three spines over 6 d.
(C) Ratios of retention times (black) and ratios of PSD sizes (blue) for pairs of spines as a function of age (same experiment as [B]).
(D) Changes in fluorescence retention time predict changes in PSD size between imaging sessions 1 d apart. The line is a least-squares fit to the data (n
¼ 4 animals, 18 spine pairs, 35 2-d sequences).
DOI: 10.1371/journal.pbio.0040370.g006
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the regulation of son and soff. (1) Larger PSDs could contain
different PSD-95 binding partners and thus interact more
strongly with PSD-95 compared to smaller PSDs; (2) Individ-
ual PSD-95 molecules simultaneously interact with multiple
binding partners. It is possible that the full complement of
binding partners is only available at the center of the PSD,
whereas only a subset of binding partners may be available at
the edge, implying weaker binding. Since the ratio of PSD
area over PSD circumference increases with PSD size, large
PSDs could bind PSD-95 more strongly; (3) PSD-95 associa-
tion with the PSD is controlled by activity-dependent post-
translational modifications, and these could be regulated
differently at different synapses [33,41]. Additional experi-
ments will be required to explore these possibilities directly.

Developmental and Experience-Dependent Regulation of
PSD-95 Stability

PSD-95 retention times increased steadily with develop-
mental age (Figure 2E). It is unlikely that geometric factors
relating to spine compartmentalization influence this in-
crease since there was no change in sesc with age (Figure 3C).
However, several prominent structural molecules that bind to
PSD-95 directly or indirectly, including GKAP, Shank, and
CaMKII, are developmentally regulated [75–78]. Develop-
mentally regulated protein–protein interactions in the PSD
therefore could underlie the developmental increase in
retention times (through changes in son or soff , Equation 1).

Whisker clipping reduces the synchronous activity in the
neocortex [79] and in our experiments caused a reduction in
PSD-95 retention times (Figure 7). These data show that PSD-
95 stability at synapses is activity- and experience-dependent.
Similarly, a number of dendritic proteins show activity-
dependent trafficking and stability in cultured systems

[54,60,61]. In our whisker-clipping protocol, the entire barrel
cortex is deprived and the majority of synapses experience a
reduction in activity, which is presumably the cause of the
dramatic drop in the average retention time. In previous
studies using a checkerboard pattern of whisker deprivation,
subsets of synapses within the barrel cortex were stabilized
whereas others were lost [14]. In more natural situations,
novel experiences would likely increase activity at some
synapses and decrease activity at others. The rapid redis-
tribution of PSD-95, and other PSD molecules, could cause
rapid shifts in synapse size and strength towards the more
active inputs.

Materials and Methods

DNA constructs. The expression vector for in vivo expression of
synaptic proteins was a modified pCAGGS vector [80]. mCherry [43],
PSD-95 tagged with monomeric EGFP (mEGFP) [44,81], or paGFP [50]
was inserted within the coding region of pCAGGS, including a Kozak
consensus sequence. The 39 untranslated region contained a
promoter-independent enhancer element (woodchuck hepatitis virus
posttranscriptional regulatory element) [82] and the bovine growth
hormone polyadenylation site. In some experiments, we also used
plasmids expressing paGFP by itself or paGFP-actin based on chick
beta-actin [83] from the same expression vector. All DNA was purified
and concentrated using Qiagen plasmid preparation kits (Valencia,
California, United States) and dissolved in 10 mM Tris–HCl (pH 8.0).

In utero electroporation. All experimental protocols were con-
ducted according to the National Institutes of Health guidelines for
animal research and were approved by the Institutional Animal Care
and Use Committee at Cold Spring Harbor Laboratory. L2/3
progenitor cells were transfected via in utero electroporation
[45,46]. E16 timed-pregnant C57BL/6J mice (Charles River, Wilming-
ton, Massachusetts, United States) were deeply anesthetized using an
isoflurane–oxygen mixture (1% vol isoflurane/vol O2) delivered by an
anesthesia regulator (SurgiVet, Waukesha, Wisconsin, United States).
The uterine horns were exposed and approximately 1 ll of DNA
solution (containing ;2 lg/ll of plasmid expressing green protein, a
molar equivalent of mCherry plasmid, and Fast Green [Sigma, St.
Louis, Missouri, United States]) was pressure injected (General Valve
Picospritzer, Fairfield, New Jersey, United States) through a pulled-
glass capillary tube (Warner Instruments, Hamden, Connecticut,
United States) into the right lateral ventricle of each embryo. The
head of each embryo was placed between custom-made tweezer
electrodes, with the positive plate contacting the right side of the
head. Electroporation was achieved with five square pulses (duration
¼ 50 ms, frequency ¼ 1 Hz, 40V). Co-transfection efficiencies were
60%–70%.

Surgery. Imaging windows were installed above the somatosensory
cortex at P8 [47] or after P60 [9,12]. Mice were deeply anesthetized
with an isoflurane-oxygen mixture. A craniotomy (diameter ; 3 mm)
was opened above the right somatosensory cortex (0.5/1.5 mm
posterior from bregma and 3.0/3.5 mm lateral from the midline for
pups/adults, respectively), leaving the dura intact. The dura was
covered with 1% agarose (Type-IIIA, Sigma) that was dissolved in
HEPES-buffered artificial cerebrospinal fluid and covered with a 5-
mm custom-made cover glass (No. 1) that was sealed into place with
dental acrylic. The animals were also given a 20-ll injection of 4%
dexamethasone (Phoenix Scientific, St. Joseph, Missouri, United
States of America). After a 1-h recovery period, adults were replaced
into the cage, and pups were housed with littermates and a surrogate
mother. In the younger animals, mice with (n ¼ 6 animals) and
without (n ¼ 9 animals) imaging windows gained weight at the same
rate from P10 to P21 (p . 0.84, Wilcoxon rank sum test). For a subset
of animals, the position of the imaging window was mapped relative
to L4 barrels using standard histological methods.

Imaging. For younger animals, daily imaging began at P10.
Windows in adult animals were allowed a week to stabilize before
imaging sessions began. For deprivation experiments, whiskers were
clipped every other day following the last non-deprived imaging
session. Animals were anesthetized with an isoflurane-oxygen
mixture and mounted to the microscope using a head post. High-
resolution images were collected via a custom-made two-laser two-
photon laser scanning microscope (2PLSM) [56,62]. The light source
for imaging mCherry/paGFP* was a solid-state Ytterbium laser (k ;
1,030 nm; ;110 mW in the objective back-focal plane) (t-Pulse;

Figure 7. PSD-95 Retention Time Is Modulated by Sensory Experience

Circles indicate individual spines (.P60 control data are repeated from
Figure 2E). Horizontal bars indicate medians. Triangles indicate
population averages for two animals in which retention times were
measured before (blue) and after (red) whisker clipping.
DOI: 10.1371/journal.pbio.0040370.g007
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Amplitude Systemes, Pessac, France); for imaging GFP we used a
Ti:sapphire laser (k ; 910 nm; 25 mW) (MaiTai; Spectra Physics,
Fremont, California, United States); for photoactivation of paGFP
we utilized the Ti:sapphire laser (k ; 810 nm; 125 mW, using 2–3
frames, 3 lm in diameter, centered on spines). The laser beams were
independently controlled using Pockels cells (350–80 LA; Conoptics,
Danbury, Connecticut, United States) and combined using a
polarizing beam splitting cube. One to five spines were photo-
activated before image collection. Image acquisition and Pockels cell
control was with ScanImage [84]. Red and green fluorescence
photons were separated using a 565-nm dichroic mirror (Chroma
Technology, Brattleboro, Vermont, United States) and bandpass
filters (510/40; 635/90; Chroma Technology). Signals were collected
using photomultiplier tubes (3896; Hamamatsu, Hamamatsu City,
Japan). The objective lens (40, 0.8 NA) and trinoc were from
Olympus (Tokyo, Japan).

We used the vasculature and the pattern of dendritic branching to
identify regions of interest from day to day. Imaging sessions
consisted of a series of image stacks over 90 min, with time-lapse
intervals ranging from 1–20 min. Image stacks consisted of individual
sections (2563 256 pixels; pixel size, 0.16 lm) separated axially by 0.5
lm. For measurements of cytosolic paGFP and paGFP-actin, a series
of single sections were collected 128 ms apart (64 3 64 pixels). After
an imaging session, mice were allowed to recover for approximately
30 min on a warming blanket before housing with littermates and a
surrogate mother; adult animals were returned to their cages.

Data analysis. Fluorescence intensities were quantified using
custom software (MatLab [http://www.mathworks.com/products/
matlab/]). For each spine, mean intensities (ROIs, ;1 lm) were
further averaged over three sections (the brightest section plus one
above and below). Unless otherwise stated, green fluorescence (G) was
normalized by the red (mCherry) fluorescence summed over the
whole dendrite (Rsum), to correct for possible fluctuations in the
imaging conditions. To estimate the size of the PSD-95 clusters in
PSDs containing PSD-95-paGFP, we measured the green fluorescence
approximately 1–2 min after saturating photoactivation and back-
ground subtraction.

To extract the retention time, sr, G/Rsum was fit with an exponential
function and an offset, G/Rsum ¼ ae�t/b þ c. sr was derived over the
interval 0� b using a second round of exponential fitting as e�t/sr. sr
derived in this way primarily measures retention by the PSD and spine
rather than diffusional relaxation of PSD-95 in the dendrite (this was
verified using simulations; see Protocol S1). sr is the average residence
time of PSD-95 in a spine. It is likely that the underlying true decay is
multi-exponential, reflecting heterogeneous interactions of PSD-95
with its binding partners. For experiments with paGFP-actin (Figure 3)
spaGFP-actin was the slower of two time constants, representing actin
recycling rather than diffusion of free actin [54]. spaGFP was calculated
using a single exponential function [51].

Capture rates were estimated by comparing the PSD-95-paGFP*
fluorescence for pairs of spines that were next to a group of spines
that were photoactivated 60 min earlier (Figure 4). Over this time,
fluorescence in individual spines may have been influenced by
retention, in addition to capture. However, the fluorescence that
accumulated by transfer was only weakly dependent on time 20–60
min after photo-activation (Figure 4A), and the fluorescence signal at
60 min is therefore an accurate measure of the rate of capture.

Spine lifetimes, densities, and lengths were measured using
custom software [9]. Spine densities in cells expressing PSD-95-
XFP and mCherry (0.30 6 0.06 spines/lm dendrite) were indis-
tinguishable from cells expressing only mCherry (0.28 6 0.09 spine/
lm dendrite; p . 0.31, Wilcoxon rank sum test). Similarly, spine
lengths were indistinguishable (PSD-95-XFP/mCherry, 1.51 6 0.68
lm; mCherry, 1.35 6 0.47 lm; p . 0.26, Wilcoxon rank sum test)
(Figure S1G and S1H). The fractional daily turnover was calculated
as (Ngained þ Nlost)/Ntotal, where Ntotal represents the combined
number of spines on the two days being compared. Note that
mCherry fluorescence was relatively dim and further decreased with
developmental age; it is possible that we may have missed the
smallest spines in our analysis.

Supporting Information

Figure S1. Synaptic Circuits and Physiological Properties Are Not
Affected by the Expression of PSD-95

(A) Comparison of resting membrane potentials of transfected and
non-transfected cells in L2/3 in P15 brain slices.
(B) Comparison of membrane capacitance.
(C) Comparison of input resistance.

(D) Examples of laser scanning photostimulation input maps from
two L2/3 cells (left, transfected; right, non-transfected). The color
map indicates the strength of synaptic input from particular
locations in the brain slice (red dot, soma position; dashed lines,
barrels; black pixels, direct responses from the patched cell).
(E) Paired comparisons of the average synaptic input to transfected
and non-transfected cells in the same slice. Red dot indicates the
mean (n ¼ 9 pairs, four animals).
(F) Paired comparisons of the average L4 input from transfected and
non-transfected cells, input representing only non-transfected cells.
Red dot indicates the mean of all pairs (n ¼ 9 pairs, four animals).
(G) Comparison of spine density for PSD-95-XFP/mCherry expressing
cells (n ¼ 4 animals, 284 spines, 940 lm total dendritic length) and
mCherry expressing cells (n ¼ 3 animals, 512 spines, 1,811 lm total
dendritic length). Data collected at P15.
(H) Comparison of spine lengths for PSD-95-XFP/mCherry expressing
cells (n ¼ 4 animals, 284 spines) and mCherry expressing cells (n ¼ 3
animals, 512 spines). Data collected at P15.
Error bars for (A–C), (G), and (H) represent standard deviation. Error
bars in (E) and (F) represent standard error of the mean for each cell
in the pair.

Found at DOI: 10.1371/journal.pbio.0040370.sg001 (5.4 MB TIF)

Figure S2. Escape Time (sesc) Increases with Spine Volume

n¼ 1 animal and n¼ 6 spines at P55, 4 spines at P56, and 6 spines at
P57.

Found at DOI: 10.1371/journal.pbio.0040370.sg002 (1.9 MB TIF)

Figure S3. Simulation of Synaptic Competition for PSD-95

Time course of PSD-95 fluorescence; the PSD in the spine highlighted
in blue has an affinity for PSD-95 23 greater than its neighbors. Inset:
two-dimensional geometry. Reaction parameters: kon¼10/lM . sec; Do
¼ 10 lm/sec2. Initial concentrations (in lM): bound PSD-95¼ 50, free
binding sites¼ 5; ubiquitous unbound dark PSD-95¼ 8.3 . 10�4. PSD-
95 affinity (koff)¼ 1/2,400 sec (blue) or 1/1,200 sec (remaining spines).

Found at DOI: 10.1371/journal.pbio.0040370.sg003 (2 MB TIF)

Figure S4. Simulations of PSD-95 Redistribution

(A) Schematic of dendrite (bottom) and a blow-up of a dendritic spine
(top).
(B) State diagram for PSD-95.
(C and D) Monte Carlo simulation of photoactivation experiments.
The simulations are based on the state diagram of Figure S4B. Each
simulation represents 1,000 PSD-95-paGFP molecules.
(C) Time course of fluorescence in the photoactivated spines (solid
lines) and in their direct neighbors (dotted lines). Parameters (in
seconds): son¼1; soff¼1,000; sdiff¼0.1; sin¼5 sesc. sesc was 0.1 (green),
0.5 (red), or 2 (blue). The estimated retention times were 1,303, 1,605,
and 3,027 s.
(D) Retention times as a function of soff . Parameters (in seconds): son
¼ 1; sesc ¼ 2; sdiff ¼ 0.1; sin ¼ 5 sesc. For each parameter value the
simulation was repeated twice.
(E and F) Compartmental modeling using the Virtual Cell Modeling
and Simulation Framework (University of Connecticut Health
Center).
(E) Inset: two-dimensional geometry. The diameter of each spine head
is 1 lm and contains a PSD (0.5 lm3 0.05 lm). Each spine neck is 0.2
lm wide and 0.5 lm long. Spines are spaced 1 lm apart on a dendritic
segment (length, 10 lm; diameter, 1 lm). The photoactivated and
adjacent spines are indicated with a solid and dashed square,
respectively.
(E) Time course of fluorescence in the photoactivated spines (solid
lines) and in their adjacent neighbors (dotted lines). Reaction
parameters: kon ¼ 10/lM . sec; koff ¼ 1/1,200 sec; Do ¼ 10 lm/sec2.
Initial concentrations (in lM): in the photoactivated PSD, photo-
activated bound PSD-95¼ 25, dark bound PSD-95¼ 25, free binding
sites¼ 5; in non-photoactivated PSDs, dark bound PSD-95¼ 50, free
binding sites ¼ 5; ubiquitous unbound dark PSD-95 ¼ 8.3 . 10�4. We
varied the size of the photoactivated spine head and its PSD (relative
to other spines): 0.5 (green), 1 (red), 2 (blue).
(F) Retention time as a function of spine size. Note that the retention
times increased with increasing spine size, similar to the in vivo
measurements (Figure 6D).

Found at DOI: 10.1371/journal.pbio.0040370.sg004 (3.8 MB TIF)

Figure S5. PSD Size and Spine Volume Are Correlated

Comparison of PSD size and spine volume for pairs of spines. Each
line corresponds to a pair of spines (black, positive slope, n¼32; gray,
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negative slope, n ¼ 11, four animals). Spines with larger volumes,
estimated from mCherry fluorescence, have larger PSDs, estimated
from PSD-95-GFP fluorescence.

Found at DOI: 10.1371/journal.pbio.0040370.sg005 (1.1 MB TIF)

Protocol S1. Materials and Methods for Figure S1 and Supplemental
Discussion

Found at DOI: 10.1371/journal.pbio.0040370.sd001 (51 KB DOC)
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